30 research outputs found

    HIGHLIGHTS OF PATTRU (POULTICE) IN SIDDHA

    Get PDF
    Siddha system of medicine is one of the oldest medical system in the world. The treatment in Siddha is made by restoring the original balance of the three vital humours (Vatham, Pitham, Kapham) so that patient becomes healthy. It has a vast number of internal and external therapies. The non-oral therapy is known as External medicines -Pura marundhu.32 types of external applications are mentioned in Siddha. In many instances, only the external procedures without oral intake of drugs are much sufficient. They are quite safe and efficient too. Pattru – Poultice is one among them, used to treat cuts, abscess, furuncles, boils, puffy indurations, haemorrhoids, eczema, etc., as a emollient, fungicidal, germicide and so on... This paper is an attempt to bring out the of analysis of Pattru for various diseases as described in Siddha classical text books along with the mode of action scientifically, so that it would create awareness globally

    Expressing OsiSAP8, a Zinc-Finger Associated Protein Gene, Mitigates Stress Dynamics in Existing Elite Rice Varieties of the 'Green Revolution'

    Get PDF
    Key message: Overexpression of OsiSAP8 driven by Port Ubi2.3 from Porteresia coarctata imparts drought and salinity stress tolerance in transgenic rice. Stress associated proteins (SAPs) possess the zinc-finger domains that are wildly evolving functional and conserved regions/factors in plants to combat abiotic stresses. In this study, the promoter region of OsiSAP8, an intron-less, multiple stress inducible gene, was compared in silico with a strong constitutive promoter, Port Ubi2.3. This resulted in developing rice, resistant to drought and salinity expressing OsiSAP8 promoted by Port Ubi2.3. (Porteresia coarctata), through Agrobacterium-mediated transformation in the popular rice varieties, IR36 and IR64. Southern blot hybridization confirmed the integration of OsiSAP8, and the T0 transgenic lines of IR36 and IR64 were evaluated for their drought and salinity tolerance. The IR36-T1 progenies showed an enhanced tolerance to water withhold stress compared to wild type and IR64-T1 progenies. Physiological parameters, such as the panicle weight, number of panicles, leaf wilting, and TBARS assay, showed the transgenic IR36 to be superior. The transgenic lines performed better with higher 80-95% relative leaf water content when subjected to drought for 14 days. Gene expression analysis of OsiSAP8 in IR36 T1 showed a 1.5-fold upregulation under mannitol stress. However, IR64 T1 showed a two-fold upregulation in NaCl stress. An enhanced drought and salinity stress tolerance in the transgenic IR36 cultivar through overexpression of OsiSAP8 was observed as it had a native copy of OsiSAP8. This is perhaps the first study using a novel ubiquitin promoter (Port Ubi2.3) to generate drought and salinity stress-tolerant transgenic rice. Thus, we report the overexpression of a rice gene (OsiSAP8) by a rice promoter (Port Ubi2.3) in rice (IR36) to resist drought and salinity

    Smart Locomotive Engine using GPS system

    No full text
    Rail  tracking  system  (RTS) is  an  advanced method used to track and monitor any train equipped with a  sensing  unit  that  receives  and  transfers signals  through GPS  satellite. RTS is a combination of Global Positioning System (GPS) that provides actual geographic real time position of each train. The entire transmission mechanism of RTS setup depends on GPS satellite, a receiver on the train, a GSM system and  controller based  tracking  for dispatch. The GSM communication system is generally the same as cellular phone network. In the existing system passenger cant able to identify the train location. In this project we are identifying the train speed, location and providing message via SMS by applying GPS technique. It is very useful to the passenger those who are sleeping while travelling. In case of emergency when passenger using emergency chain, we can also indicate that in which compartment the chain is pulled

    Development of superhydrophobic surface on mild steel by a facile approach and analyzing its self-cleaning and anti-freezing properties

    No full text
    Superhydrophobic surfaces are currently a subject of great interest because of their tremendous applications. This study offers greater insight into the self-cleaning ability and anti-icing behavior of the superhydrophobic mild steel and finds application in aircraft and marine systems. Superhydrophobic surfaces were developed on the mild steel surface by improving the roughness and reducing the energy on the surface. Mild steel was chemically etched with HCL solution for 10 min to improve the roughness. After etching, the surfaces were immersed in stearic acid solution for 3 h by solution immersion method to introduce low surface energy. The resultant surfaces have a combination of nano and micro-roughness. The roughness of the samples was measured with the aid of surface roughness tester. The roughness of the prepared surface is 4.213 μm. The microstructure of the as-prepared surface was characterized by a scanning electron microscope. The surfaces have changed to be pine-cone-like structure. The pinecone-like hierarchical structures can generate numerous grooves in which the air can be trapped which lead to a larger contact angle. The contact angle was measured by using a goniometer setup. The obtained contact angle of the surface is as high as 154° with a lower contact angle hysteresis. The surfaces were tested for self-cleaning and ice-delaying properties. The as-prepared superhydrophobic surfaces can self-clean the surface from dirt/dust while the water droplets roll over the surface. A freezing delay time of 392 s was achieved on the surfaces. The prepared surfaces possess better self-cleaning and ice-delaying properties

    Helicobacter pylori pathogen regulates p14ARF tumor suppressor and autophagy in gastric epithelial cells

    No full text
    Infection with Helicobacter pylori is one of the strongest risk factors for development of gastric cancer. Although these bacteria infect approximately half of the world's population, only a small fraction of infected individuals develops gastric malignancies. Interactions between host and bacterial virulence factors are complex and interrelated, making it difficult to elucidate specific processes associated with H. pylori-induced tumorigenesis. In this study, we found that H. pylori inhibits p14ARF tumor suppressor by inducing its degradation. This effect was found to be strain-specific. Downregulation of p14ARF induced by H. pylori leads to inhibition of autophagy in a p53-independent manner in infected cells. We identified TRIP12 protein as E3 ubiquitin ligase that is upregulated by H. pylori, inducing ubiquitination and subsequent degradation of p14ARF protein. Using isogenic H. pylori mutants, we found that induction of TRIP12 is mediated by bacterial virulence factor CagA. Increased expression of TRIP12 protein was found in infected gastric epithelial cells in vitro and human gastric mucosa of H. pylori-infected individuals. In conclusion, our data demonstrate a new mechanism of ARF inhibition that may affect host-bacteria interactions and facilitate tumorigenic transformation in the stomach
    corecore