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Notation
Undire
ted graphs
G = (V,E) An undire
ted graph G on node set V with edge set E.
H = (V (H), E(H)) A subgraph H of G with node set V (H) and edge set E(H).
G = (S, T ;E) A bipartite graph with 
olour 
lasses S and T and edge set E.
G[X] The subgraph of G indu
ed by X ⊆ V .
G−X G[V \X] for X ⊆ V and G′ = (V,E \X) for X ⊆ E.
E[X] The set of edges indu
ed by X ⊆ V .
E[X,Y ] The set of edges between X − Y and Y −X.
δG(X) The set of edges having exa
tly one end in X ⊆ V .
δ̇G(v) Family of edges in
ident to v ∈ V in whi
h loops are in
luded twi
e.
ℓ(v) The set of loops at v ∈ V .
ℓ(X) The set of loops indu
ed by X ⊆ V .
dG(v) = |δ̇G(v)| = |δG(v)|+ 2|ℓ(v)| for v ∈ V .
dG(X) = |δG(X)| for X ⊆ V, |X| ≥ 2.
dG(X,Y ) = |E[X,Y ]|.
dG(X,Y ) The number of edges between X ∩ Y and V − (X ∪ Y ).
iG(X) The number of edges with both endnodes in X.
IG(X) The set of edges with both endnodes in X.
eG(X) The number of edges with at least one endnode in X.
Ḡ The 
omplement of G.
Kn Complete graph on n nodes.
Ks,t Complete graph with 
olour 
lasses having sizes s and t, respe
tively.
hF (X) =

∑

v∈X dF (v).
ΓG(X) The set of nodes in V −X adja
ent to X.
(G,w) A graph G with weight fun
tion w : E → R.Dire
ted graphs
D = (V,A) A dire
ted graph (shortly, digraph) on node set V with edge set A.
t(a), h(a) The tail and head of ar
 a, respe
tively.
̺D(X) The number of edges entering X ⊆ V .
∆in

D (X) The set of edges entering X ⊆ C.
δD(X) The number of edges leaving X ⊆ V .
∆out

D (X) The set of edges leaving X ⊆ V .
δD(X,Y ) The number of dire
ted edges from X − Y to Y −X.
dD(X,Y ) = δD(X,Y ) + δD(Y,X).
λD(u, v) The maximum number of edge-disjoint dire
ted paths from u to v.
κD(r, v) The maximum number of internally node-disjoint dire
ted paths from u to v.vii



viii
Γ−(X) The entran
e of X, that is, {v ∈ X : ∃uv ∈ A, u ∈ V −X}.Matroids
M = (S, rM) A matroid on ground set S with rank fun
tion rM.
l(Z) The 
losure of Z ⊆ S.Bi-sets
X = (XO,XI) A bi-set XI ⊆ XO ⊆ V with outer member XO and inner member XI .
P2(V ) = P2 The set of all bi-sets on ground-set V .
X ∩ Y = (XO ∩ YO,XI ∩ YI) for X,Y ∈ P2.
X ∪ Y = (XO ∪ YO,XI ∪ YI) for X,Y ∈ P2.
X ⊆ Y This means XO ⊆ YO,XI ⊆ YI .
̺D(X) The number of edges entering bi-set X.
∆in

D (X) The set of edges entering bi-set X.
δD(X) The number of edges leaving bi-set X.
∆out

D (X) The set of edges leaving bi-set X.Restri
ted b-mat
hings
VK The node set of subgraph K.
EK The edge set of subgraph K.
VK The set of nodes 
ontained by subgraphs in K.
EK The set of edges 
ontained by subgraphs in K.
eu, ev End nodes of edge e ∈ E.
eTij Edge of triangle T between i and j (resp. ti and tj) if VT = {u, v, w} (resp.

VT = {t1, t2, t3}).
T 1
K The set of triangles in T 1-�tting K.
T 2
K The set of triangles in T 2-�tting K.
TK = T 1

K ∪ T 2
K.def(K,F,T) = ⌊12(b(K) + |F |+ 3|T|)⌋ −

(

x(E[K]) + x(F ) +
∑

T∈T x(ET )
).

Fu Set of non self-loop edges in F in
ident to u.Mis
ellaneous
Z+,R+ The sets of non-negative integers and reals.
X − v = X \ {v} for a set X and single element v.
X + v = X ∪ {v} for a set X and single element v.
b(U) =

∑

v∈U b(v) for a fun
tion b : V → R and U ⊆ V .
x ≺ y x � y and x 6= y for a partial order �.Instead of `G' and `D' we sometimes use the above notations with subs
ripts denoting a subset ofedges. In su
h a 
ase the quantity in question has to be 
omputed by 
onsidering only the subset showedby the subs
ript.
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Chapter 1Introdu
tion
Two families of problems are 
onsidered in the thesis the �rst of whi
h is arbores
en
e pa
king.An arbores
en
e is a dire
ted tree with a root in whi
h the edges are dire
ted `away' from the rootnode (sometimes this is 
alled an out-arbores
en
e in the literature; in an in-arbores
en
e the edges aredire
ted `toward' the root node). The pa
king problem 
onsists of �nding disjoint 
opies of arbores
en
essatisfying 
ertain 
onditions. The motivation of these problems 
omes from real-life appli
ations su
has survivable network or eva
uation plan design. A 
ornerstone in graph theory is Edmonds' theorem
hara
terizing the existen
e of k edge-disjoint spanning arbores
en
es rooted at the same root nodein a dire
ted graph [34℄. In fa
t, Edmonds proved a stronger version of his result in whi
h bran
hingsare 
onsidered instead of arbores
en
es. This result implied great many extensions, but the 
onditionrequiring the bran
hings to be spanning was not weakened for almost three de
ades. The reason for thatis that even a slight modi�
ation of the spanning 
onstraint may result in di�
ult problems, as wasshown in [10℄.In 2008, Kamiyama, Katoh and Takizawa gave a surprising extension of Edmonds' theorem in whi
harbores
en
es spanning only nodes that are rea
hable from the given root nodes are 
onsidered [82℄.In [6℄, we showed that the abstra
t theorem of Szeg® on 
overing interse
ting families 
an be extendedto bi-set systems and proved that the theorem of Kamiyama et al. is a spe
ial 
ase of our result.Another approa
h to extend Edmonds result is due to Colussi, Conforti and Zambelli who introdu
edthe notion of strongly edge-disjoint arbores
en
es [18℄. They 
onje
tured the existen
e of k spanningarbores
en
es under more stri
t restri
tions than that of Edmonds' theorem. For the very spe
ial 
asewhen two arbores
en
es are needed the 
onje
ture has been veri�ed. We extended the notion of stronglyedge-disjointness in [13℄ and showed that the 
onje
ture is also true for two di
y
le-disjoint arbores
en
es,while gave a disproof of the 
onje
ture in general.In some appli
ations not only out-arbores
en
es but also in-arbores
en
es are needed. Unfortunately,even the problem of �nding an in- and an out-arbores
en
e with the same root node that are disjointis NP-
omplete. However, for a
y
li
 digraphs the problem be
omes tra
table as in this spe
ial 
aseboth the set of in- and out-arbores
en
es form a matroid on the edges. In [11℄, we gave a linear timealgorithm for �nding a pair of disjoint in- and out-arbores
en
es in an a
y
li
 digraph. Chapter 2 givesan overview of the above mentioned results.Chapter 3 reveals the 
onne
tion between the problem of pa
king arbores
en
es and 
overing in-terse
ting bi-set families. The introdu
tion of bi-sets made it possible to give a simpler proof for thetheorem of Kamiyama et al. and the very spe
ial bi-set families appearing in the proof turned out to bereally useful. We extended S
hrijver's strongly polynomial time algorithm [114℄ for pa
king bran
hingsunder 
apa
ity restri
tions [10℄. The usage of bi-sets here is essential; the running time 
ould not be1



2 1. Introdu
tionbounded without the deep understanding of the stru
ture of bi-set families in question. We also gave apolyhedral des
ription of arbores
en
e-pa
kable digraphs based on bi-sets.The se
ond part of the thesis deals with algorithmi
 and polyhedral aspe
ts of restri
ted b-mat
hings.The motivation of the problem 
omes from node-
onne
tivity augmentation. It is an easy observation,that the problem of in
reasing the node-
onne
tivity of an undire
ted graph on n nodes from n − 4 to
n− 3 is equivalent to �nding a maximum 2-mat
hing in the 
omplement of the graph not 
ontaining a
y
le of length 4. This latter problem is 
alled the square-free 2-mat
hing problem, and was the startingpoint of our investigations as dis
ussed in Chapter 4.Mu
h is known about square-free 2-mat
hings, although the mentioned problem in general is stillunsolved. For a list K of forbidden subgraphs, a K-free b-mat
hing is a b-mat
hing 
ontaining no memberif K. Here K may 
ontain 
on
rete subgraphs of a digraph D by de�ning their node and edge sets, or maybe given by des
ribing a 
lass of graphs in general. As the most important spe
ial 
ases, the Ck-free or
C≤k-free 2-mat
hing problems ask for a 2-mat
hing with maximum size not 
ontaining 
y
les of length
k or at most k, respe
tively. Clearly, these problems 
an be 
onsidered as relaxations of the Hamiltonian
y
le problem and so are well investigated. Unfortunately, we 
an not go to far with the values of k:the problems are NP-hard when k ≥ 5 as was shown by Papadimitriou (see eg. [22℄). From the positiveside of results, Hartvigsen [59℄ gave an augmenting path algorithm for the 
ase k = 3. Hen
e only the
C4-free and C≤4-free 2-mat
hing problems are left open.The weighted versions of these problems 
an be de�ned in a straightforward manner. However, thereis a �rm di�eren
e in 
omplexity between the unweighted and the weighted versions: the weighted square-free 2-mat
hing problem is NP-hard even in bipartite graphs and 0− 1 weights [87℄. This di�eren
e willbe important when we would like to give a polyhedral des
ription of the 
orresponding polytopes.The problems be
omes signi�
antly easier if the graph is sub
ubi
, that is, ea
h node has degreeat most three. Note that this is the 
ase in the node-
onne
tivity augmentation problem if an (n− 4)-
onne
ted graph is given and one would like to in
rease its node-
onne
tivity to n− 3. In [12℄, we gavea polynomial time algorithm for the square-free 2-mat
hing problem in sub
ubi
 graphs and for the
ase of node-indu
ed weight fun
tions as well. It is worth mentioning that the problem of in
reasing thenode-
onne
tivity of a graph by one was solved in general by Végh [129℄. Algorithms for the weighted
C3-free 2-mat
hing (also 
alled triangle-free 2-mat
hing) problem in sub
ubi
 graphs were given byHartvigsen and Li [62℄, and Kobayashi [88℄. However, the problem for k = 3 in general graphs witharbitrary weights is still open.As a triangle and a square 
an be 
onsidered as a K3 and a K2,2, respe
tively, the C≤4-free 2-mat
hing problem admits a natural generalization. The Kt,t- and Kt+1-free t-mat
hing problem asks fora subgraph with maximum size not 
ontaining a Kt,t or a Kt+1 as a subgraph. The problem was �rst
onsidered in bipartite graphs [41,103℄. In [14℄, we extended the algorithm of [12℄ to Kt,t- and Kt+1-free
t-mat
hings in degree bounded graphs. The degree bound is essential here, the problem is still open forgeneral graphs.The polyhedral des
riptions of the 
orresponding polytopes are also of interest, forming the topi
 ofChapter 6. By the NP-hardness result of Király [86℄, we may not expe
t a `ni
e' des
ription for the C≤k-free or Ck-free 2-mat
hing polytopes for k ≥ 4, where `ni
e' means that we 
an separate the inequalitiesappearing in the des
ription. Hartvigsen and Li gave a polyhedral des
ription of the triangle-free 2-fa
tor



3polytope for sub
ubi
 simple graphs in [62℄. They also showed that, somewhat surprisingly, triangle-free
2-mat
hings in sub
ubi
 graphs admit a more 
ompli
ated des
ription. This is a strange phenomenonas results on b-mat
hings and b-fa
tors are typi
ally 
an be derived from ea
h other. They also proposeda des
ription of the triangle-free 2-mat
hing polytope and gave a sket
h of the proof, whi
h was �nallypublished in [63℄. The proof is quite di�
ult and 
ompli
ated, but provides an algorithm for �ndinga maximum triangle-free 2-mat
hing in a sub
ubi
 graph. In [7℄, based on the des
ription proposedin [62℄, we gave another proof of this result. Our motivation was to �nd a simpler, 
learer proof, but tobe honest it �nally grew into something rather 
ompli
ated.Considering the above, a natural question arises: what 
an we say about the maximum size orpolyhedral des
ription of a triangle-free subgraph, that is, if the upper bound b on the nodes is leftout. Yannakakis showed [136℄ that the problem in general is NP-
omplete, hen
e we may not expe
t ani
e polyhedral des
ription again. Conforti et al. proved that the problem remains NP-
omplete evenin 
hordal graphs, but given a �xed upper bound on the maximum size of a 
lique in the graph theproblem be
omes polynomially solvable [19, 20℄.Determining the maximum size of a triangle-free subgraph is equivalent to determine the minimumsize of an edge-set 
overing ea
h triangle at least on
e. In 1981, Tuza proposed the following 
on-je
ture [127℄: Given a simple undire
ted graph G, let ν(G) denote the maximum number of pairwiseedge-disjoint triangles, while τ(G) denote the minimum number of edges 
overing ea
h triangles in G.Then τ(G) ≤ 2ν(G). It is easy to see that the inequality holds with 3 instead of 2. The 
onje
ture hasbeen veri�ed for various 
lasses of graphs, but is still unsolved in general. The �rst non-trivial boundwas given by Haxell [64℄, who proved that the inequality is true with fa
tor (3− 3

