61 research outputs found
Exchange distance of basis pairs in split matroids
The basis exchange axiom has been a driving force in the development of
matroid theory. However, the axiom gives only a local characterization of the
relation of bases, which is a major stumbling block to further progress, and
providing a global understanding of the structure of matroid bases is a
fundamental goal in matroid optimization.
While studying the structure of symmetric exchanges, Gabow proposed the
problem that any pair of bases admits a sequence of symmetric exchanges. A
different extension of the exchange axiom was proposed by White, who
investigated the equivalence of compatible basis sequences. Farber studied the
structure of basis pairs, and conjectured that the basis pair graph of any
matroid is connected. These conjectures suggest that the family of bases of a
matroid possesses much stronger structural properties than we are aware of.
In the present paper, we study the distance of basis pairs of a matroid in
terms of symmetric exchanges. In particular, we give an upper bound on the
minimum number of exchanges needed to transform a basis pair into another for
split matroids, a class that was motivated by the study of matroid polytopes
from a tropical geometry point of view. As a corollary, we verify the above
mentioned long-standing conjectures for this large class. Being a subclass of
split matroids, our result settles the conjectures for paving matroids as well.Comment: 17 page
Complexity of packing common bases in matroids
One of the most intriguing unsolved questions of matroid optimization is the
characterization of the existence of disjoint common bases of two matroids.
The significance of the problem is well-illustrated by the long list of
conjectures that can be formulated as special cases, such as Woodall's
conjecture on packing disjoint dijoins in a directed graph, or Rota's beautiful
conjecture on rearrangements of bases.
In the present paper we prove that the problem is difficult under the rank
oracle model, i.e., we show that there is no algorithm which decides if the
common ground set of two matroids can be partitioned into common bases by
using a polynomial number of independence queries. Our complexity result holds
even for the very special case when .
Through a series of reductions, we also show that the abstract problem of
packing common bases in two matroids includes the NAE-SAT problem and the
Perfect Even Factor problem in directed graphs. These results in turn imply
that the problem is not only difficult in the independence oracle model but
also includes NP-complete special cases already when , one of the matroids
is a partition matroid, while the other matroid is linear and is given by an
explicit representation.Comment: 14 pages, 9 figure
A dual approach for dynamic pricing in multi-demand markets
Dynamic pricing schemes were introduced as an alternative to posted-price
mechanisms. In contrast to static models, the dynamic setting allows to update
the prices between buyer-arrivals based on the remaining sets of items and
buyers, and so it is capable of maximizing social welfare without the need for
a central coordinator. In this paper, we study the existence of optimal dynamic
pricing schemes in combinatorial markets. In particular, we concentrate on
multi-demand valuations, a natural extension of unit-demand valuations. The
proposed approach is based on computing an optimal dual solution of the maximum
social welfare problem with distinguished structural properties.
Our contribution is twofold. By relying on an optimal dual solution, we show
the existence of optimal dynamic prices in unit-demand markets and in
multi-demand markets up to three buyers, thus giving new interpretations of
results of Cohen-Addad et al. and Berger et al., respectively. Furthermore, we
provide an optimal dynamic pricing scheme for bi-demand valuations with an
arbitrary number of buyers. In all cases, our proofs also provide efficient
algorithms for determining the optimal dynamic prices.Comment: 17 pages, 8 figure
Regular graphs are antimagic
An undirected simple graph G = (V,E) is called antimagic if there exists an injective function f: E → {1,…|E|} such that (formula presented) for any pair of different nodes u, v ∈ V. In this note we prove - with a slight modification of an argument of Cranston et al. - that k-regular graphs are antimagic for k ≥ 2. © 2015, Australian National University. All rights reserved
Market Pricing for Matroid Rank Valuations
In this paper, we study the problem of maximizing social welfare in
combinatorial markets through pricing schemes. We consider the existence of
prices that are capable to achieve optimal social welfare without a central
tie-breaking coordinator. In the case of two buyers with rank valuations, we
give polynomial-time algorithms that always find such prices when one of the
matroids is a simple partition matroid or both matroids are strongly base
orderable. This result partially answers a question raised by D\"uetting and
V\'egh in 2017. We further formalize a weighted variant of the conjecture of
D\"uetting and V\'egh, and show that the weighted variant can be reduced to the
unweighted one based on the weight-splitting theorem for weighted matroid
intersection by Frank. We also show that a similar reduction technique works
for M-concave functions, or equivalently, gross substitutes
functions
- …