510 research outputs found

    Production of a pion in association with a high-Q2 dilepton pair in antiproton-proton annihilation at GSI-FAIR

    Full text link
    We evaluate the cross section for anti-p p -> l+ l- pi0 in the forward direction and for large lepton pair invariant mass. In this kinematical region, the leading-twist amplitude factorises into a short-distance matrix element, long-distance dominated antiproton Distribution Amplitudes and proton to pion Transition Distribution Amplitudes (TDA). Using a modelling inspired from the chiral limit for these TDAs, we obtain a first estimate of this cross section, thus demonstrating that this process can be measured at GSI-FAIR.Comment: Latex, 5 pages, 3 figure

    Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Full text link
    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from the fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 deg C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power -- this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics

    Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature constrain wind power output and circulation cell size

    Full text link
    The kinetic energy budget of the atmosphere's meridional circulation cells is analytically assessed. In the upper atmosphere kinetic energy generation grows with increasing surface temperature difference \$\Delta T_s\$ between the cold and warm ends of a circulation cell; in the lower atmosphere it declines. A requirement that kinetic energy generation is positive in the lower atmosphere limits the poleward cell extension \$L\$ of Hadley cells via a relationship between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$. This pattern is demonstrated here using monthly data from MERRA re-analysis. Kinetic energy generation along air streamlines in the boundary layer does not exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero for the largest observed \$L\$ at 2~km height. The limited meridional cell size necessitates the appearance of heat pumps -- circulation cells with negative work output where the low-level air moves towards colder areas. These cells consume the positive work output of the heat engines -- cells where the low-level air moves towards the warmer areas -- and can in theory drive the global efficiency of atmospheric circulation down to zero. Relative contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the net kinetic power output on Earth is dominated by surface pressure gradients, with minor net kinetic energy generation in the upper atmosphere. The role of condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more discussion and a new figure (Fig. 4) added; in Fig. 3 the previously invisible dots (observations) can now be see

    Comment on "The Tropospheric Land-Sea Warming Contrast as the Driver of Tropical Sea Level Pressure Changes" by Bayr and Dommenget

    Full text link
    T Bayr and D Dommenget [J. Climate 26 (2013) 1387] proposed a model of temperature-driven air redistribution to quantify the ratio between changes of sea level pressure psp_s and mean tropospheric temperature TaT_a in the tropics. This model assumes that the height of the tropical troposphere is isobaric. Here problems with this model are identified. A revised relationship between psp_s and TaT_a is derived governed by two parameters -- the isobaric and isothermal heights -- rather than just one. Further insight is provided by the model of R S Lindzen and S Nigam [J. Atmos. Sci. 44 (1987) 2418], which was the first to use the concept of isobaric height to relate tropical psp_s to air temperature, and did this by assuming that isobaric height is always around 3 km and isothermal height is likewise near constant. Observational data, presented here, show that neither of these heights is spatially universal nor do their mean values match previous assumptions. Analyses show that the ratio of the long-term changes in psp_s and TaT_a associated with land-sea temperature contrasts in a warming climate -- the focus of Bayr and Dommenget [2013] -- is in fact determined by the corresponding ratio of spatial differences in the annual mean psp_s and TaT_a. The latter ratio, reflecting lower pressure at higher temperature in the tropics, is dominated by meridional pressure and temperature differences rather than by land-sea contrasts. Considerations of isobaric heights are shown to be unable to predict either spatial or temporal variation in psp_s. As noted by Bayr and Dommenget [2013], the role of moisture dynamics in generating sea level pressure variation remains in need of further theoretical investigations.Comment: 26 pages, 11 figures. arXiv admin note: text overlap with arXiv:1404.101

    The key physical parameters governing frictional dissipation in a precipitating atmosphere

    Full text link
    Precipitation generates small-scale turbulent air flows the energy of which ultimately dissipates to heat. The power of this process has previously been estimated to be around 2-4 W m-2 in the tropics: a value comparable in magnitude to the dynamic power of the global circulation. Here we suggest that this previous power estimate is approximately double the true figure. Our result reflects a revised evaluation of the mean precipitation path length Hp. We investigate the dependence of Hp on surface temperature,relative humidity,temperature lapse rate and degree of condensation in the ascending air. We find that the degree of condensation,defined as the relative change of the saturated water vapor mixing ratio in the region of condensation, is a major factor determining Hp. We estimate from theory that the mean large-scale rate of frictional dissipation associated with total precipitation in the tropics lies between 1 and 2 W m-2 and show that our estimate is supported by empirical evidence. We show that under terrestrial conditions frictional dissipation constitutes a minor fraction of the dynamic power of condensation-induced atmospheric circulation,which is estimated to be at least 2.5 times larger. However,because Hp increases with surface temperature Ts, the rate of frictional dissipation would exceed that of condensation-induced dynamics, and thus block major circulation, at Ts >~320 K in a moist adiabatic atmosphere.Comment: 12 pp, 2 figure

    Renormalization Group Theory for a Perturbed KdV Equation

    Full text link
    We show that renormalization group(RG) theory can be used to give an analytic description of the evolution of a perturbed KdV equation. The equations describing the deformation of its shape as the effect of perturbation are RG equations. The RG approach may be simpler than inverse scattering theory(IST) and another approaches, because it dose not rely on any knowledge of IST and it is very concise and easy to understand. To the best of our knowledge, this is the first time that RG has been used in this way for the perturbed soliton dynamics.Comment: 4 pages, no figure, revte

    Analysis of the Accuracy of Prediction of the Celestial Pole Motion

    Full text link
    VLBI observations carried out by global networks provide the most accurate values of the precession-nutation angles determining the position of the celestial pole; as a rule, these results become available two to four weeks after the observations. Therefore, numerous applications, such as satellite navigation systems, operational determination of Universal Time, and space navigation, use predictions of the coordinates of the celestial pole. In connection with this, the accuracy of predictions of the precession- nutation angles based on observational data obtained over the last three years is analyzed for the first time, using three empiric nutation models---namely, those developed at the US Naval Observatory, the Paris Observatory, and the Pulkovo Observatory. This analysis shows that the last model has the best of accuracy in predicting the coordinates of the celestial pole. The rms error for a one-month prediction proposed by this model is below 100 microarcsecond.Comment: 13 p
    • …
    corecore