23 ).The problem 
an be generalized in two sense: weights on the edges might be given, and -looking ata triangle as a 
lique again- a 
lique version of the 
onje
ture 
an be formalized. In [8℄, we proposedan extension of Tuza's 
onje
ture 
ombining these ideas, and proved a fra
tional weakening of the
onje
ture whi
h 
an be 
onsidered as a generalization of Krivelevi
h's result. Our approa
h uses thenotion of Turán numbers, and basi
ally builds on the so-
alled splitting property of maximal anti
hains.The rest of the thesis is organized as follows. In the remaining part of this 
hapter, in Se
tions 1.1-1.5, we give a short overview of the de�nitions and results that form the ba
kground of our work.Chapters 2 and 3 
an be 
onsidered as a 
ontinuation of the work started in [6℄; we present here theresults of [10, 11, 13℄ on pa
king arbores
en
es, and show its 
onne
tion to 
overing interse
ting bi-setfamilies. Chapter 4 introdu
es the se
ond main topi
 of the thesis and presents the algorithm andthe min-max result of [12℄ for the square-free 2-mat
hing problem in sub
ubi
 graphs. This result isthen further generalized to Kt,t- and Kt+1-free t-mat
hings in degree bounded graphs in Chapter 5,whi
h 
ontains the results of [14℄. Chapter 6 presents the most te
hni
al part of the thesis based on [7℄.Through the example of b-fa
tors we introdu
e a new shrinking operation whi
h is then extended togive a 
omplete des
ription of the triangle-free 2-mat
hing polytope of sub
ubi
 graphs. This part ofthe thesis 
ontains many te
hni
al 
omputations; the most of them is left to the end of the 
hapter.Finally, Chapter 7 
ontains the result of [8℄. It introdu
es the notion of shadow systems and veri�esthat a spe
ial 
lass of maximal anti
hains has the splitting property. This result is then used to givean upper bound on a weighted version of the Turán number and to prove a fra
tional weakening of aweighted extension of Tuza's 
onje
ture to 
lique pa
king.



4 1. Introdu
tion1.1 Pa
king arbores
en
esLet D = (V,A) be a dire
ted graph with designated root-node r. An arbores
en
e is a dire
tedtree in whi
h every node is rea
hable from a given root node. We sometimes identify an arbores
en
e
(U,F ) with its edge-set F and will say that the arbores
en
e F spans U . An arbores
en
e F with rootnode r is 
alled an r-arbores
en
e. We 
all D rooted k-edge-
onne
ted if for ea
h v ∈ V , thereexist k edge-disjoint dire
ted paths from r to v. By Menger's theorem, this is equivalent to ̺(X) ≥ kwhenever ∅ ⊂ X ⊆ V − r. A fundamental theorem on pa
king arbores
en
es is due to Edmonds whogave a 
hara
terization of the existen
e of k edge-disjoint spanning arbores
en
es rooted at the samenode [34℄.Theorem 1.1.1 (Edmonds' theorem, weak form). Let D = (V,A) be a digraph with root r. D has kedge-disjoint spanning r-arbores
en
es if and only if D is rooted k-edge-
onne
ted.This result inspired great many extensions in the last three de
ades. Edmonds a
tually proved histheorem in a stronger form where the goal was pa
king k edge-disjoint bran
hings of given root-sets. Abran
hing is a dire
ted forest in whi
h the in-degree of ea
h node is at most one. The set of nodes ofin-degree 0 is 
alled the root-set of the bran
hing. Note that a bran
hing with root-set R is the unionof |R| node-disjoint arbores
en
es (where an arbores
en
e may 
onsist of a single node and no edge butwe always assume that an arbores
en
e has at least one node). For a digraph D = (V,A) and root-set
∅ ⊂ R ⊆ V a bran
hing (V,B) is 
alled a spanning R-bran
hing of D if its root-set is R. In parti
ular,if R is a singleton 
onsisting of an element r, then a spanning bran
hing is a spanning r-arbores
en
e.Theorem 1.1.2 (Edmonds' theorem, strong form I.). In a digraph D = (V,A), let R = {R1, . . . , Rk}be a family of k non-empty (not ne
essarily disjoint or distin
t) subsets of V . There are k edge-disjointspanning bran
hings of D with root-sets R1, . . . , Rk, respe
tively, if and only if

̺D(X) ≥ p(X) for all ∅ ⊂ X ⊆ V (1.1)where p(X) denotes the number of root-sets Ri disjoint from X.Observe that in the spe
ial 
ase of Theorem 1.1.2 when ea
h root-set Ri is a singleton 
onsisting ofthe same node r, we are ba
k at Theorem 1.1.1. Conversely, when the Ri's are singletons (whi
h may ormay not be distin
t), then Theorem 1.1.2 easily follows from Theorem 1.1.1. However, for general Ri'sno redu
tion is known.Theorem 1.1.2 
an be reformulated as follows.Theorem 1.1.3 (Edmonds' theorem, strong form II.). Let D = (V,A) be a digraph whose node set ispartitioned into a root-set R = {r1, . . . , rk} (of distin
t roots) and a terminal set T . Suppose that noedge of D enters any node of R. There are k disjoint arbores
en
es F1, . . . , Fk in D so that Fi is rootedat ri and spans T + ri for ea
h i = 1, . . . , k if and only if ̺D(X) ≥ |R−X| for every subset X ⊆ V forwhi
h X ∩ T 6= ∅.Indeed, this follows easily by applying Theorem 1.1.2 to the subgraph D′ of D indu
ed by T with
hoi
e Ri = {v : there is an edge riv ∈ A} (i = 1, . . . , k). The same 
onstru
tion shows the reverseimpli
ation, too.



1.1. Pa
king arbores
en
es 5The following proper extension of Theorem 1.1.3 was derived in [9℄ with the help of a theorem ofFrank and Tardos [46℄ on 
overing supermodular fun
tions by digraphs.Theorem 1.1.4 (Frank and Tardos). Let D = (V,A) be a digraph whose node set is partitioned intoa root-set R = {r1, . . . , rq} and a terminal set T . Suppose that no edge of D enters any node of R. Let
m : R → Z+ be a fun
tion and let k = m(R). There are k disjoint arbores
en
es in D so that m(r) ofthem are rooted at r and spanning T + r for ea
h r ∈ R if and only if

̺D(X) ≥ m(R−X) for every subset X ⊆ V for whi
h X ∩ T 6= ∅. (1.2)One way to extend Edmonds' theorems is to de
rease the size of the node sets spanned by thearbores
en
es in question. However, it is not easy to �nd su
h a generalization as one 
an easily run intodi�
ult questions. In Se
tion 2.1, we show that a variant of Theorem 1.1.4 and even an apparently slightweakening of the rea
hability 
onditions result in NP-
omplete problems (Theorems 2.1.6 and 2.1.7).In 2009, Kamiyama, Katoh and Takizawa [82℄ were able to �nd a surprising new proper extensionof Edmonds' strong theorem whi
h implies Theorem 1.1.4 as well.Theorem 1.1.5 (Kamiyama, Katoh and Takizawa). Let D = (V,A) be a digraph and R = {r1, . . . , rk} ⊆
V a list of k (possibly not distin
t) root-nodes. Let Si denote the set of nodes rea
hable from ri. Thereare edge-disjoint ri-arbores
en
es Fi spanning Si for i = 1, . . . , k if and only if

̺D(Z) ≥ p1(Z) for every subset Z ⊆ V (1.3)where p1(Z) denotes the number of sets Si for whi
h Si ∩ Z 6= ∅ and ri 6∈ Z.The original proof of Theorem 1.1.5 is more 
ompli
ated than that of Theorem 1.1.2 due to the fa
tthat the 
orresponding set fun
tion p1 in the theorem is no more supermodular. Based on Theorem 1.1.5,Fujishige [48℄ found a further extension. For two disjoint subsets X and Y of V of a digraph D = (V,A),we say that Y is rea
hable from X if there is a dire
ted path in D whose �rst node is in X and lastnode is in Y . We 
all a subset U of nodes 
onvex if there is no node v in V \ U so that U is rea
hablefrom v and v is rea
hable from U .Theorem 1.1.6 (Fujishige). Let D = (V,A) be a dire
ted graph and let R = {r1, . . . , rk} ⊆ V be a listof k (possibly not distin
t) root-nodes. Let Ui ⊆ V be 
onvex sets with ri ∈ Ui. There are edge-disjoint
ri-arbores
en
es Fi spanning Ui for i = 1, . . . , k if and only if

̺D(Z) ≥ p1(Z) for every subset Z ⊆ V (1.4)where p1(Z) denotes the number of sets Ui's for whi
h Ui ∩ Z 6= ∅ and ri 6∈ Z.Note that the set of nodes rea
hable from an ri form a 
onvex set, hen
e Theorem 1.1.5 immediatelyfollows from Theorem 1.1.6. It has been showed re
ently in [84℄ that these results are in fa
t equivalent.In [32℄, Edmonds' theorems was extended in another dire
tion. Let D = (V,A) be a digraph,M =

(S, rM) a matroid on ground set S with rank fun
tion rM and π : S → V a (not ne
essarily inje
tive)map. For Z ⊆ S the 
losure of Z is denoted by 
l(Z), that is, 
l(Z) = {s ∈ S : rM(Z+s) = rM(Z)}.A triple (D,S, π) is 
alled a digraph with roots. The map π is 
alled M-independent if π−1(v) isindependent inM for ea
h v ∈ V . For X ⊆ V , SX denotes π−1(X).



6 1. Introdu
tionA digraph with roots (D,S, π) is 
alledM-
onne
ted, if
̺(X) ≥ rM(S)− rM(SX) (1.5)holds for ea
h ∅ 6= X ⊆ V .AnM-basi
 pa
king of arbores
en
es in (D,S, π) is a set {F1, . . . , F|S|} of pairwise edge-disjoint(not ne
essarily spanning) arbores
en
es in D su
h that Fi has root at π(si) for i = 1, . . . , |S| and theset {sj ∈ S : v ∈ V (Fj)} forms a base ofM for ea
h v ∈ V . The result of [32℄ is the following.Theorem 1.1.7 (Gevigney, Nguyen and Szigeti). Let (D,S, π) be a digraph with roots and M be amatroid on S. There exists an M-basi
 pa
king of arbores
en
es in (D,S, π) if and only if π is M-independent and (D,S, π) isM-
onne
ted.Theorem 1.1.2 
an be easily derived from Theorem 1.1.7. Indeed, let R = {R1, . . . , Rk} be a familyof k non-empty (not ne
essarily disjoint or distin
t) subsets of V . De�ne S =

⋃

R∈R R to be a multisetin whi
h ea
h v ∈ V is in
luded as many times as the number of Ri's 
ontaining v, and let π(v) = v. Ifwe take the partition matroidM on S in whi
h a set Z ⊆ S is independent if and only if |Z ∩Ri| ≤ 1for 1 ≤ i ≤ k, then an M-basi
 pa
king of arbores
en
es 
orresponds to a 
olle
tion of edge-disjointspanning Ri-arbores
en
es and vi
e versa. Note that π is 
learlyM-independent and (1.1) is equivalentto (1.5), hen
e Edmonds' result follows from that of Szigeti et al.It is a natural question that whether there is a 
ommon generalization of Theorems 1.1.5 and 1.1.7.In [84℄, Cs. Király gave a 
ommon extension of these theorems. Using the notation of [84℄, we 
all an
R-bran
hing maximal if it spans all the nodes that are rea
hable from R in D. For non-empty sets
X,Y ⊆ V , let Z 7→ X denote that X and Z are disjoint and X is rea
hable from Z. Let P (X) =

X ∪ {v ∈ V \ X : v 7→ X}. A set {F1, . . . , F|S|} of pairwise edge-disjoint arbores
en
es is 
alled amaximal M-independent pa
king of arbores
en
es if Fi has root π(si) for i = 1, . . . , |S|, the set
{sj ∈ S : v ∈ V (Fj)} is independent inM and |{sj ∈ S : v ∈ V (Fj)}| = rM(SP (v)).Theorem 1.1.8 (Cs. Király). Let (D,S, π) be a digraph with roots andM be a matroid on S with rankfun
tion rM. There exists a maximal M-independent pa
king of arbores
en
es in (D,S, π) if and onlyif π isM-independent and

