470 research outputs found

    Evaluating uncertain CO2 abatement over the very long term

    Get PDF
    Climate change research with the economic methodology of cost–benefit analysis is challenging because of valuation and ethical issues associated with the long delays between CO2 emissions and much of their potential damages, typically of several centuries. The large uncertainties with which climate change impacts are known today and the possibly temporary nature of some envisaged CO2 abatement options exacerbate this challenge. For example, potential leakage of CO2 from geological reservoirs, after this greenhouse gas has been stored artificially underground for climate control reasons, requires an analysis in which the uncertain climatic consequences of leakage are valued over many centuries. We here present a discussion of some of the relevant questions in this context and provide calculations with the top–down energy-environment-economy model DEMETER. Given the long-term features of the climate change conundrum as well as of technologies that can contribute to its solution, we considered it necessary extending DEMETER to cover a period from today until the year 3000, a time span so far hardly investigated with integrated assessment models of climate change

    Learning Curves for Solid Oxide Fuel Cells

    Get PDF

    Hydrogen storage in depleted offshore gas fields in Brazil:Potential and implications for energy security

    Get PDF
    This article estimates the potential of using depleted offshore gas fields in Brazil for hydrogen storage and the effects this may have in terms of energy security. Brazil is starting to invest in producing green hydrogen associated with offshore wind energy generation. This initiative has stimulated the search for suitable locations to store hydrogen, including in depleted offshore gas reservoirs. The methodology used in this paper allows for identifying which of the 85 assessed depleted offshore gas fields are the most suitable for hydrogen storage and evaluating the storage capacity of the selected fields. In addition, a wind speed analysis is made to investigate possible locations for prospective wind energy generation projects that can accommodate green hydrogen production. As our main result, we find that the selected depleted offshore gas fields have the potential to store around 5483 TWh worth of hydrogen. This amount is equivalent to about 10 times the total annual electricity consumption in Brazil. Hence, Brazil can comfortably leverage its offshore wind potential in connection with hydrogen production to enhance the energy security of its electricity supply. Considering that to date primarily natural gas has been used as the main source of energy security in Brazil and that its share in the electricity sector has significantly increased over the last decade, the combination of hydrogen storage and renewable energy such as offshore wind power has the potential to provide a resilient and decarbonised electricity system in the country. Furthermore, hydrogen stored in offshore reservoirs in Brazil can become an important resource in the international energy market and constitute a possible key to energy security for countries to which Brazil may export hydrogen. We end our paper by providing comments on the challenges, opportunities, and prospects of offshore hydrogen storage in Brazil

    Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    Get PDF
    AbstractMexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along with changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country

    Exploring Neutral Hydrogen and Galaxy Evolution with the SKA

    Full text link
    One of the key science drivers for the development of the SKA is to observe the neutral hydrogen, HI, in galaxies as a means to probe galaxy evolution across a range of environments over cosmic time. Over the past decade, much progress has been made in theoretical simulations and observations of HI in galaxies. However, recent HI surveys on both single dish radio telescopes and interferometers, while providing detailed information on global HI properties, the dark matter distribution in galaxies, as well as insight into the relationship between star formation and the interstellar medium, have been limited to the local universe. Ongoing and upcoming HI surveys on SKA pathfinder instruments will extend these measurements beyond the local universe to intermediate redshifts with long observing programmes. We present here an overview of the HI science which will be possible with the increased capabilities of the SKA and which will build upon the expected increase in knowledge of HI in and around galaxies obtained with the SKA pathfinder surveys. With the SKA1 the greatest improvement over our current measurements is the capability to image galaxies at reasonable linear resolution and good column density sensitivity to much higher redshifts (0.2 < z < 1.7). So one will not only be able to increase the number of detections to study the evolution of the HI mass function, but also have the sensitivity and resolution to study inflows and outflows to and from galaxies and the kinematics of the gas within and around galaxies as a function of environment and cosmic time out to previously unexplored depths. The increased sensitivity of SKA2 will allow us to image Milky Way-size galaxies out to redshifts of z=1 and will provide the data required for a comprehensive picture of the HI content of galaxies back to z~2 when the cosmic star formation rate density was at its peak.Comment: 25 pages, 5 figures, 3 tables. Contribution to the conference 'Advancing Astrophysics with the Square Kilometre Array', June 8-13, 2014, Giardini Naxos, Ital

    Energy Technology Roll-Out for Climate Change Mitigation: A Multi-Model Study for Latin America

    Get PDF
    AbstractIn this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, they play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050. We find that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of the challenges this CO2 abatement technology experiences. The extent to which different mitigation options can be used in practice varies greatly between countries within Latin America, depending on factors such as resource potentials, economic performance, environmental impacts, and availability of technical expertise. We provide concise assessments of possible deployment opportunities for some low-carbon energy options, for the region at large and with occasional country-level detail in specific cases

    Semi-Analytical Models for the Formation of Disk Galaxies: I. Constraints from the Tully-Fisher Relation

    Full text link
    We present new semi-analytical models for the formation of disk galaxies with the purpose of investigating the origin of the near-infrared Tully-Fisher (TF) relation. The models assume that disks are formed by cooling of the baryons inside dark halos with realistic density profiles, and that the baryons conserve their specific angular momentum. Only gas with densities above the critical density given by Toomre's stability criterion is considered eligible for star formation, and a simple recipe for supernovae feedback is included. We emphasize the importance of extracting the proper luminosity and velocity measures from the models, something that has often been ignored in the past. The observed K-band TF relation has a slope that is steeper than simple predictions based on dynamical arguments suggest. Taking the stability related star formation threshold densities into account steepens the TF relation, decreases its scatter, and yields gas mass fractions that are in excellent agreement with observations. In order for the TF slope to be as steep as observed, further physics are required. We argue that the characteristics of the observed near-infrared TF relation do not reflect systematic variations in stellar populations, or cosmological initial conditions, but are governed by feedback. Finally we show that our models provide a natural explanation for the small amount of scatter that makes the TF relation useful as a cosmological distance indicator.Comment: 20 pages, 10 figures. Accepted for publication in Ap

    Management of cerebral azole-resistant Aspergillus fumigatus infection : a role for intraventricular liposomal-amphotericin B

    Get PDF
    Objectives: In the pre-azole era, central nervous system (CNS) infections with Aspergillus had a dismal outcome. Survival improved with voriconazole but CNS infections caused by azole-resistant Aspergillus fumigatus preclude its use. Intravenous liposomal-amphotericin B (L-AmB) is the preferred treatment option for azole-resistant CNS infections but has suboptimal brain concentrations. Methods: We describe three patients with biopsy-proven CNS aspergillosis where intraventricular L-AmB was added to systemic therapy. Two patients with azole-resistant aspergillosis and one patient with azole-susceptible CNS aspergillosis were treated with intraventricular L-AmB at a dose of 1 mg weekly. Results: We describe three patients successfully treated with a combination of intravenous and intraventricular L-AmB. All three patients survived but one patient developed serious headaches, most likely not related to this treatment. Conclusions: Intraventricular L-AmB may have a role in the treatment of therapy-refractory CNS aspergillosis when added to systemic therapy. (C) 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy
    • …
    corecore