61 research outputs found

    Exchange distance of basis pairs in split matroids

    Full text link
    The basis exchange axiom has been a driving force in the development of matroid theory. However, the axiom gives only a local characterization of the relation of bases, which is a major stumbling block to further progress, and providing a global understanding of the structure of matroid bases is a fundamental goal in matroid optimization. While studying the structure of symmetric exchanges, Gabow proposed the problem that any pair of bases admits a sequence of symmetric exchanges. A different extension of the exchange axiom was proposed by White, who investigated the equivalence of compatible basis sequences. Farber studied the structure of basis pairs, and conjectured that the basis pair graph of any matroid is connected. These conjectures suggest that the family of bases of a matroid possesses much stronger structural properties than we are aware of. In the present paper, we study the distance of basis pairs of a matroid in terms of symmetric exchanges. In particular, we give an upper bound on the minimum number of exchanges needed to transform a basis pair into another for split matroids, a class that was motivated by the study of matroid polytopes from a tropical geometry point of view. As a corollary, we verify the above mentioned long-standing conjectures for this large class. Being a subclass of split matroids, our result settles the conjectures for paving matroids as well.Comment: 17 page

    Complexity of packing common bases in matroids

    Get PDF
    One of the most intriguing unsolved questions of matroid optimization is the characterization of the existence of kk disjoint common bases of two matroids. The significance of the problem is well-illustrated by the long list of conjectures that can be formulated as special cases, such as Woodall's conjecture on packing disjoint dijoins in a directed graph, or Rota's beautiful conjecture on rearrangements of bases. In the present paper we prove that the problem is difficult under the rank oracle model, i.e., we show that there is no algorithm which decides if the common ground set of two matroids can be partitioned into kk common bases by using a polynomial number of independence queries. Our complexity result holds even for the very special case when k=2k=2. Through a series of reductions, we also show that the abstract problem of packing common bases in two matroids includes the NAE-SAT problem and the Perfect Even Factor problem in directed graphs. These results in turn imply that the problem is not only difficult in the independence oracle model but also includes NP-complete special cases already when k=2k=2, one of the matroids is a partition matroid, while the other matroid is linear and is given by an explicit representation.Comment: 14 pages, 9 figure

    A dual approach for dynamic pricing in multi-demand markets

    Full text link
    Dynamic pricing schemes were introduced as an alternative to posted-price mechanisms. In contrast to static models, the dynamic setting allows to update the prices between buyer-arrivals based on the remaining sets of items and buyers, and so it is capable of maximizing social welfare without the need for a central coordinator. In this paper, we study the existence of optimal dynamic pricing schemes in combinatorial markets. In particular, we concentrate on multi-demand valuations, a natural extension of unit-demand valuations. The proposed approach is based on computing an optimal dual solution of the maximum social welfare problem with distinguished structural properties. Our contribution is twofold. By relying on an optimal dual solution, we show the existence of optimal dynamic prices in unit-demand markets and in multi-demand markets up to three buyers, thus giving new interpretations of results of Cohen-Addad et al. and Berger et al., respectively. Furthermore, we provide an optimal dynamic pricing scheme for bi-demand valuations with an arbitrary number of buyers. In all cases, our proofs also provide efficient algorithms for determining the optimal dynamic prices.Comment: 17 pages, 8 figure

    Regular graphs are antimagic

    Get PDF
    An undirected simple graph G = (V,E) is called antimagic if there exists an injective function f: E → {1,…|E|} such that (formula presented) for any pair of different nodes u, v ∈ V. In this note we prove - with a slight modification of an argument of Cranston et al. - that k-regular graphs are antimagic for k ≥ 2. © 2015, Australian National University. All rights reserved

    Market Pricing for Matroid Rank Valuations

    Get PDF
    In this paper, we study the problem of maximizing social welfare in combinatorial markets through pricing schemes. We consider the existence of prices that are capable to achieve optimal social welfare without a central tie-breaking coordinator. In the case of two buyers with rank valuations, we give polynomial-time algorithms that always find such prices when one of the matroids is a simple partition matroid or both matroids are strongly base orderable. This result partially answers a question raised by D\"uetting and V\'egh in 2017. We further formalize a weighted variant of the conjecture of D\"uetting and V\'egh, and show that the weighted variant can be reduced to the unweighted one based on the weight-splitting theorem for weighted matroid intersection by Frank. We also show that a similar reduction technique works for M{}^\natural-concave functions, or equivalently, gross substitutes functions
    corecore