̺(X) ≥ rM(SP (X))− rM(SX) (1.6)holds for ea
h X ⊆ V .A natural idea is to reformulate Edmonds' theorem to the node-
onne
ted 
ase. Let D and r denotea digraph and a root-node as previously, then D is 
alled rooted k-node-
onne
ted (or rooted k-
onne
ted, for short) if there exist k internally node-disjoint dire
ted paths from r to v for ea
h v ∈ V, that is, any two of the paths have only r and v in 
ommon. The maximum number of node-disjoint
r− v paths is denoted by κ(r, v). For an r-arbores
en
e F , a node u is an F -an
estor of another node
v if there is a dire
ted path from u to v in F . We denote this unique path by F (u, v). For example, theroot is the F -an
estor of all other nodes. The maximum number of edge-disjoint r− v paths is denotedby λ(r, v). We say that a node w dominates a node v if every path from r to v in
ludes w. We denotethe set of nodes dominating v by dom(v). Clearly, r and v are in dom(v).Note that two r-arbores
en
es F1 and F2 are edge-disjoint if and only if for ea
h v ∈ V the twopaths F1(r, v) and F2(r, v) are edge-disjoint. That gives the idea of the following de�nition: we 
all two



1.1. Pa
king arbores
en
es 7spanning r-arbores
en
es F1 and F2 independent if F1(r, v) and F2(r, v) are internally node-disjointfor ea
h v ∈ V .As a node-disjoint 
ounterpart of Edmonds' theorem, Frank 
onje
tured that in a rooted k-
onne
tedgraph there exist k independent arbores
en
es (see eg. [112℄). The 
ase k = 2 was veri�ed byWhitty [135℄,but for k ≥ 3 the statement does not hold as was shown by Hu
k [73℄. However, Hu
k also proved thatthe 
onje
ture is true for simple a
y
li
 graphs [74℄ and veri�ed it for planar multigraphs ex
ept for afew values of k [75℄.Theorem 1.1.9.(i) (Whitty) Let D = (V,A) be a digraph with root r. D has two independent spanning r-arbores
en
esif and only if D is rooted 2-
onne
ted.(ii) (Hu
k) Let D = (V,A) be an a
y
li
 digraph with root r su
h that D − r is simple. D has kindependent spanning r-arbores
en
es if and only if D is rooted k-
onne
ted.(iii) (Hu
k) Let D = (V,A) be a dire
ted multigraph with root r and k ∈ {1, 2} ∪ {6, 7, 8, . . .} su
h that
D is planar if k ≥ 6. D has k independent spanning r-arbores
en
es if and only if D is rooted
k-
onne
ted.In [18℄, Colussi, Conforti and Zambelli introdu
ed another type of disjointness 
on
erning arbores-
en
es, whi
h put slightly stronger restri
tions on the paths than edge-disjointness. In a digraph we 
alltwo ar
s symmetri
 if they share the same endnodes but have opposite orientations. Two edge-disjointarbores
en
es F1, F2 rooted at r are 
alled strongly edge-disjoint if the paths F1(r, v), F2(r, v) donot 
ontain a pair of symmetri
 ar
s. In [18℄, the following strengthening of Edmonds' theorem wasproposed.Conje
ture 1.1.10 (Colussi, Conforti, Zambelli). Let D = (V,A) be a digraph with root r. D has kstrongly edge-disjoint spanning r-arbores
en
es if and only if D is rooted k-edge-
onne
ted.For k = 2, the 
onje
ture was veri�ed in [18℄. As Colussi et al. note, the motivation of the problemis the following. It is easy to see that a similar statement holds for strongly edge-disjoint dire
ted s− tpaths. Hen
e the 
onje
ture, if it were true, 
ould be 
onsidered as a 
ommon generalization of Edmonds'disjoint arbores
en
es theorem and Menger's theorem. Note that the arbores
en
es in the 
onje
tureare allowed to 
ontain pairs of symmetri
 ar
s, only the paths in question are required not to do so. InSe
tion 2.2 we give a generalization of the 
ase k = 2 (Theorem 2.2.8) and show that the 
onje
turedoes not hold for k ≥ 3 (Se
tion 2.2.3). As a side result, we get a new proof of a theorem of Georgiadisand Tarjan [55℄.Let now D = (V,A) be a digraph without loops, but D may have parallel ar
s. We assume that

D is weakly 
onne
ted, i.e., |V | − 1 ≤ |A| holds. For ea
h a ∈ A, we denote by t(a) and h(a) thetail and the head of a, respe
tively. From now on we distinguish two types of arbores
en
es: in- andout-arbores
en
es. An r-out-arbores
en
e is just the same as an r-arbores
en
e de�ned earlier, thatis, it is a dire
ted tree in whi
h the edges are dire
ted away from the root node r. An r-in-arbores
en
eis a dire
ted tree in whi
h the edges are dire
ted toward the root node r, so the reversal of its edgesresults in an out-arbores
en
e.



8 1. Introdu
tionThe problem of �nding k ar
-disjoint spanning r-out-arbores
en
es for a given root r ∈ V is veryimportant not only from the theoreti
al viewpoint but also from pra
ti
al viewpoints, and it has beenextensively studied. It is known [15, 52, 101, 122, 124℄ that this problem 
an be solved in polynomialtime, and several extensions have been 
onsidered in [9, 48, 82℄. However, in many situations, we haveto simultaneously 
onsider not only an in-arbores
en
e but also an out-arbores
en
e. For example, ineva
uation situations, an in-arbores
en
e represents roads whi
h refugees use. On the other hand, anout-arbores
en
e represents roads used by emergen
y vehi
les. Unfortunately, it is known [5℄ that theproblem of �nding a pair of ar
-disjoint spanning r1-in-arbores
en
e and r2-out-arbores
en
e for givenroots r1, r2 ∈ V is NP-
omplete even if r1 = r2. As a spe
ial 
ase, it is only known [5℄ that this problemin a tournament 
an be solved in polynomial time. In Se
tion 2.3, we 
onsider this problem in a dire
teda
y
li
 graph and we give a linear time algorithm for solving it (Theorem 2.3.1).1.2 Covering interse
ting bi-set systemsSub- and supermodular set fun
tions are known to be useful tools in graph optimization but in thelast �fteen years it turned out that several results 
an be extended to fun
tions de�ned on pairs of setsor on bi-sets. Given a ground-set V , we 
all a pair X = (XO,XI) of subsets a bi-set if XI ⊆ XO ⊆ Vwhere XO is the outer member and XI is the inner member of X. By a bi-set fun
tion we meana fun
tion de�ned on the set of bi-sets of V . We will ta
itly identify a bi-set X = (XO,XI) for whi
h
XO = XI with the set XI and hen
e bi-set fun
tions may be 
onsidered as straight generalizations of setfun
tions. The set of all bi-sets on ground-set V is denoted by P2(V ) = P2. The interse
tion ∩ and theunion ∪ of bi-sets is de�ned in a straightforward manner: for X,Y ∈ P2 let X∩Y := (XO∩YO,XI∩YI),
X ∪ Y := (XO ∪ YO,XI ∪ YI). We write X ⊆ Y if XO ⊆ YO,XI ⊆ YI and this relation is a partialorder on P2. A

ordingly, when X ⊆ Y or Y ⊆ X, we 
all X and Y 
omparable. A family ofpairwise 
omparable bi-sets is 
alled a 
hain. Two bi-sets X and Y are independent if XI ∩YI = ∅ or
V = XO ∪ YO. A set of bi-sets is independent if its members are pairwise independent. We 
all a set ofbi-sets a ring-family if it is 
losed under taking union and interse
tion. Two bi-sets are interse
ting if
XI∩YI 6= ∅ and properly interse
ting if, in addition, they are not 
omparable. Note that XO∪YO = Vis allowed for two interse
ting bi-sets. In parti
ular, two sets X and Y are properly interse
ting if noneof X ∩ Y,X − Y, Y − X is empty. A family of bi-sets is 
alled laminar if it has no two properlyinterse
ting members. A family F of bi-sets is interse
ting if both the union and the interse
tion ofany two interse
ting members of F belong to F . In parti
ular, a family L of subsets is interse
tingif X ∩ Y,X ∪ Y ∈ L whenever X,Y ∈ L and X ∩ Y 6= ∅. A laminar family of bi-sets is obviouslyinterse
ting. Two bi-sets are 
rossing if XI ∩YI 6= ∅ and XO ∪YO 6= V and properly 
rossing if theyare not 
omparable. A bi-set (XO,XI) is trivial if XI = ∅ or XO = V . We will assume throughoutChapter 3 that the bi-set fun
tions in question are integer-valued and that their value on trivial bi-setsis always zero. In parti
ular, set fun
tions are also integer-valued and zero on the empty set and on theground-set.A dire
ted edge enters or 
overs X if its head is in XI and its tail is outside XO. The set ofedges entering a bi-set X is denoted by ∆in

D (X) = ∆in(X). An edge set 
overs a family of bi-sets ifit 
overs ea
h member of the family. For a bi-set fun
tion p, a digraph D = (V,A) is said to 
over p



1.2. Covering interse
ting bi-set systems 9if ̺D(X) ≥ p(X) for every X ∈ P2(V ) where ̺D(X) denotes the number of edges of D 
overing X.For a ve
tor z : A → R, let ̺z(X) :=
∑

[z(a) : a ∈ A, a 
overs X]. A ve
tor z : A → R 
overs p if
̺z(X) ≥ p(X) for every X ∈ P2(V ).A bi-set fun
tion p is said to satisfy the supermodular inequality on X,Y ∈ P2 if

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (1.7)If the reverse inequality holds, we speak of the submodular inequality. p is said to be fully supermod-ular or supermodular if it satis�es the supermodular inequality for every pair of bi-sets X,Y . If (1.7)holds for interse
ting (resp. 
rossing) pairs, we speak of interse
ting (resp. 
rossing) supermodularfun
tions. Analogous notions 
an be introdu
ed for submodular fun
tions. Sometimes (1.7) is requiredonly for pairs with p(X) > 0 and p(Y ) > 0 in whi
h 
ase we speak of positively supermodular fun
-tions. Positively interse
ting or 
rossing supermodular fun
tions are de�ned analogously. A typi
al wayto 
onstru
t a positively supermodular fun
tion is repla
ing ea
h negative value of a fully supermodularfun
tion by zero. An easy example for a submodular bi-set fun
tion is the in-degree fun
tion.Proposition 1.2.1. The in-degree fun
tion ̺D on P2 is submodular.There is another line of extending Theorem 1.1.1 in whi
h, rather than working dire
tly with ar-bores
en
es, one 
onsiders disjoint edge-
overings of 
ertain families of sets or bi-sets. In [40℄, Frankproved the following.Theorem 1.2.2 (Frank). Let D = (V,A) be a digraph and F an interse
ting family of subsets of V . Itis possible to partition A into k 
overings of F if and only if the in-degree of every member of F is atleast k.Obviously, when F 
onsists of every non-empty subset of V −r, we obtain the weak form of Edmonds'theorem. A disadvantage of Theorem 1.2.2 is that it does not imply the strong version of Edmonds'theorem. The following result of Szeg® [120℄, however, over
ame this di�
ulty.Theorem 1.2.3 (Szeg®). Let F1, . . . ,Fk be interse
ting families of subsets of nodes of a digraph D =

(V,A) with the following mixed interse
tion property:
X ∈ Fi, Y ∈ Fj , X ∩ Y 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj.Then A 
an be partitioned into k subsets A1, . . . , Ak su
h that Ai 
overs Fi for ea
h i = 1, . . . , k if andonly if ̺D(X) ≥ p1(X) for all non-empty X ⊆ V where p1(X) denotes the number of Fi's 
ontaining

X. However, Theorem 1.2.3 does not imply Theorem 1.1.5. In [9℄, we derived an extension of Szeg®'stheorem to bi-set families.The bi-set families F1, . . . ,Fk said to satisfy the mixed interse
tion property if
X ∈ Fi, Y ∈ Fj , XI ∩ YI 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj.For a bi-set X, let p2(X) denote the number of indi
es i for whi
h Fi 
ontains X. For X ∈ Fi, Y ∈ Fj ,the in
lusion X ⊆ Y implies X = X ∩ Y ∈ Fj and hen
e p2 is monotone non-in
reasing in the sensethat X ⊆ Y , p2(X) > 0 and p2(Y ) > 0 imply p2(X) ≥ p2(Y ).
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tionTheorem 1.2.4. Bér
zi and Frank Let D = (V,A) be a digraph and F1, . . . ,Fk be interse
ting familiesof bi-sets on ground set V satisfying the mixed interse
tion property. The edges of D 
an be partitionedinto k subsets A1, . . . , Ak su
h that Ai 
overs Fi for ea
h i = 1, . . . , k if and only if
̺D(X) ≥ p2(X) for every bi-set X.The proof of Theorem 1.2.4 went along the same line as Lovász' original proof for Edmonds' theoremand was based on the following property.Lemma 1.2.5. If p2(X) > 0, p2(Y ) > 0 and XI∩YI 6= ∅, then p2(X)+p2(Y ) ≤ p2(X∩Y )+p2(X∪Y ).Moreover, if there is an Fi for whi
h X ∩ Y ∈ Fi and X,Y 6∈ Fi, then stri
t inequality holds.Using Theorem 1.2.4, we give a new proof of Theorem 1.1.6 in Se
tion 3.1. The appli
ation of bi-setsgives a new insight into the stru
ture of 
onvex sets. By using the spe
ial bi-set families appearing in theproof, we are able to give a strongly polynomial time algorithm for �nding rooted bran
hings spanninggiven 
onvex sets under edge 
apa
ity 
onstraints (Theorem 3.2.2). We also give a polyhedral des
riptionof arbores
en
e pa
kable subgraphs based on a 
onne
tion with bi-set families (Lemma 3.3.5), and provethat the 
orresponding system of inequalities is TDI (Theorem 3.3.7).1.3 Restri
ted b-mat
hingsLet G = (V,E) be an undire
ted graph and let b : V → Z+ be an upper bound on the nodes. Anedge set F ⊆ E is 
alled a b-mat
hing if dF (v), the number of edges in F in
ident to v, is at most b(v)for ea
h node v. This is often 
alled simple b-mat
hing in the literature, sin
e multiple 
opies of thesame edge are not allowed. If not stated otherwise, all b-mat
hings 
onsidered will be simple throughoutSe
tions 1.3-1.4 and Chapters 4-6. For some integer t ≥ 2, by a t-mat
hing we mean a b-mat
hing with

