The kinetic energy budget of the atmosphere's meridional circulation cells is
analytically assessed. In the upper atmosphere kinetic energy generation grows
with increasing surface temperature difference \$\Delta T_s\$ between the cold
and warm ends of a circulation cell; in the lower atmosphere it declines. A
requirement that kinetic energy generation is positive in the lower atmosphere
limits the poleward cell extension \$L\$ of Hadley cells via a relationship
between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper
limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$.
This pattern is demonstrated here using monthly data from MERRA re-analysis.
Kinetic energy generation along air streamlines in the boundary layer does not
exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero
for the largest observed \$L\$ at 2~km height. The limited meridional cell size
necessitates the appearance of heat pumps -- circulation cells with negative
work output where the low-level air moves towards colder areas. These cells
consume the positive work output of the heat engines -- cells where the
low-level air moves towards the warmer areas -- and can in theory drive the
global efficiency of atmospheric circulation down to zero. Relative
contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation
are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta
p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the
net kinetic power output on Earth is dominated by surface pressure gradients,
with minor net kinetic energy generation in the upper atmosphere. The role of
condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more
discussion and a new figure (Fig. 4) added; in Fig. 3 the previously
invisible dots (observations) can now be see