973 research outputs found
Multi-state and non-volatile control of graphene conductivity with surface electric fields
Planar electrodes patterned on a ferroelectric substrate are shown to provide
lateral control of the conductive state of a two-terminal graphene stripe. A
multi-level and on-demand memory control of the graphene resistance state is
demonstrated under low sub-coercive electric fields, with a susceptibility
exceeding by more than two orders of magnitude those reported in a vertical
gating geometry. Our example of reversible and low-power lateral control over
11 memory states in the graphene conductivity illustrates the possibility of
multimemory and multifunctional applications, as top and bottom inputs remain
accessible.Comment: Graphene ferroelectric lateral structure for multi-state and
non-volatile conductivity control, 4 pages, 4 figure
Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study.
BackgroundBisphenol A (BPA) is widely used in the manufacture of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt thyroid function. Although thyroid hormones play a determinant role in human growth and brain development, no studies have investigated relations between BPA exposure and thyroid function in pregnant women or neonates.ObjectiveOur goal was to evaluate whether exposure to BPA during pregnancy is related to thyroid hormone levels in pregnant women and neonates.MethodsWe measured BPA concentration in urine samples collected during the first and second half of pregnancy in 476 women participating in the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We also measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in women during pregnancy, and TSH in neonates.ResultsAssociations between the average of the two BPA measurements and maternal thyroid hormone levels were not statistically significant. Of the two BPA measurements, only the one taken closest in time to the TH measurement was significantly associated with a reduction in total T4 (β = -0.13 µg/dL per log2 unit; 95% CI: -0.25, 0.00). The average of the maternal BPA concentrations was associated with reduced TSH in boys (-9.9% per log2 unit; 95% CI: -15.9%, -3.5%) but not in girls. Among boys, the relation was stronger when BPA was measured in the third trimester of pregnancy and decreased with time between BPA and TH measurements.ConclusionResults suggest that exposure to BPA during pregnancy is related to reduced total T4 in pregnant women and decreased TSH in male neonates. Findings may have implications for fetal and neonatal development
Imaging Electron Wave Functions Inside Open Quantum Rings
Combining Scanning Gate Microscopy (SGM) experiments and simulations, we
demonstrate low temperature imaging of electron probability density
in embedded mesoscopic quantum rings (QRs). The tip-induced
conductance modulations share the same temperature dependence as the
Aharonov-Bohm effect, indicating that they originate from electron wavefunction
interferences. Simulations of both and SGM conductance maps
reproduce the main experimental observations and link fringes in SGM images to
.Comment: new titl
Giant slip lengths of a simple fluid at vibrating solid interfaces
It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane
configuration a mechanical resonator vibrating close to a rigid wall in a
simple fluid can be overdamped to a frozen regime. Here, by solving
analytically the Navier Stokes equations with partial slip boundary conditions
at the solid fluid interface, we develop a theoretical approach justifying and
extending these earlier findings. We show in particular that in the perfect
slip regime the above mentioned results are, in the plane-plane configuration,
very general and robust with respect to lever geometry considerations. We
compare the results with those obtained previously for the sphere moving
perpendicularly and close to a plane in a simple fluid and discuss in more
details the differences concerning the dependence of the friction forces with
the gap distance separating the moving object (i.e., plane or sphere) from the
fixed plane. Finally, we show that the submicron fluidic effect reported in the
reference above, and discussed further in the present work, can have dramatic
implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)
Imaging and controlling electron transport inside a quantum ring
Traditionally, the understanding of quantum transport, coherent and
ballistic1, relies on the measurement of macroscopic properties such as the
conductance. While powerful when coupled to statistical theories, this approach
cannot provide a detailed image of "how electrons behave down there". Ideally,
understanding transport at the nanoscale would require tracking each electron
inside the nano-device. Significant progress towards this goal was obtained by
combining Scanning Probe Microscopy (SPM) with transport measurements2-7. Some
studies even showed signatures of quantum transport in the surrounding of
nanostructures4-6. Here, SPM is used to probe electron propagation inside an
open quantum ring exhibiting the archetype of electron wave interference
phenomena: the Aharonov-Bohm effect8. Conductance maps recorded while scanning
the biased tip of a cryogenic atomic force microscope above the quantum ring
show that the propagation of electrons, both coherent and ballistic, can be
investigated in situ, and even be controlled by tuning the tip potential.Comment: 11 text pages + 3 figure
Analytical and Numerical Demonstration of How the Drude Dispersive Model Satisfies Nernst's Theorem for the Casimir Entropy
In view of the current discussion on the subject, an effort is made to show
very accurately both analytically and numerically how the Drude dispersive
model, assuming the relaxation is nonzero at zero temperature (which is the
case when impurities are present), gives consistent results for the Casimir
free energy at low temperatures. Specifically, we find that the free energy
consists essentially of two terms, one leading term proportional to T^2, and a
next term proportional to T^{5/2}. Both these terms give rise to zero Casimir
entropy as T -> 0, thus in accordance with Nernst's theorem.Comment: 11 pages, 4 figures; minor changes in the discussion. Contribution to
the QFEXT07 proceedings; matches version to be published in J. Phys.
Casimir-Polder force between an atom and a dielectric plate: thermodynamics and experiment
The low-temperature behavior of the Casimir-Polder free energy and entropy
for an atom near a dielectric plate are found on the basis of the Lifshitz
theory. The obtained results are shown to be thermodynamically consistent if
the dc conductivity of the plate material is disregarded. With inclusion of dc
conductivity, both the standard Lifshitz theory (for all dielectrics) and its
generalization taking into account screening effects (for a wide range of
dielectrics) violate the Nernst heat theorem. The inclusion of the screening
effects is also shown to be inconsistent with experimental data of Casimir
force measurements. The physical reasons for this inconsistency are elucidated.Comment: 10 pages, 1 figure; improved discussion; to appear in J. Phys. A:
Math. Theor. (Fast Track Communications
Origin of volatiles in the Main Belt
We propose a scenario for the formation of the Main Belt in which asteroids
incorporated icy particles formed in the outer Solar Nebula. We calculate the
composition of icy planetesimals formed beyond a heliocentric distance of 5 AU
in the nebula by assuming that the abundances of all elements, in particular
that of oxygen, are solar. As a result, we show that ices formed in the outer
Solar Nebula are composed of a mix of clathrate hydrates, hydrates formed above
50 K and pure condensates produced at lower temperatures. We then consider the
inward migration of solids initially produced in the outer Solar Nebula and
show that a significant fraction may have drifted to the current position of
the Main Belt without encountering temperature and pressure conditions high
enough to vaporize the ices they contain. We propose that, through the
detection and identification of initially buried ices revealed by recent
impacts on the surfaces of asteroids, it could be possible to infer the
thermodynamic conditions that were present within the Solar Nebula during the
accretion of these bodies, and during the inward migration of icy
planetesimals. We also investigate the potential influence that the
incorporation of ices in asteroids may have on their porosities and densities.
In particular, we show how the presence of ices reduces the value of the bulk
density of a given body, and consequently modifies its macro-porosity from that
which would be expected from a given taxonomic type.Comment: Accepted for publication in MNRA
Infliximab Reduces Endoscopic, but Not Clinical, Recurrence of Crohn's Disease After Ileocolonic Resection
L
- …