b(v) = t for every v ∈ V . A 
losely related 
on
ept is b-fa
tor, where instead of dF (v) ≤ b(v) stri
tly
dF (v) = b(v) is required.Let K be a list of forbidden subgraphs. The node-set and the edge-set of a subgraph K ∈ K aredenoted by VK and EK , respe
tively. By a K-free b-mat
hing we mean a b-mat
hing not 
ontainingany member of K. The maximum K-free b-mat
hing problem asks for a K-free b-mat
hing in G withmaximum size (that is, a K-free b-mat
hing F ⊆ E with maximum 
ardinality).The most important spe
ial 
ases of K-free b-mat
hings are the so-
alled C≤k-free and Ck-free 2-mat
hing problems. A 2-mat
hing M is Ck-free if it 
ontains no 
y
le of length k, and it is C≤k-free-freeif it 
ontains no 
y
le of length k or less. The motivation of these problems is twofold. On the one hand,they have been studied as relaxations of the Hamiltonian 
y
le problem. The 
ase k ≤ 2 is exa
tly the
lassi
al simple 2-mat
hing problem, whi
h 
an be solved e�
iently. Papadimitriou showed that theproblems are NP-hard when k ≥ 5 [22℄, and Hartvigsen [59℄ gave an augmenting path algorithm for the
ase k = 3. The C4-free and C≤4-free 2-mat
hing problems are left open.The other motivation 
omes from undire
ted node-
onne
tivity augmentation. For an integer k,a graph (resp. digraph) is k-
onne
ted if it 
ontains more than k nodes and it remains 
onne
ted(resp. strongly 
onne
ted) when we delete at most k − 1 nodes from the graph (resp. digraph). The
k-
onne
tivity augmentation problem is the following: make a given graph or digraph k-
onne
ted by
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ted b-mat
hings 11adding a minimum number of new edges. Con
erning the dire
ted 
ase, Frank and Jordán gave a min-max formula and also an algorithm relying on the ellipsoid method for �nding the minimum [43℄. In [44℄,they also provided a 
ombinatorial algorithm to make a (k−1)-
onne
ted digraph k-
onne
ted. However,their algorithm is polynomial only for �xed k's, that is, the running time is polynomial in the size of thedigraph but exponential in k. Végh and Ben
zúr gave a 
ombinatorial algorithm for the general 
asewhose running time is polynomial also in k [130℄.There are only partial results for the undire
ted 
ase. The solution is trivial when k = 1. Eswaranand Tarjan solved the problem for k = 2 in [38℄, while Watanabe and Nakamura found a 
hara
terizationfor the 
ase of k = 3 [132℄. Later, Hsu and Rama
handran [71,72℄ gave linear time algorithms for both ofthese problems. For k = 4, a polynomial algorithm was developed by Hsu [70℄. It is also known that near-optimal solutions 
an be found in polynomial time for every k, see [76,77℄. In [78℄, Ja
kson and Jordángave an algorithm whi
h provides an optimal solution in polynomial time for every �xed k. If the size ofan optimal solution is large 
ompared to k, their algorithm is polynomial for all k. They also obtaineda min-max formula for this spe
ial 
ase, and 
ompletely solved the problem for a new family of graphs
alled k-independen
e free graphs. However, the 
omplexity of the node-
onne
tivity augmentationproblem is still open, and it is 
ertainly one of the most interesting unsolved questions in this area.An interesting spe
ial 
ase 
onsists of in
reasing the 
onne
tivity by one, that is, when the startinggraph is already (k − 1)-
onne
ted. We 
all this problem the k-
onne
tivity augmentation by oneproblem. Hsu gave an almost linear time algorithm to in
rease the 
onne
tivity from three to fourin [115℄. Hen
e a linear time algorithm for k = 1, 2, 3, an almost linear time algorithm for k = 4 anda polynomial time algorithm provided by [78℄ for �xed k are at hand. A polynomial time algorithmwas given when the graph has a 
ertain 
ondition [100℄, and approximation algorithms are proposedin [80, 81℄. The general 
ase was solved by Végh [129℄, see later.On the other hand, values of k 
lose to n are also of interest. If k = n − 1, then the graph shouldbe simply extended to a 
omplete graph and the answer is trivial sin
e every augmenting set 
onsistsof the edges of Ḡ where Ḡ denotes the 
omplement of G. An easy argument shows that a graph G is
(n−2)-
onne
ted if and only if ea
h node has degree at most one in Ḡ. This implies that for k = n−2 the
k-
onne
tivity augmentation problem is equivalent to �nding a maximum mat
hing in the 
omplementof the graph. It 
an be veri�ed that a graph G is (n − 3)-
onne
ted if and only if the edge set of Ḡis a C4-free 2-mat
hing, also 
alled a square-free 2-mat
hing. Moreover, an obvious but importantobservation is that if G is (n− 4)-
onne
ted then its 
omplement Ḡ is a sub
ubi
 graph (i.e. ea
h nodehas degree at most three). Therefore, the (n − 3)-
onne
tivity augmentation by one problem 
an beredu
ed to the problem of �nding a square-free 2-mat
hing of maximum size in a sub
ubi
 graph.The main result of Chapter 4 is a polynomial time algorithm for the square-free 2-mat
hing problemin simple sub
ubi
 graphs (Theorem 4.3.1), whi
h leads to a polynomial time algorithm for the (n −
3)-
onne
tivity augmentation problem (Theorem 4.3.2). Our algorithm is based on the theorem thatsquare-free 2-mat
hings in a simple sub
ubi
 graph have a matroid-like stru
ture 
alled a jump system(Theorem 4.3.3). With the aid of known results on jump systems, we show that some optimizationproblems are also solvable in polynomial time. We also give a faster algorithm for the square-free 2-mat
hing problem in simple sub
ubi
 graphs, whi
h runs in O(n

3
2 ) time (Theorem 4.3.9).We also dis
uss the weighted versions of the problems. Given a (k − 1)-
onne
ted graph G = (V,E)
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tionand a weight fun
tion w : Ē → R+, where Ē is the 
omplement of E, the weighted k-
onne
tivityaugmentation by one problem is the problem of �nding a set of edges of minimum total weightthat should be added to the original graph to obtain a simple k-
onne
ted graph. This problem isknown to be NP-hard for �xed k ≥ 2 [38℄. A 2-approximation algorithm is given for k = 3 [4℄, andalso a 3-approximation algorithm exists for k = 4, 5 [27℄. For an arbitrary k, an algorithm with theapproximation ratio 2(1 + 1
2 + · · · + 1

k
) is given in [111℄, and further improvement is given in [109℄.See [97℄ for an overview of the known results.Of 
ourse the weighted (n − 3)-
onne
tivity augmentation by one problem 
an be redu
ed to theproblem of �nding a square-free 2-mat
hing maximizing the total weight of its edges, whi
h we 
allthe weighted square-free 2-mat
hing problem. Z. Király proved that the weighted square-free 2-mat
hing problem in bipartite graphs is NP-hard even for 0− 1 weights [87℄. This problem is, however,polynomially solvable in bipartite graphs if the weight fun
tion is node-indu
ed on every square [103,121℄.For a subgraph H = (V (H), E(H)) of G, we say that w is node-indu
ed on H if there exists a fun
tion

πH : V (H) → R su
h that w(e) = πH(u) + πH(v) for every edge e = uv ∈ E(H). We show that theweighted square-free 2-mat
hing problem in simple sub
ubi
 graphs 
an be solved in polynomial time ifthe weight fun
tion is node-indu
ed on every square (Theorem 4.6.1), whereas the problem is NP-hardfor general weights (Theorem 4.5.1). In our algorithm for the weighted problem, we use the theory of M-
on
ave (M-
onvex) fun
tions on 
onstant-parity jump systems introdu
ed by Murota [107℄. Hartvigsenand Li [62℄, and Kobayashi [88℄ gave polynomial time algorithms for the weighted C3-free 2-mat
hingproblem in sub
ubi
 graphs with an arbitrary weight fun
tion. However, the problem for k = 3 in generalgraphs with arbitrary weights is still open.Let us now 
onsider the spe
ial 
ase of C4-free 2-mat
hings in bipartite graphs. This problem wassolved by Hartvigsen [60, 61℄ and Király [86℄. A generalization of the problem to maximum Kt,t-free t-mat
hings in bipartite graphs was given by Frank [41℄ who observed that this is a spe
ial 
ase of 
overingpositively 
rossing supermodular fun
tions on set pairs, solved by Frank and Jordán in [43℄. Makai [103℄generalized Frank's theorem for the 
ase when a list K of forbidden Kt,t's is given (that is, a t-mat
hingmay 
ontain Kt,t's not in K.) He gave a min-max formula based on a polyhedral des
ription for theminimum 
ost version for node-indu
ed 
ost fun
tions. Pap [110℄ gave a further generalization of themaximum 
ardinality version for ex
luded 
omplete bipartite subgraphs and developed a simple, purely
ombinatorial algorithm. For node indu
ed 
ost fun
tions, su
h an algorithm was given by Takazawa [121℄for Kt,t-free t-mat
hing.The C4-free 2-mat
hing problem admits two natural generalizations. The �rst one is Kt,t-free t-mat
hings 
onsidered in Chapter 5, while the se
ond is t-mat
hings 
ontaining no 
omplete bipartitegraph Ka,b with a + b = t + 2. This latter problem is equivalent to 
onne
tivity augmentation for
k = n− t−1. The 
omplexity of 
onne
tivity augmentation for general k is yet open, while 
onne
tivityaugmentation by one, that is, when the input graph is already (k−1)-
onne
ted was solved in [129℄ (this
orresponds to the 
ase when the graph 
ontains no Ka,b with a+ b = t+3, in parti
ular, d(v) ≤ t+1).Let K be a set 
onsisting of Kt,t's, 
omplete bipartite subgraphs of G on two 
olour 
lasses of size
t, and Kt+1's, 
omplete subgraphs of G on t + 1 nodes. We give a min-max formula (Theorem 5.1.4)on the size of K-free b-mat
hings and a polynomial time algorithm (Se
tion 5.4) for �nding one withmaximum size under the assumptions that for any K ∈ K and any node v of K,
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VK spans no parallel edges (1.8)

b(v) = t (1.9)
dG(v) ≤ t+ 1. (1.10)Note that this is a generalization of the maximum C3-free, C4-free and C≤4-free 2-mat
hing prob-lems in sub
ubi
 graphs. Among our assumptions, (1.8) and (1.9) may be 
onsidered as natural onesas they hold for the maximum Kt,t-free t-mat
hing problem in a simple graph. We ex
lude paralleledges on the node sets of members of K in order to avoid having two di�erent Kt,t's on the same two
olour 
lasses or two Kt+1's on the same ground set. However, the degree bound (1.10) is a restri
tiveassumption and dissipates essential di�
ulties. Our proof strongly relies on this and the theorem 
annotbe straightforwardly generalized as it 
an be shown by using the example in Chapter 6 of [129℄. Theproof and algorithm use the 
ontra
tion te
hnique of [87℄, [110℄ and [12℄. The 
ontribution of Chapter 5on the one hand is the extension of this te
hnique for t ≥ 2 and forbidding Kt+1's as well, while on theother hand the argument is signi�
antly simpler than the argument in Chapter 4.Kobayashi and Yin 
onsidered the problem of �nding a maximum t-mat
hing not 
ontaining H as asubgraph for a �xed graph H, 
alled the H-free t-mat
hing problem [95℄. They generalized the resultsof [14℄ by solving the 
ase when H is a t-regular 
omplete partite graph. They also showed that theproblem is NP-
omplete when H is a 
onne
ted t-regular graph that is not 
omplete partite.It is worth mentioning that the polynomial solvability of the above problems seems to show a strong
onne
tion with jump systems. In [119℄, Szabó proved that for a list K of forbidden Kt,t and Kt+1subgraphs the degree sequen
es of K-free t-mat
hings form a jump system in any graph. Con
erningbipartite graphs, Kobayashi and Takazawa showed [92℄ that the degree sequen
es of C≤k-free 2-mat
hingsdo not always form a jump system for k ≥ 6. These results are 
onsistent with the polynomial solvabilityof the C≤k-free 2-mat
hing problem, even when restri
ting it to bipartite graphs. Similar results areknown about even fa
tors due to [91℄. Although Szabó's result suggests that �nding a maximum K-free

t-mat
hing should be solvable in polynomial time for a list K of forbidden Kt,t and Kt+1 subgraphs,the problem is still open. Con
luding the above, jump systems and M-
on
ave (M-
onvex) fun
tions areunderstood as a natural framework of e�
iently solvable problems. Besides studies of these stru
turesthemselves [89, 102, 107, 116℄, their relation to e�
iently solvable 
ombinatorial optimization problemshas been revealed (see [2, 29, 88, 90, 93, 94, 107, 119℄). The results of Chapters 4 and 5 present su
hexamples and enfor
es the importan
e of these stru
tures.
1.4 Polyhedral des
riptionsA 
ornerstone of mat
hing theory is Edmonds' [33℄ des
ription of the perfe
t mat
hing polytope,the 
onvex hull of in
iden
e ve
tors of perfe
t mat
hings of a graph G = (V,E).
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tionTheorem 1.4.1 (Edmonds). The perfe
t mat
hing polytope is determined by
(i) xe ≥ 0 (e ∈ E),

