5,719 research outputs found

    Nonmesonic weak decay spectra of Λ4^4_\LambdaHe

    Get PDF
    To comprehend the recent Brookhaven National Laboratory experiment E788 on Λ4^4_\LambdaHe, we have outlined a simple theoretical framework, based on the independent-particle shell model, for the one-nucleon-induced nonmesonic weak decay spectra. Basically, the shapes of all the spectra are tailored by the kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged here by the one-meson-exchange-potential. In spite of the straightforwardness of the approach a good agreement with data is acheived. This might be an indication that the final-state-interactions and the two-nucleon induced processes are not very important in the decay of this hypernucleus. We have also found that the π+K\pi+K exchange potential with soft vertex-form-factor cutoffs (Λπ0.7(\Lambda_\pi \approx 0.7 GeV, ΛK0.9\Lambda_K \approx 0.9 GeV), is able to account simultaneously for the available experimental data related to Γp\Gamma_p and Γn\Gamma_n for Λ4^4_\LambdaH, Λ4^4_\LambdaHe, and Λ5^5_\LambdaHe.Comment: 12 pages, 4 figures, 1 table, submitted for publication; v2: major revision, 18 pages, one author added, table, figures and bibliography change

    On the propagation speed of evanescent modes

    Get PDF
    The group-velocity of evanescent waves (in undersized waveguides, for instance) was theoretically predicted, and has been experimentally verified, to be Superluminal (v_g > c). By contrast, it is known that the precursor speed in vacuum cannot be larger than c. In this paper, by computer simulations based on Maxwell equations only, we show the existence of both phenomena. In other words, we verify the actual possibility of Superluminal group velocities, without violating the so-called (naive) Einstein causality. (Subject classes: General physics, Classical physics, Optics, Special Relativity; PACS nos.: 73.40Gk, 03.80+z, 03.65Bz; Keywords: evanescent waves; tunnelling photons; Hartman effect; group velocity; Superluminal waves; precursors; transient waves; front velocity; Maxwell equations; electromagnetic waves; computer simulations; Special Relativity; Extended Relativity).Comment: plain LaTeX file (14 pages), plus 15 figures in .jp

    BF Actions for the Husain-Kuchar Model

    Get PDF
    We show that the Husain-Kuchar model can be described in the framework of BF theories. This is a first step towards its quantization by standard perturbative QFT techniques or the spin-foam formalism introduced in the space-time description of General Relativity and other diff-invariant theories. The actions that we will consider are similar to the ones describing the BF-Yang-Mills model and some mass generating mechanisms for gauge fields. We will also discuss the role of diffeomorphisms in the new formulations that we propose.Comment: 21 pages (in DIN A4 format), minor typos corrected; to appear in Phys. Rev.

    The Flavours of Coffee Ground. The coffee waste as accelerator for new local businesses

    Get PDF
    Annual generation of Spent Coffee Grounds (SCG) is estimated around six million tonnes per year. They currently do not have a commercial value and are disposed of in landfills or as compost. Systemic Design approach developed by Politecnico di Torino (DAD) wants to provide an holistic vision in which these production are linked together through relationships, output and input, flows of energy and materials, in order to make the SCG recovery activity complex, with almost no waste. This research studies how to make real and profitable a system that values this waste considering the local condition

    Nuclear masses, deformations and shell effects

    Get PDF
    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei regionComment: 10 pages, 8 tables, Proc. of the XXXIV Nuclear Physics Symposium, January 4-7 2011, Cocoyoc, Morelos, Mexico. IOP Journal of Physics: Conference Series (in press

    Numerical study of surface-induced reorientation and smectic layering in a nematic liquid crystal

    Full text link
    Surface-induced profiles of both nematic and smectic order parameters in a nematic liquid crystal, ranging from an orienting substrate to "infinity", were evaluated numerically on base of an extended Landau theory. In order to obtain a smooth behavior of the solutions at "infinity" a boundary energy functional was derived by linearizing the Landau energy around its equilibrium solutions. We find that the intrinsic wave number of the smectic structure, which plays the role of a coupling between nematic and smectic order, strongly influences the director reorientation. Whereas the smectic order is rapidly decaying when moving away from the surface, the uniaxial nematic order parameter shows an oscillatory behavior close to the substrate, accompanied by a non-zero local biaxiality.Comment: LaTeX, 17 pages, with 4 postscript figure

    Unitary evolution of free massless fields in de Sitter space-time

    Full text link
    We consider the quantum dynamics of a massless scalar field in de Sitter space-time. The classical evolution is represented by a canonical transformation on the phase space for the field theory. By studying the corresponding Bogoliubov transformations, we show that the symplectic map that encodes the evolution between two instants of time cannot be unitarily implemented on any Fock space built from a SO(4)-symmetric complex structure. We will show also that, in contrast with some effectively lower dimensional examples arising from Quantum General Relativity such as Gowdy models, it is impossible to find a time dependent conformal redefinition of the massless scalar field leading to a quantum unitary dynamics.Comment: 20 pages. Comments and references adde
    corecore