1,308 research outputs found

    Interhemispheric claustral circuits coordinate sensory and motor cortical areas that regulate exploratory behaviors

    Get PDF
    The claustrum has a role in the interhemispheric transfer of certain types of sensorimotor information. Whereas the whisker region in rat motor (M1) cortex sends dense projections to the contralateral claustrum, the M1 forelimb representation does not. The claustrum sends strong ipsilateral projections to the whisker regions in M1 and somatosensory (S1) cortex, but its projections to the forelimb cortical areas are weak. These distinctions suggest that one function of the M1 projections to the contralateral claustrum is to coordinate the cortical areas that regulate peripheral sensor movements during behaviors that depend on bilateral sensory acquisition. If this hypothesis is true, then similar interhemispheric circuits should interconnect the frontal eye fields (FEF) with the contralateral claustrum and its network of projections to vision-related cortical areas. To test this hypothesis, anterograde and retrograde tracers were placed in physiologically-defined parts of the FEF and primary visual cortex (V1) in rats. We observed dense FEF projections to the contralateral claustrum that terminated in the midst of claustral neurons that project to both FEF and V1. While the FEF inputs to the claustrum come predominantly from the contralateral hemisphere, the claustral projections to FEF and V1 are primarily ipsilateral. Detailed comparison of the present results with our previous studies on somatomotor claustral circuitry revealed a well-defined functional topography in which the ventral claustrum is connected with visuomotor cortical areas and the dorsal regions are connected with somatomotor areas. These results suggest that subregions within the claustrum play a critical role in coordinating the cortical areas that regulate the acquisition of modality-specific sensory information during exploration and other behaviors that require sensory attention

    Foliar lead uptake by lettuce exposed to atmospheric fallouts

    Get PDF
    Metal uptake by plants occurs by soil−root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce (Lactuca sativa) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 ± 50 mg Pb kg−1 (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination

    Trends in Florida Constitutional Law

    Get PDF

    Tephrochronology

    Get PDF
    Tephrochronology is the use of primary, characterized tephras or cryptotephras as chronostratigraphic marker beds to connect and synchronize geological, paleoenvironmental, or archaeological sequences or events, or soils/paleosols, and, uniquely, to transfer relative or numerical ages or dates to them using stratigraphic and age information together with mineralogical and geochemical compositional data, especially from individual glass-shard analyses, obtained for the tephra/cryptotephra deposits. To function as an age-equivalent correlation and chronostratigraphic dating tool, tephrochronology may be undertaken in three steps: (i) mapping and describing tephras and determining their stratigraphic relationships, (ii) characterizing tephras or cryptotephras in the laboratory, and (iii) dating them using a wide range of geochronological methods. Tephrochronology is also an important tool in volcanology, informing studies on volcanic petrology, volcano eruption histories and hazards, and volcano-climate forcing. Although limitations and challenges remain, multidisciplinary applications of tephrochronology continue to grow markedly

    Global and local fMRI signals driven by neurons defined optogenetically by type and wiring

    Get PDF
    Despite a rapidly-growing scientific and clinical brain imaging literature based on functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) signals, it remains controversial whether BOLD signals in a particular region can be caused by activation of local excitatory neurons. This difficult question is central to the interpretation and utility of BOLD, with major significance for fMRI studies in basic research and clinical applications. Using a novel integrated technology unifying optogenetic control of inputs with high-field fMRI signal readouts, we show here that specific stimulation of local CaMKIIα-expressing excitatory neurons, either in the neocortex or thalamus, elicits positive BOLD signals at the stimulus location with classical kinetics. We also show that optogenetic fMRI (ofMRI) allows visualization of the causal effects of specific cell types defined not only by genetic identity and cell body location, but also by axonal projection target. Finally, we show that ofMRI within the living and intact mammalian brain reveals BOLD signals in downstream targets distant from the stimulus, indicating that this approach can be used to map the global effects of controlling a local cell population. In this respect, unlike both conventional fMRI studies based on correlations and fMRI with electrical stimulation that will also directly drive afferent and nearby axons, this ofMRI approach provides causal information about the global circuits recruited by defined local neuronal activity patterns. Together these findings provide an empirical foundation for the widely-used fMRI BOLD signal, and the features of ofMRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry

    Was ist "Populäre Musik"? : Überlegungen in eigener Sache

    Get PDF
    Many common disorders across the lifespan feature impaired working memory (WM). Reported benefits of a WM training program include improving inattention in daily life, but this has not been evaluated in a meta-analysis. This study aimed to evaluate whether one WM training method has benefits for inattention in daily life by conducting a systematic review and meta-analysis.We searched Medline and PsycINFO, relevant journals and contacted authors for studies with an intervention and control group reporting post-training estimates of inattention in daily life. To reduce the influence of different WM training methods on the findings, the review was restricted to trials evaluating the Cogmed method. A meta-analysis calculated the pooled standardised difference in means (SMD) between intervention and control groups.A total of 622 studies were identified and 12 studies with 13 group comparisons met inclusion criteria. The meta-analysis showed a significant training effect on inattention in daily life, SMD=-0.47, 95% CI -0.65, -0.29, p<.00001. Subgroup analyses showed this significant effect was observed in groups of children and adults as well as users with and without ADHD, and in studies using control groups that were active and non-adaptive, wait-list and passive as well as studies using specific or general measures. Seven of the studies reported follow-up assessment and a meta-analysis showed persisting training benefits for inattention in daily life, SMD=-0.33, 95% CI -0.57 -0.09, p=.006. Additional meta-analyses confirmed improvements after training on visuospatial WM, SMD=0.66, 95% CI 0.43, 0.89, p<.00001, and verbal WM tasks, SMD=0.40, 95% CI 0.18, 0.62, p=.0004.Benefits of a WM training program generalise to improvements in everyday functioning. Initial evidence shows that the Cogmed method has significant benefits for inattention in daily life with a clinically relevant effect size

    Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity

    Get PDF
    Abstract : Background: Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. Results: Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a “homeodynamic” manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. Conclusions: Our results support the “homeostatic plasticity concept” giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons

    Multiple melt bodies fed the AD 2011 eruption of Puyehue-Cordon Caulle, Chile

    Get PDF
    Artículo de publicación ISIWithin the volcanological community there is a growing awareness that many large-to smallscale, point-source eruptive events can be fed by multiple melt bodies rather than from a single magma reservoir. In this study, glass shard major-and trace-element compositions were determined from tephra systematically sampled from the outset of the Puyehue-Corden Caulle (PCC) eruption (similar to 1 km(3)) in southern Chile which commenced on June 4th, 2011. Three distinct but cogenetic magma bodies were simultaneously tapped during the paroxysmal phase of this eruption. These are readily identified by clear compositional gaps in CaO, and by Sr/Zr and Sr/Y ratios, resulting from dominantly plagioclase extraction at slightly different pressures, with incompatible elements controlled by zircon crystallisation. Our results clearly demonstrate the utility of glass shard major-and trace-element data in defining the contribution of multiple magma bodies to an explosive eruption. The complex spatial association of the PCC fissure zone with the Liquine-Ofqui Fault zone was likely an influential factor that impeded the ascent of the parent magma and allowed the formation of discrete melt bodies within the sub-volcanic system that continued to independently fractionate.Argentine PIP CONICET 2011 0311 FONCYT PICT 2010 2046 Iniciativa Cientifica Milenio grants P02-51 NC120066 Chilean Fondecyt 115146

    Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    Get PDF
    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention
    corecore