(ii) x(δ(v)) = 1 (v ∈ V ), (P1)
(iii) x(δ(K)) ≥ 1 (K ⊆ V, |K| odd).Observe that the in
iden
e ve
tor of a perfe
t mat
hing satis�es all these 
onditions. The theoremyields that the set of verti
es of the above polytope is identi
al to the set of in
iden
e ve
tors of perfe
tmat
hings.A natural generalization of perfe
t mat
hings are b-fa
tors, with 1-fa
tors being perfe
t mat
hings.Re
all that b(K) =

∑

v∈K b(v), while δ̇(v) denotes the family of edges in
ident to v ∈ V , that is, anyloop at v o

urs twi
e in δ̇(v). The set of loops at v ∈ V is denoted by l(v). We 
all K ⊆ V, F ⊆ δ(K)a pair if F does not 
ontain loops (by notation, this only means restri
tion in 
ase of |K| = 1). Thepair is odd if b(K) + |F | is odd. The b-fa
tor polytope is the 
onvex hull of the in
iden
e ve
torsof b-fa
tors of G. In the same paper [33℄, Edmonds gave the following 
hara
terization of the b-fa
torpolytope.Theorem 1.4.2 (Edmonds). The b-fa
tor polytope is determined by
(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) = b(v) (v ∈ V ), (P2)
(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | ((K,F ) odd).A polyhedral des
ription of b-mat
hings 
an easily be derived from Theorem 1.4.2.Theorem 1.4.3. The b-mat
hing polytope is determined by
(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) ≤ b(v) (v ∈ V ), (P3)
(iii) x(E[K]) + x(F ) ≤ ⌊ b(K)+|F |

2 ⌋ ((K,F ) odd).We refer the reader to Part III, in parti
ular, Chapters 30-33 of S
hrijver [114℄ for a detailed dis
ussionof b-mat
hings and b-fa
tors.Results on b-fa
tors 
an be redu
ed to perfe
t mat
hings via a simple 
onstru
tion. Given a graph
G = (V,E), 
onstru
t a new graph G′ = (V ′, E′) as follows. Introdu
e b(v) nodes for ea
h node v ∈ V .For ea
h edge e = uv ∈ E, introdu
e two nodes pe,u and pe,v, an edge pe,upe,v, and edges 
onne
ting pe,uto all b(u) 
opies of u and 
onne
ting pe,v to all b(v) 
opies of v. It is not di�
ult to see that G′ 
ontainsa perfe
t mat
hing if and only if G 
ontains a b-fa
tor. Using this 
orresponden
e, results on mat
hings
an be extended to b-fa
tors, in
luding Theorem 1.4.2, whi
h thus dedu
es from Theorem 1.4.1. To theextent of our knowledge, all previous proofs of Theorem 1.4.3 used this 
orresponden
e.An important sub
lass of b-fa
tors are 2-fa
tors, de
ompositions of a graph to disjoint union of 
y
les.Hamiltonian 
y
les being 2-fa
tors, it is a natural question looking at spe
ial 2-fa
tors not 
ontainingshort 
y
les whi
h led to the notion of C≤k-free or Ck-free 2-mat
hings or fa
tors. We have alreadymentioned that determining the maximum size of su
h a subgraph is NP-
omplete for k ≥ 5.
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riptions 15Considering the maximum weight version of the Ck-free 2-fa
tor problem, there is a �rm di�eren
ebetween triangle- and square-free 2-fa
tors. Z. Király showed [87℄ that �nding a maximum weight square-free 2-fa
tor is NP-hard even in bipartite graphs with 0 − 1 weights. For sub
ubi
 graphs, polynomialtime algorithms were given by Hartvigsen and Li [62℄, and by Kobayashi [88℄ for the weighted C3-free 2-fa
tor problem with an arbitrary weight fun
tion. The former result implies that we should not expe
t ani
e polyhedral des
ription of the square-free 2-fa
tor polytope. However, solvability of the triangle-free
ase was a main motivation of our investigation.De
iding the existen
e of a triangle-free 2-fa
tor be
omes signi�
antly harder without assuming thegraph is sub
ubi
. Yet if instead of (simple) 2-fa
tors, we look at the problem of un
apa
itated 2-fa
tors, when we are allowed to use two 
opies of the same edge, there exists a polyhedral des
riptionfor arbitrary graphs, given by Cornuéjols and Pulleyblank [23℄. Let T be a set 
onsisting of trianglesof G. The node-set and the edge-set of a triangle T ∈ T are denoted by VT and ET , respe
tively. An(un
apa
itated) 2-fa
tor is 
alled T -free if it 
ontain at most two edges (
ounted by multipli
ity) ofany member of T . Cornuéjols and Pulleyblank proved the following.Theorem 1.4.4 (Cornuéjols and Pulleyblank). The 
onvex hull of 
hara
teristi
 ve
tors of T -freeun
apa
itated 2-fa
tors is determined by
(i) 0 ≤ xe (e ∈ E),

(ii) x(δ̇(v)) = 2 (v ∈ V ), (P4)
(iii) x(ET ) ≤ 2 (T ∈ T ).Moreover, des
ription (P4) is totally dual integral.Returning to our subje
t, Hartvigsen and Li gave a polyhedral des
ription of the triangle-free 2-fa
torpolytope for sub
ubi
 simple graphs [62℄.Theorem 1.4.5 (Hartvigsen and Li). The T -free 2-fa
tor polytope of a simple sub
ubi
 graph is deter-mined by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ(v)) = 2 (v ∈ V ), (P5)
(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | (K ⊆ V, F ⊆ δ(K), |F | odd),
(iv) x(ET ) = 2 (T ∈ T ).Their proof is based on shrinking triangles and on a variation of the Basi
 Polyhedral Theoremof [21℄. In the same paper, they gave a des
ription of the T -free 2-mat
hing polytope as well and gavea sket
h of the proof, whi
h was published in its full version in [63℄.As we have seen, the b-mat
hing and b-fa
tor polytopes have a similar des
ription. Unexpe
tedly,the same does not hold in the triangle-free 
ase. We say that a triangle T 1-�ts (resp. 2-�ts) a set

K ⊆ V if |VT ∩K| = 1 (resp. 2). The spe
ial edge of a triangle T 1-�tting (resp. 2-�tting) the set Kis the edge e ∈ ET having exa
tly 0 (resp. 2) endnodes in K, and is denoted by eT . Given a set T offorbidden triangles, the set of triangles 1-�tting (resp. 2-�tting) K is denoted by T 1
K (resp. T 2

K) while
TK stands for T 1

K ∪ T 2
K .
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tionDe�nition 1.4.6. (K,F,T) is 
alled a tri-
omb of Type i if1. K ⊆ V , F ⊆ δ(K), T ⊆ T i
K .2. F ∩ ET = ∅.3. The triangles in T are edge-disjoint.A tri-
omb is 
alled odd if b(K) + |F | + |T| is odd. The de�
ien
y of a tri-
omb is de�ned asdef(K,F,T) = x(E[K]) + x(F ) +
∑

T∈T x(ET )− ⌊12(b(K) + |F |+ 3|T|)⌋.
K

: edges in E[K] \ ET and in δ(K) \ (F ∪ ET): edges in F: triangles in T

K

2

2 2

2

2

2

1
1

1

1

2 : a node and its b-valueFigure 1.1: Odd tri-
ombs of Type 1 and 2The fundamental result of Hartvigsen and Li is the following (see [62, 63℄).Theorem 1.4.7 (Hartvigsen and Li). The T -free 2-mat
hing polytope of a simple sub
ubi
 graph isdetermined by
(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ(v)) ≤ 2 (v ∈ V ),

(iii) x(E[K]) + x(F ) +
∑

T∈T x(ET ) ≤ |K|+ ⌊ |F |+3|T|
2 ⌋ ((K,F,T) odd (P6)tri-
omb of Type 2),

(iv) x(ET ) ≤ 2 (T ∈ T ).Their proof is algorithmi
 and uses, in some sense, an Edmonds-style mat
hing algorithm 
onsistingof 
lever triangle alteration and alternating forest growing. The algorithm alternates between a primaland a dual phase, and a quite 
omplex dual 
hange is performed whenever no improvement is foundduring the forest growing. The algorithm stops when the primal and dual solutions (that are feasiblethroughout) satisfy 
omplementary sla
kness.We give new proofs of Theorems 1.4.5 and 1.4.7 in a slightly more general form (Theorems 6.1.1and 6.1.2). Our proof is a natural extension of the proof of Theorem 1.4.1 given by Aráoz, Cunningham,Edmonds, and Green-Krótki [3℄ and S
hrijver [113℄. It is based on a new shrinking operation thathopefully 
ould be extended to the non-sub
ubi
 
ase as well whi
h is the sole remaining open problem
on
erning triangle-free 2-mat
hings.



1.5. Splitting property 171.5 Splitting propertyLet P = (P,≺) be a �nite partially ordered set. For a subset H ⊆ P , sets U(H) = {x ∈ P : ∃h ∈
H : x � h} and L(H) = {x ∈ P : ∃h ∈ H : x � h} are 
alled the upper and lower shadows of H,respe
tively. An anti
hain A ⊆ P is maximal if and only if U(A) ∪ L(A) = P . We say that a maximalanti
hain A has the splitting property if it 
an be partitioned into two disjoint parts A1 ∪ A2 = Asu
h that U(A1) ∪ L(A2) = P . This property was introdu
ed and �rst studied by Ahlswede et al. [1℄.They gave the following su�
ient 
ondition for the splitting property. A maximal anti
hain A ⊆ P is
alled dense if it satis�es the following: whenever x ≺ a ≺ y for some a ∈ A and x, y ∈ P , there existsan a′ ∈ A \ {a} also satisfying x ≺ a′ ≺ y. They proved the following theorem.Theorem 1.5.1 (Ahlswede, Erd®s and Graham). Every dense maximal anti
hain in a �nite posetsatis�es the splitting property.The poset P itself has the splitting property if every maximal anti
hain in P satis�es the splittingproperty. The following negative result in [1℄ shows that this property is NP-hard to de
ide.Theorem 1.5.2 (Ahlswede, Erd®s and Graham). It is NP-hard to de
ide whether a given poset P =

(P,≺) has the splitting property.On the other hand, Du�us and Sands [31℄ gave a 
omplete 
hara
terization of �nite distributivelatti
es with the splitting property.Theorem 1.5.3 (Du�us and Sands). If P is a �nite distributive latti
e with the splitting property, thenit is either a Boolean latti
e, or one of three other latti
es.We 
onsider the poset of multisets of k 
olours. Formally, let us use the elements of the group Zk as
olours, denoted by {1, . . . , k}. We 
all the ve
tors Zk → Z k-
olour ve
tors, and denote their set by
Mk. We 
an de�ne a natural partial ordering on Mk: for a, c ∈Mk, a ≺ c if ai ≤ ci for every i ∈ Zk and
a 6= c. If a ≺ c, we also say that a is a shadow of c. (Mk,≺) is a distributive latti
e, however, it is not�nite and therefore Theorem 1.5.3 is not appli
able. Let

M r
k = {x ∈Mk :

∑

i∈Zk

xi = r}denote the set of k-
olour ve
tors whose 
oordinates sum up to r. The main result of Chapter 7 showsthe splitting property of this anti
hain for r = k (Theorem 7.1.1). It is easy to verify that Mk
k is notdense and therefore Theorem 1.5.1 does not imply our result. Indeed, take an arbitrary x ∈ Mk−1
k andlet y1 = x1 + 2 and yi = xi if i 6= 1. Then Mk

k 
ontains exa
tly one element a with x ≺ a ≺ y.For r ≤ t ≤ n, a Turán (n, t, r)-system is an r-uniform hypergraph on n nodes su
h that every
t-element subset of the nodes spans at least one edge of the hypergraph. The Turán number T (n, t, r)asks for the minimum size of su
h a family; determining the exa
t values is a problem posed by PálTurán [125℄. The simplest 
ase t = 3, r = 2 asks for the minimum number of edges of a graph su
hthat every subset of 3 nodes 
ontains at least one edge. This is equivalent to determining the maximumnumber of edges in a triangle free graph on n nodes, a problem solved by Mantel in 1907. The optimal
(n, 3, 2)-Turán system is the disjoint union of two 
liques on node sets of size ⌊n2 ⌋ and ⌈n2 ⌉.



