949 research outputs found
Electron-hadron shower discrimination in a liquid argon time projection chamber
By exploiting structural differences between electromagnetic and hadronic showers in a multivariate analysis we present an efficient Electron-Hadron discrimination algorithm for liquid argon time projection chambers, validated using Geant4 simulated data
Neutrino Quasielastic Scattering on Nuclear Targets: Parametrizing Transverse Enhancement (Meson Exchange Currents)
We present a parametrization of the observed enhancement in the transverse
electron quasielastic (QE) response function for nucleons bound in carbon as a
function of the square of the four momentum transfer () in terms of a
correction to the magnetic form factors of bound nucleons. The parametrization
should also be applicable to the transverse cross section in neutrino
scattering. If the transverse enhancement originates from meson exchange
currents (MEC), then it is theoretically expected that any enhancement in the
longitudinal or axial contributions is small. We present the predictions of the
"Transverse Enhancement" model (which is based on electron scattering data
only) for the differential and total QE cross sections
for nucleons bound in carbon. The dependence of the transverse
enhancement is observed to resolve much of the long standing discrepancy in the
QE total cross sections and differential distributions between low energy and
high energy neutrino experiments on nuclear targets.Comment: Revised Version- July 21, 2011: 17 pages, 20 Figures. To be published
in Eur. Phys. J.
101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.
Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species
A first measurement of the interaction cross section of the tau neutrino
The DONuT experiment collected data in 1997 and published first results in
2000 based on four observed charged-current (CC) interactions. The
final analysis of the data collected in the experiment is presented in this
paper, based on protons on target using the 800 GeV
Tevatron beam at Fermilab. The number of observed CC interactions is
9, from a total of 578 observed neutrino interactions. We calculated the
energy-independent part of the tau-neutrino CC cross section (), relative to the well-known and cross sections. The
ratio / was found to be
. The CC cross section was found to be cm. Both results are in
agreement the Standard Model.Comment: 37 pages, 15 figure
A New Upper Limit for the Tau-Neutrino Magnetic Moment
Using a prompt neutrino beam in which a nu_tau component was identified for
the first time, the nu_tau magnetic moment was measured based on a search for
an anomalous increase in the number of neutrino-electron interactions. One such
event was observed when 2.3 were expected from background processes, giving an
upper 90% confidence limit of 3.9x10^-7 Bohr magnetons.Comment: 9 pages; 1 figur
Recommended from our members
Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10^(20) protons on target. A fit to neutrino oscillations yields values of |Δm^2|=(2.32_(-0.08)^(+0.12))×10^(-3) eV^2 for the atmospheric mass splitting and sin^2(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
Recommended from our members
Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector
The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266±0.001(stat)_(-0.014)^(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108±0.019(stat+syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energie
Recommended from our members
New constraints on muon-neutrino to electron-neutrino transitions in MINOS
This paper reports results from a search for ν_μ → ν_e transitions by the MINOS experiment based on a 7×10^(20) protons-on-target exposure. Our observation of 54 candidate ν_e events in the far detector with a background of 49.1±7.0(stat)±2.7(syst) events predicted by the measurements in the near detector requires 2sin^2(2θ_(13))sin^2θ_(23)<0.12(0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at δ_(CP)=0. The experiment sets the tightest limits to date on the value of θ_(13) for nearly all values of δ_(CP) for the normal neutrino mass hierarchy and maximal sin^2(2θ_(23))
Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector
A search for a sidereal modulation in the MINOS near detector neutrino data
was performed. If present, this signature could be a consequence of Lorentz and
CPT violation as predicted by a class of extensions to the Standard Model. No
evidence for a sidereal signal in the data set was found, implying that there
is no significant change in neutrino propagation that depends on the direction
of the neutrino beam in a sun-centered inertial frame. Upper limits on the
magnitudes of the Lorentz and CPT violating terms in these extensions to the
Standard Model lie between 0.01-1% of the maximum expected, assuming a
suppression of these signatures by factor of .
Recommended from our members
First Direct Observation of Muon Antineutrino Disappearance
This Letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̅ _μ production, accumulating an exposure of 1.71×10^(20) protons on target. In the Far Detector, 97 charged current ν̅ _μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̅ 2|= [3.36=_(-0.40)^(+0.46)(stat)±0.06(syst)]x10^(-3)eV^2,sin^2(2θ̅)=0.86 _(-0.12)^(+0.11)(stat)±0.01(syst). The MINOS ν̅ _μ and ν̅ _μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters
- …