18 1. Introdu
tionThe limit
t(t, r) = lim

n→∞

T (n, t, r)
(

n
r

)expresses the fra
tion of all r-element subsets needed for a Turán (n, t, r)-system. No exa
t value isknown for any t > r > 2 - in 1981, Pál Erd®s o�ered a bounty of $500 for even a single spe
ial 
ase and$1000 for resolving the general 
ase [36℄. For surveys on Turán numbers, see [49, 83, 118℄. De Caen [26℄gave the lower bound t(t, r) ≥ 1

(t−1
r−1)

. The best 
urrently known upper bound is due to Sidorenko [117℄.Theorem 1.5.4 (Sidorenko). For any integers t > r,
t(t, r) ≤

(

r−1
t−1

)r−1
. (1.11)We give a new interpretation of Sidorenko's 
onstru
tion in terms of shadow systems, and reprovethe theorem using a 
ombinatorial 
olouring result (Theorem 7.1.2).We also introdu
e the natural weighted extension of Turán numbers: we are given a nonnegativeweight fun
tion w on the r-element subsets of V , and let w∗ denote the total weight of all subsets. TheTurán weight Tw(n, t, r) is the minimum weight of a Turán (n, t, r)-system. Analogously to t(t, r) wemay de�ne

tw(t, r) = lim
n→∞

sup
w

Tw(n, t, r)

w∗
.Somewhat surprisingly, we show that tw(t, r) = t(t, r), that is, the bound is not a�e
ted by the weight,and the bound on tw(t, r) 
an be derived from Theorem 7.1.2 the same way as the bound on t(t, r)(Theorem 7.2.1).The notion of weighted Turán numbers enables us to establish a 
onne
tion between Turán systemsand Tuza's [127℄ famous 
onje
ture asserting that in every graph the minimum number of edges 
overingevery triangle is at most twi
e the maximum number of pairwise edge-disjoint triangles. Finding aminimum number of edges in a graph G = (V,E) 
overing every triangle is equivalent to 
omputing theweighted Turán number Tw(n, 3, 2) with n = |V |, and w(e) = 1 if e ∈ E and w(e) = 0 otherwise. Wepropose a weighted hypergraphi
 version of Tuza's 
onje
ture (Conje
ture 7.3.2), and prove its fra
tionalrelaxation (Theorem 7.3.3). This extends the result of Krivelevi
h [99℄ on the fra
tional version of Tuza'soriginal 
onje
ture and also makes use of our 
onstru
tion on shadow systems.



Chapter 2Pa
king arbores
en
es
2.1 Extending Edmonds' theoremLet D = (V,A) be a digraph. We 
all a ve
tor z : V → {0, 1, . . . , k} a root-ve
tor if there are kedge-disjoint spanning arbores
en
es in D so that ea
h node v is the root of z(v) arbores
en
es. FromEdmonds' theorem one easily gets the following 
hara
terization of root-ve
tors.Theorem 2.1.1. Given a digraph D′ = (V ′, A′), a ve
tor z is a root-ve
tor if and only if z(V ′) = k and
z(X) ≥ k − ̺D′(X) for every non-empty subset X ⊆ V ′.Proof. The ne
essity of both 
onditions is evident. For the su�
ien
y, extend D′ with a node r and
z(v) parallel edges from r to v for ea
h v ∈ V . In the resulting digraph D the out-degree of r is exa
tly
k and ̺D(X) = z(X) + ̺D′(X) ≥ k holds for every non-empty X ⊆ V ′. By Edmonds' theorem, D
ontains k edge-disjoint spanning arbores
en
es of root r. Sin
e δD(r) = k, ea
h of these arbores
en
esmust have exa
tly one edge leaving r and therefore their restri
tions to A′ form k arbores
en
es of D′of root-ve
tor z.For an interse
ting supermodular fun
tion p with �nite p(S), let

B′(p) = {x ∈ RS : x(S) = p(S), x(A) ≥ p(A) for every A ⊆ S}.This is 
alled a base polyhedron. The following result appeared in an equivalent form in [45℄.Theorem 2.1.2 (Frank and Tardos). Let p be an interse
ting supermodular fun
tion for whi
h p(S)�nite and let f : S → R ∪ {−∞}, g : S → R ∪ {∞} be two fun
tions for whi
h f ≤ g.(i) The polyhedron {x ∈ B′(p) : f ≤ x} is non-empty if and only if
f(S) ≤ p(S) (2.1)and

f(X0) +

t
∑

i=1

p(Xi) ≤ p(S) (2.2)for every partition {X0,X1, . . . ,Xt}, (t ≥ 1) of S in whi
h only X0 may be empty.(ii) The polyhedron {x ∈ B′(p) : x ≤ g} is non-empty if and only if
g(X) ≥ p(X) for every X ⊆ S. (2.3)19



20 2. Pa
king arbores
en
es(iii) The base-polyhedron {x ∈ B′(p) : f ≤ x ≤ g} is non-empty if and only if neither {x ∈ B′(p) : f ≤
x} nor {x ∈ B′(p) : x ≤ g} is empty.If, in addition, ea
h of p, f and g is integer-valued, then the 
orresponding polyhedra are integral.Let D = (V,A) be a digraph. De�ne the set fun
tion p by p(X) = k− ̺D(X) for non-empty subsets

X. Then p is interse
ting supermodular and Theorem 2.1.1 implies that the root ve
tors of D are exa
tlythe integral elements of the bases polyhedron B′(p). By 
ombining this with Theorem 2.1.2, one arrivesat the following result appeared in [39, 104℄.Theorem 2.1.3 (Cai, Frank). In a digraph D = (V,A) there exist k edge-disjoint spanning arbores
en
esso that(i) ea
h node v is the root of at most g(v) of them if and only if
t
∑

i=1

̺D(Xi) ≥ k(t− 1) (2.4)holds for every subpartition {X1, . . . ,Xt} of V , and
g(X) ≥ k − ̺D(X) (2.5)for every ∅ ⊂ X ⊆ V ;(ii) ea
h node v is the root of at least f(v) of them if and only if f(V ) ≤ k and

t
∑

i=1

̺D(Xi) ≥ k(t− 1) + f(X0) (2.6)holds for every partition {X0,X1, . . . ,Xt} of V for whi
h t ≥ 1 and only X0 may be empty;(iii) ea
h node v is the root of at least f(v) and at most g(v) of them if and only if the lower boundproblem and the upper bound problem have separately solutions.Two interesting spe
ial 
ases are as follows.Corollary 2.1.4. A digraph D = (V,A) in
ludes k edge-disjoint spanning arbores
en
es (with no re-stri
tion on their roots) if and only if t
∑

i=1

̺D(Xi) ≥ k(t − 1) for every subpartition {X1, . . . ,Xt} of
V .Corollary 2.1.5. A digraph D = (V,A) in
ludes k edge-disjoint spanning arbores
en
es whose roots aredistin
t if and only if |X| ≥ k − ̺D(X) holds for every non-empty subset X ⊆ V set and t

∑

i=1

̺D(Xi) ≥

k(t− 1) for every subpartition {X1, . . . ,Xt} of V .Theorem 2.1.3 
hara
terized root-ve
tors satisfying upper and lower bounds. One may be interestedin a possible generalization for the framework des
ribed in Theorem 1.1.4. We show that this problemis NP-
omplete. Indeed, let D = (V,A) be a digraph whose node set is partitioned into a root-set
R = {r1, . . . , rq} and a terminal set T . Suppose that no edge of D enters any node of R.



2.2. Di
y
le-disjoint arbores
en
es 21Theorem 2.1.6. The problem of de
iding whether there are k disjoint arbores
en
es so that they arerooted at distin
t nodes in R and ea
h of them spans T is NP-
omplete.Proof. Let T be a set with even 
ardinality and let R = {R1, . . . , Rq} be subsets of T so that |Ri| ≥ 2for i = 1, . . . , q. It is well-known that the problem of de
iding whether T 
an be 
overed with k membersof R is NP-
omplete. Let DT be a dire
ted graph on T with ̺DT
(Z) = k − 1 for ea
h Z ⊆ T, |Z| = 1or |Z| = |T | − 1 and ̺DT

(Z) ≥ k otherwise. Su
h a graph 
an be 
onstru
ted easily as follows. Take thesame dire
ted Hamilton 
y
le on the nodes k− 2 times, then add the ar
s vivi+ |T |
2

to the graph for ea
h
i = 0, . . . , |T | − 1 where v0, . . . , v|T |−1 denote the nodes a

ording to their order around the 
y
le (theindi
es are meant modulo |T |). The arising digraph satis�es the in-degree 
onditions.Extend the graph with R = {r1, . . . , rq} and with a new ar
 riv for ea
h v ∈ Ri. Let ri1 , . . . , rik ∈ Rbe a set of distin
t root-nodes. Edmonds' disjoint bran
hings theorem implies that there are edge-disjoint
ri-arbores
en
es Fi spanning ri + T for i = i1, . . . , ik if and only if ̺DT

(Z) ≥ p(Z) for ea
h ∅ ⊂ Z ⊆ Twhere p(Z) denotes the number of Ri's (with i ∈ {i1, . . . , ik}) disjoint from Z. For a subset Z with
|Z| ≥ 2 the inequality holds automati
ally be
ause of the stru
ture of DT and |Ri| ≥ 2. Hen
e one onlyhas to 
are about sets 
ontaining a single node and so the existen
e of the arbores
en
es is equivalentto 
over T with Ri1 , . . . , Rik .The observation above means that T 
an be 
overed with k members of R if and only if the digraphin
ludes k arbores
en
es rooted at di�erent nodes in R.A natural idea to extend Edmonds' results would be to somehow de
rease the set of nodes to bespanned by the arbores
en
es. However, as the following theorem shows, one may easily fa
e di�
ultquestions if doing so.Theorem 2.1.7. Let D = (V,A) be a digraph with u1, u2, v1, v2 ∈ V and let U1 = V, U2 = V − v1. Theproblem of �nding two edge-disjoint arbores
en
es rooted at u1, u2 and spanning U1, U2, respe
tively, isNP-
omplete.Proof. Let D′ be a digraph with u1, u2, v1, v2 ∈ V . It is well-known that the problem of �nding edge-disjoint u1v1 and u2v2 paths is NP-
omplete. We may suppose that the in-degree of v1 and v2 is one.Let D denote the graph arising from D′ by adding ar
s v1v and v2v to A for ea
h v ∈ V ex
ept for thear
 v2v1. Clearly, there are edge-disjoint dire
ted u1v1 and u2v2 paths in D′ if and only if there are twoarbores
en
es F1, F2 in D su
h that Fi is rooted at ui and spans Ui.2.2 Di
y
le-disjoint arbores
en
es2.2.1 Disjoint Steiner-arbores
en
esFor a digraph D = (V + r,A) with root r and terminal set T ⊆ V , an r-arbores
en
e spanning T is
alled a Steiner-arbores
en
e. Two Steiner-arbores
en
es F1 and F2 are 
alled edge-independent ifthe paths F1(r, t), F2(r, t) are edge-disjoint for every terminal t ∈ T . Independent Steiner-arbores
en
es
an be de�ned in a straightforward manner. Note that paths 
orresponding to non-terminal nodes areallowed to violate the disjointness 
ondition hen
e the arbores
en
es are not ne
essarily edge-disjoint.



22 2. Pa
king arbores
en
esZ. Király asked [85℄ whether the existen
e of k edge-independent Steiner-arbores
en
es is ensured by
λ(r, t) ≥ k for ea
h t ∈ T . As Frank's 
onje
ture on independent arbores
en
es would follow from su
ha result, Hu
k's 
ounterexample shows that k = 2 is the only 
ase when this statement may hold. Thefollowing example shows that even a
y
li
ity is not satisfa
tory for the existen
e of edge-independentSteiner-arbores
en
es [98℄.Theorem 2.2.1 (Ková
s). There is an a
y
li
 graph for whi
h there are three internally node-disjointpaths to all of the terminals but there are no three edge-independent Steiner-arbores
en
es.Proof. The terminal set of the example 
onsists of two nodes t1, t2 (see Figure 2.1). It 
an be easily
he
ked that three edge-disjoint paths 
an be 
hosen only one way for both terminals but these 
annotbe partitioned into three arbores
en
es.

t1 t2 t2t1

Figure 2.1: An example without three edge-independent Steiner-arbores
en
esCon
erning the 
ase when k = 2, the following theorem appeared in [98℄.Theorem 2.2.2 (Ková
s). Let D = (V + r,A) be a digraph with root r, terminal set T ⊆ V and
λ(r, t) ≥ 2 for ea
h t ∈ T . Then there exist two edge-independent Steiner-arbores
en
es.The node-independent version of the theorem is also of interest. However, the result of Georgiadisand Tarjan in [55℄ is a generalization of Theorem 1.1.9 (i).Theorem 2.2.3 (Georgiadis and Tarjan). Let D = (V + r,A) be a digraph with root r, terminal set
T ⊆ V and κ(r, t) ≥ 2 for ea
h t ∈ T . Then there exists two independent Steiner-arbores
en
es.In fa
t, it 
an be showed that Theorems 2.2.2 and 2.2.3 are equivalent. The proof of Theorem 2.2.3in [55℄ uses the properties of depth-�rst sear
h (DFS) to �nd the two arbores
en
es in question. Whitty'sproof of Theorem 1.1.9 (i) is based on the following spe
ial ordering of the nodes.Lemma 2.2.4. Let D = (V + r,A) be a digraph with root r and κ(r, v) ≥ 2 for ea
h v ∈ V . There isan ordering r = v0, v1, . . . , vn, vn+1 = r of the nodes so that, for ea
h vi ∈ V , there is an edge vhvi with
h < i and an edge vivj with i < j.



2.2. Di
y
le-disjoint arbores
en
es 23This very spe
ial ordering proved to be useful. Hu
k's proof for Theorem 1.1.9 (ii) is based on thefollowing lemma whi
h is a variant of Lemma 2.2.4 for a
y
li
 graphs.Lemma 2.2.5. Let D = (V +r,A) be a simple a
y
li
 graph with ̺(r) = 0 and ̺(v) ≥ 1 for ea
h v ∈ V .There is an ordering o : V + r → Z of the nodes and an r-arbores
en
e F su
h that for ea
h uv ∈ A, wehave uv ∈ F if and only if o(u) < o(v), that is, the set of edges going forward is exa
tly F .With the help of Lemma 2.2.4 and using the idea of the proof of Theorem 2.2.2, the followingordering of the nodes immediately shows the existen
e of proper Steiner-arbores
en
es [98℄.Theorem 2.2.6 (Ková
s). Let D = (V +r,A) be a digraph with root r, ̺(v) = λ(r, v) ≤ 2 for ea
h v ∈ Vand assume that the set of nodes with in-degree 1 is stable. Then there exists an ordering v0, v1, . . . , vn+1of the nodes for whi
h(i) v0 = vn+1 = r(ii) Cutting nodes appear twi
e, other nodes appear on
e.(iii) Entering edges of nodes with in-degree 1 appear twi
e, other edges appear on
e.(iv) For a 
utting node p, if vi = vj = p and i < j then there is an edge entering vi from the left andthere is an edge entering vj from the right, and all the 
opies of nodes 
ut by p from r lie betweenthem.(v) For every non-
utting node v, there is an edge entering v from the left and one from the right.(vi) If F1 and F2 denote the sets of edges going forward and ba
kward, respe
tively, then F1 and F2 areindependent Steiner-arbores
en
es with terminal set T = {v ∈ V : λ(r, v) = 2}.The most important 
onsequen
e of the existen
e of the above ordering is the following. Note, thatea
h non-
utting node appears only on
e in the ordering. This observation immediately implies thefollowing theorem, whi
h was also proved in [55℄.Theorem 2.2.7 (Georgiadis and Tarjan, Ková
s). Let D = (V,A) be a digraph with root r. There existtwo arbores
en
es F1 and F2 su
h that for ea
h v ∈ V − r, the paths F1(r, v) and F2(r, v) interse
t onlyat the nodes of dom(v).This theorem is the base of our proof for a slight generalization of Conje
ture 1.1.10 when k = 2.2.2.2 A generalizationNote that a pair of symmetri
 ar
s 
an be 
onsidered as a dire
ted 
y
le. This gives the idea of thefollowing de�nition. Let D = (V + r,A) be a digraph with root r and terminal set T ⊆ V . We 
alltwo edge-independent Steiner-arbores
en
es F1 and F2 di
y
le-disjoint if for ea
h t ∈ T the union
F1(r, t) ∪ F2(r, t) does not 
ontain a dire
ted 
y
le. The motivation of this de�nition is the following: if
T = V and the arbores
en
es are di
y
le-disjoint then they are also strongly edge-disjoint.The following theorem generalizes the theorem of Colussi, Conforti and Zambelli for k = 2.



24 2. Pa
king arbores
en
esTheorem 2.2.8. Let D = (V,A) be a dire
ted graph with root r and terminal set T . There exist twodi
y
le-disjoint Steiner-arbores
en
es if and only if λ(r, t) ≥ 2 for ea
h t ∈ T .Proof. The ne
essity is 
lear, we prove su�
ien
y. Consider the arbores
en
es provided by Theorem 2.2.7.We 
laim that these arbores
en
es are di
y
le-disjoint.Assume indire
tly that there is a node t ∈ T su
h that the union of the paths F1(r, t) and F2(r, t)
ontains a dire
ted 
y
le. Let r = x1, x2, . . . , xp = t and r = y1, y2, . . . , yq = t denote the nodes alongthese paths. As the union of the paths 
ontains a 
y
le, there are indi
es i1, i2, j1, j2 su
h that xi1 = yj2 ,
xi2 = yj1 and i1 < i2, j1 < j2. Let xi1 = yj2 = w and xi2 = yj1 = z. The 
hoi
e of F1 and F2 implies
w, z ∈ dom(t). Now 
onsider the graph G− z. Then the union F1(r, w) ∪ F2(w, t) 
ontains a path from
r to t, whi
h 
ontradi
ts to z ∈ dom(t).2.2.3 Disproof of Conje
ture 1.1.10 for k ≥ 3We give a 
ounterexample for k = 3 based on a graph given by Hu
k [73℄, for other values a similar
onstru
tion works. Let D be the graph of Figure 2.2. It is easy to 
he
k that D is rooted 3-edge-
onne
ted. The set of nodes in V − r is partitioned into three blo
ks B1, B2 and B3. There is one ar
from r to Bi, and there are two ar
s from Bi to Bi+1 for ea
h i (the indi
es are meant modulo 3 plus
1) su
h that together they form two dire
ted 
y
les of length three. The edges of these triangles aredenoted by e12, e23, e31 and f12, f23, f31, respe
tively (see Figure 2.2).Assume that there exist three strongly edge-disjoint arbores
en
es F1, F2 and F3. Clearly, ea
h Fi
ontains an edge from r to one of the blo
ks, say Fi 
ontains the one that goes to Bi, and it uses exa
tlyone of eii+1 and fii+1 and the same holds for ei+1i+2 and fi+1i+2. Also, at least one of the arbores
en
eshas to use the pair eii+1, fi+1i+2 or fii+1, ei+1i+2. Assume that F1 does so. But that implies that F1 and
F2 
an not be strongly edge-disjoint as they have to share a symmetri
 pair in B2 that they use whengoing to B3, so for any node v ∈ B3 the paths F1(r, v) and F2(r, v) 
ontain a pair of symmetri
 ar
s.

r

B1

B2B3

e12

f12

e23

f23

e31
f31

Figure 2.2: Counterexample for Conje
ture 1.1.10



2.3. In- and out arbores
en
es 252.2.4 Further remarksEdmonds' theorem gives a 
hara
terization of the existen
e of k edge-disjoint arbores
en
es. On theother hand, we have seen that the analogue statement about independent arbores
en
es does not hold.The notion of strongly edge-disjointness somehow lies between these two types of disjointness, but, aswe showed, the 
onditions of Edmonds' theorem do not ensure the existen
e of su
h arbores
en
es. So anatural idea is to turn to the other `extremity' 
on
erning the ne
essary 
onditions, and formulate thefollowing 
onje
ture.Conje
ture 2.2.9. Let D = (V + r,A) be a digraph with root r and assume that κ(r, v) ≥ k for ea
h
v ∈ V . Then there exist k di
y
le-disjoint arbores
en
es.2.3 In- and out arbores
en
esThe aim of this se
tion is to prove the following theorem.Theorem 2.3.1. Given a dire
ted a
y
li
 graph D = (V,A) with roots r1, r2 ∈ V , we 
an dis
ern theexisten
e of a pair of ar
-disjoint spanning r1-in-arbores
en
e and r2-out-arbores
en
e, and �nd su
harbores
en
es if they exist, in O(|A|) time.2.3.1 An asso
iated bipartite graphWe de�ne a bipartite graph GD = (X,Y ;E) asso
iated with our problem for a dire
ted a
y
li
 graph
D = (V,A), and we show that our problem in D is equivalent to the problem of �nding a mat
hing that
overs all nodes of Y in GD. In the sequel, we assume without loss of generality that δD(r1) = 0 and
̺D(r2) = 0 holds. Note that if δD(r1) 6= 0 or ̺D(r2) 6= 0 holds, there exists no feasible solution sin
e Dis a
y
li
.De�ne a bipartite graph GD = (X,Y ;E) with two node sets X and Y and an edge set E between
X and Y as follows.(i) Node set X is given by X = {x(a) | a ∈ A}, where |X| = |A|.(ii) Node set Y 
onsists of two disjoint sets Y + and Y − given by Y + = {y+(v) | v ∈ V \ {r1}} and

Y − = {y−(v) | v ∈ V \ {r2}}.(iii) For ea
h a ∈ A, we have two edges in E: one 
onne
ts x(a) and y+(t(a)) and the other 
onne
ts
x(a) and y−(h(a)). That is, E = {(x(a), y+(t(a))) | a ∈ A} ∪ {(x(a), y−(h(a))) | a ∈ A}.For example, for a dire
ted graph D in Figure 2.3 (a) the bipartite graph GD be
omes the one asillustrated in Figure 2.3 (b).Here we introdu
e notations to be used in the subsequent arguments (see Figure 2.4). For ea
h

e ∈ E, let ∂X(e) (resp. ∂Y (e)) be the endpoint of e belonging to X (resp. Y ). For ea
h e ∈ E, we denoteby p(e) the edge e′ ∈ E with e 6= e′ and ∂X(e) = ∂X(e′). Noti
e that sin
e dGD
(x) = 2 holds for ea
h

x ∈ X by the de�nition of GD, p(e) is uniquely determined for ea
h e ∈ E.Now we are ready to show the equivalen
e between our problem for D and the problem of �nding amat
hing in GD whi
h 
overs all nodes of Y .
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r1 r2r

e1

e2 e4

e3 e5(a)
y−(r1) y+(r2)y+(v)y−(v)

x(e1) x(e2) x(e4)x(e3) x(e5)(b)Figure 2.3: (a) An input dire
ted graph D. (b) The bipartite graph GD asso
iated with D.
∂X(e)

∂Y (e)

e p(e)

Figure 2.4: An illustration of notations.Lemma 2.3.2. Given a dire
ted a
y
li
 graph D = (V,A) with roots r1, r2 ∈ V , there exists a pairof ar
-disjoint spanning r1-in-arbores
en
e F1 and r2-out-arbores
en
e F2 if and only if there exists amat
hing M in GD = (X,Y ;E) whi
h 
overs all nodes of Y . Furthermore, we 
an 
onstru
t a pair ofsu
h F1 and F2 from a mat
hing M in O(|A|) time.Proof. Sin
e it is not di�
ult to see the `only if' part of the lemma, we show the `if' part. Let M bea mat
hing in GD whi
h 
overs all nodes of Y . Let A+ (resp. A−) be the set of ar
s a ∈ A su
h that
x(a) is 
onne
ted with some node of Y + (resp. Y −) by an edge of M . Let T1 (resp. T2) be the subgraph
(V,A+) (resp. (V,A−)) of D. Sin
e M 
overs all nodes of Y , |δT1(v)| = 1 (resp. |̺T2(v)| = 1) holds forea
h v ∈ V \{r1} (resp. V \{r2}). Thus, sin
e D is a
y
li
, T1 and T2 are a spanning r1-in-arbores
en
eand a spanning r2-out-arbores
en
e, respe
tively. Furthermore, sin
e M is a mat
hing, A+ and A− aredisjoint, whi
h implies T1 and T2 are ar
-disjoint. This 
ompletes the proof of the `if' part.The latter half of the lemma immediately follows from the proof of the `if' part.By Lemma 2.3.2, we 
an dis
ern the existen
e of a pair of ar
-disjoint spanning r1-in-arbores
en
eand r2-out-arbores
en
e, and �nd su
h arbores
en
es if they exist, by 
omputing a maximum mat
hingof GD. Hen
e, we 
an solve our problem in polynomial time by using bipartite-mat
hing algorithms su
has in [69℄. However, we show in the subsequent se
tion that we 
an dis
ern the existen
e of a mat
hingof GD whi
h 
overs all nodes of Y and �nd su
h a mat
hing if one exists, in O(|A|) time.2.3.2 A linear time algorithmOur goal is to show the following theorem, whi
h implies Theorem 2.3.1 by Lemma 2.3.2.Theorem 2.3.3. Given a dire
ted a
y
li
 graph D = (V,A) with roots r1, r2 ∈ V , we 
an dis
ern theexisten
e of a mat
hing in GD = (X,Y ;E) whi
h 
overs all nodes of Y and �nd su
h a mat
hing if oneexists, in O(|A|) time.
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en
es 27In the subsequent arguments, we assume without loss of generality that dGD
(y) ≥ 1 holds for every

y ∈ Y sin
e if there exists a node y ∈ Y with dGD
(y) = 0, there exists no solution. We divide the proofinto two parts 
orresponding to the following two 
ases.Case 1 : For every y ∈ Y , dGD

(y) ≥ 2 holds.Case 2 : There exists y ∈ Y with dGD
(y) = 1.We �rst show that in Case 1, there always exists a mat
hing in GD whi
h 
overs all nodes of Y ,and we 
an �nd su
h a mat
hing in O(|A|) time. Then, we show that in Case 2, we 
an dis
ern theexisten
e of a mat
hing in GD whi
h 
overs all nodes of Y , and redu
e the problem to Case 1 if anysu
h mat
hing exists, in O(|A|) time.Case 1We prove the following lemma for Case 1.Lemma 2.3.4. Given a dire
ted a
y
li
 graph D = (V,A) with roots r1, r2 ∈ V , if dGD

(y) ≥ 2 holdsfor every y ∈ Y , there always exists a mat
hing in GD = (X,Y ;E) whi
h 
overs all nodes of Y , and we
an �nd one su
h mat
hing in O(|A|) time.Proof. Let ĜD = (X ∪ {s}, Y ; Ê) be the bipartite graph obtained from GD by adding a new node sand 
onne
ting edges between s and ea
h odd-degree node y ∈ Y (see Figure 2.5 (a)). It is easy to seethat |Ê| ≤ |E|+ |Y | = |E|+ 2(|V | − 1). Furthermore, sin
e dGD
(x) = 2 holds for every x ∈ X, we have

|E| = 2|X| = 2|A|. Hen
e, |Ê| = O(|A|) holds, and our goal is to �nd a desired mat
hing in O(|Ê|)time.Sin
e the sum of the degrees of all nodes x ∈ X is even, the degree of s in ĜD is even. This impliesthat ĜD is an Eulerian graph. Hen
e, ĜD 
onsists of several edge-disjoint 
y
les (see Figure 2.5 (b)),whi
h 
an be 
omputed in O(|Ê|) time by using an algorithm for �nding Eulerian walk (for a standardalgorithm, see [96℄). Let M̂ be the set of edges of ĜD obtained from all the 
y
les by 
hoosing everyother edges along the 
y
les (see Figure 2.5 (b)). Then every node v of ĜD has 1
2dĜD

(v) edges in M̂that are in
ident to v. It should be noted that for ea
h odd degree node v in GD we have d
ĜD

(v) ≥ 4,so that su
h a node v is in
ident to at least two edges in M̂ . Hen
e, letting M = M̂ ∩E, M satis�es thefollowing 
onditions. (Note that M is obtained by removing from M̂ the edges in
ident to s in ĜD.)A1. M 
overs all nodes of Y .A2. Ea
h x ∈ X is 
overed by exa
tly one edge in M .By Conditions A1. and A2., we 
an obtain a mat
hing in GD whi
h 
overs all nodes of Y by appropriatelyremoving edges from M . This 
ompletes the proof.Case 2We show that in Case 2 we 
an dis
ern the existen
e of a feasible solution of our problem and redu
ethe problem to Case 1 if one exists, in O(|A|) time. This will 
omplete the proof of Theorem 2.3.3.The following lemma asserts that we 
an redu
e Case 2 to Case 1 by greedily removing nodes withdegree one.
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y−(r1) y+(r2)y+(v)y−(v)

x(e1) x(e2) x(e4)x(e3) x(e5)s (a) y−(r1)y+(r2) y+(v)y−(v)

x(e1)

x(e2)x(e4)

x(e3)x(e5)

s

(b)Figure 2.5: (a) A bipartite graph ĜD obtained from GD in Figure 2.3 (b). (b) Cy
les C1, C2 and C3 in
ĜD. The set of dotted lines represents M̂ .

∂X(ē)

ȳ

ē p(ē)

Figure 2.6: Bla
k nodes and dotted edges are removed from GD.Lemma 2.3.5. Suppose that we are given a dire
ted a
y
li
 graph D = (V,A) with roots r1, r2 ∈ V , anda node ȳ ∈ Y with dGD
(ȳ) = 1, denoting by ē ∈ E the single edge in
ident to ȳ. Let ḠD = (X̄, Ȳ ; Ē)be the bipartite graph obtained from GD = (X,Y ;E) by removing nodes ȳ and ∂X(ē) and edges ē and

p(ē) (see Figure 2.6). Then, there exists a mat
hing M in GD whi
h 
overs all nodes of Y if and onlyif there exists a mat
hing M̄ in ḠD whi
h 
overs all nodes of Ȳ .Proof. We �rst prove the `if' part. Assume that there exists a mat
hing M̄ in ḠD whi
h 
overs all nodesof Ȳ . Then, we 
an 
onstru
t a mat
hing M in GD whi
h 
overs all nodes of Y by adding ē to M̄ .Next we prove the `only if' part. Assume that there exists a mat
hing M in GD whi
h 
overs allnodes of Y . Sin
e dGD
(ȳ) = 1, ē must be in
luded in M , and p(ē) is not in
luded in M . Hen
e, we 
an
onstru
t a mat
hing M̄ in ḠD whi
h 
overs all nodes of Ȳ by removing ē from M .By Lemma 2.3.5, we 
an des
ribe the pro
edure in whi
h we 
an dis
ern the existen
e of a feasiblesolution of our problem, and redu
e the problem to Case 1 if one exists, in O(|A|) time as in Pro
edure 1.Pro
edure 1 Pro
essing degree one nodes1: Compute dGD

(y) for all y ∈ Y , and set Q = {y ∈ Y | dGD
(y) = 1} and M0 = ∅.2: while Q 6= ∅ do3: Choose ȳ ∈ Q. We denote by ē the single edge in
ident to ȳ. Put M0 ← M0 ∪ {ē} and remove ȳfrom Q. Then, we remove nodes ȳ and ∂X(ē), and edges ē and p(ē) from GD. Furthermore, if thedegree of ∂Y (p(ē)) in the updated GD is equal to one, we add ∂Y (p(ē)) to Q; if it is equal to zero,we remove ∂Y (p(ē)) from Q.4: end while5: return GD and M0.It should be noted that sin
e Q 
ontains all nodes y ∈ Y with dGD

(y) = 1 in ea
h iteration of Step 3,
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es 29the pro
edure is 
orre
t. Furthermore, we 
an easily see the following lemma, due to Lemma 2.3.5.Lemma 2.3.6. Given a dire
ted a
y
li
 graph D = (V,A) with roots r1, r2 ∈ V , Pro
edure 1 alwaysterminates in O(|A|) time. Suppose that Pro
edure 1 returns a bipartite graph G′
D = (X ′, Y ′;E′) and amat
hing M0. Then, we have dG′

D
(x) = 2 for every x ∈ X ′ and dG′

D
(y) 6= 1 for every y ∈ Y ′. If thereexists a node y in G′

D su
h that dG′
D
(y) = 0, then there does not exist a pair of ar
-disjoint spanning r1-in-arbores
en
e and r2-out-arbores
en
e. Otherwise we 
an 
onstru
t a mat
hing M in GD whi
h 
oversall nodes of Y , from a mat
hing M ′ in G′

D whi
h 
overs all nodes of Y ′, by putting M ←M ′ ∪M0.A full des
ription of our algorithmWe are now ready to des
ribe a linear time algorithm for our problem.1. If there exists y ∈ Y with dGD
(y) = 1, apply Pro
edure 1 and let G′

D and M0 be the output ofPro
edure 1. If there exists a node whose degree is equal to zero in G′
D, return NULL (there existsno feasible solution). Otherwise, put GD ← G′

D and go to Step 2.2. Find a mat
hing M in GD 
overing all nodes of Y as des
ribed in the proof of Lemma 2.3.4, andput M ←M ∪M0.3. Using the mat
hing M in GD, 
ompute a pair of ar
-disjoint spanning r1-in-arbores
en
e F1 and
r2-out-arbores
en
e F2 and return F1 and F2.It follows from Lemmas 2.3.4 and 2.3.6 that the above algorithm 
an �nd a mat
hing in GD whi
h
overs all nodes of Y if one exists in O(|A|) time. This 
ompletes the proof of Theorem 2.3.3.2.3.3 An extension to multiple rootsNow we 
onsider the 
ase where we have multiple roots for in-arbores
en
es and out-arbores
en
es,respe
tively. Suppose that we are given a dire
ted a
y
li
 graph D = (V,A), two disjoint �nite indexsets I1 and I2, and a root ri ∈ V for ea
h i ∈ I1 ∪ I2, where we allow ri = rj for distin
t i, j. We assumewithout loss of generality that δD(ri) = 0 (resp. ̺D(ri) = 0) holds for ea
h i ∈ I1 (resp. i ∈ I2). Let R1(resp. R2) be the set {ri | i ∈ I1} (resp. {ri | i ∈ I2}). Then we 
onsider the problem of dis
erning theexisten
e of a set of ar
-disjoint ri-in-arbores
en
es Fi (i ∈ I1) and ri-out-arbores
en
es Fi (i ∈ I2) su
hthat for ea
h i ∈ I1 (resp. i ∈ I2) the node set of Fi is (V \R1) ∪ {ri} (resp. (V \R2) ∪ {ri}).In the same manner as in Se
tion 2.3.1, we 
an see that there exist desired arbores
en
es if and onlyif there exists a mat
hing whi
h 
overs all nodes of Y in a bipartite graph GD = (X,Y ;E) de�ned asfollows.(i′) Node set |X| is given by X = {x(a) | a ∈ A}, where |X| = |A|.(ii′) Node set Y 
onsists of disjoint sets Y +

i (i ∈ I1) and Y −
i (i ∈ I2). For ea
h i ∈ I1 (resp. i ∈ I2) ,

Y +
i (resp. Y −

i ) is given by {y+i (v) | v ∈ V \R1} (reps., {y−i (v) | v ∈ V \R2}).(iii′) The edge set E 
onsists of two sets E+ and E−. For ea
h a ∈ A with h(a) /∈ R1 (resp. t(a) /∈ R2)and i ∈ I1 (resp. i ∈ I2), we 
onne
t x(a) and y+i (t(a)) (resp. y−i (h(a))) by an edge in E+ (resp.
E−). For ea
h a ∈ A with h(a) ∈ R1 (resp. t(a) ∈ R2), we 
onne
t x(a) and y+i (t(a)) (resp.
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y−i (h(a))) for i ∈ I1 with h(a) = ri (resp. i ∈ I2 with t(a) = ri). The edge sets E+ and E− 
ontainno other edge.We 
an dis
ern the existen
e of desired arbores
en
es and �nd them if they exist, by 
omputing amaximum mat
hing in GD. However, noti
e that dGD

(x) ≥ 3 may hold for ea
h x ∈ X, whi
h isdi�erent from the 
ase of the problem of �nding a pair of an in-arbores
en
e and an out-arbores
en
e. Itis left open whether we 
an �nd desired arbores
en
es more e�
iently than by using existing bipartitemat
hing algorithms.2.3.4 Thomassen's 
onje
tureAs we have already mentioned, the problem of �nding disjoint in- and out-arbores
en
es for a givenroot node is NP -
omplete. The following 
onje
ture was proposed by Thomassen [123℄. Re
all that adigraph D is k-edge-
onne
ted if κ(u, v) ≥ k for ea
h u, v ∈ V .Conje
ture 2.3.7 (Thomassen). There exists a value k so that in every k-edge-
onne
ted dire
ted graph
D = (V,A) and for every node v ∈ V , there are disjoint spanning in- and out-arbores
en
es rooted at v.It is known that Conje
ture 2.3.7 is not true for k = 2, but it is still open for k = 3. Assume that
D = (V,A′) is a dire
ted graph and r ∈ V is a designated root-node for whi
h D − r is a
y
li
. Thenthe existen
e of disjoint spanning in- and out-arbores
en
es rooted at r 
an be de
ided easily with aslight modi�
ation of the bipartite graph de�ned in 2.3.1.De�ne a bipartite graph G = (V + ∪ V −, A;E) where V + and V − are two 
opies of V − r, ea
hnode in A 
orresponds to an ar
 of D and E 
ontains the edges av+ and au− for ea
h uv = a ∈ A′ (if
u, v 6= r, in other 
ase one of the edges is missing from E). Sin
e D − r is a
y
li
, a mat
hing 
overing
V + ∪ V − 
orresponds to a pair of disjoint spanning in- and out-arbores
en
es, hen
e Hall's theoremgives a ne
essary and su�
ient 
ondition. However, as ea
h node in A has degree at most 2, it is easyto see that -for example- ̺(v), δ(v) ≥ 2 ∀v ∈ V − r ensures the existen
e of su
h arbores
en
es in thisvery spe
ial 
ase.Hen
e a natural idea would be the following. Leave out edges from a highly-edge-
onne
ted dire
tedgraph in su
h a way that the resulting graph 
ontains a node 
overing ea
h dire
ted 
y
le and everyother node has in- and out-degree at least 2. Then the above would imply the existen
e of disjoint in-and out-arbores
en
es rooted at r. Unfortunately this approa
h does not work in general. Take the samedire
ted 
y
le v1, . . . , v2k k times, do the same with another dire
ted 
y
le w1, . . . , w2k and �nally addthe edges v2i−1w2i−1, w2iv2i for i = 1, . . . , k. The resulting digraph is 
learly k-edge-
onne
ted. In orderto make ea
h dire
ted 
y
le going through the same node we have to 
ompletely 
ut through at least oneof the 
y
les by leaving out edges. Then in this 
y
le a node with in- or out-degree at most 1 
ertainlyappears.2.4 Covering by arbores
en
esWhen 
an a digraph D = (V,A) be 
overed by k spanning arbores
en
es of root r? For any subset
X of nodes, let Γ−(X) = {v ∈ X: there is an edge uv ∈ A for whi
h u ∈ V \X} and 
all this set the
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es 31entran
e of X. That is, the entran
e 
onsists of the head nodes of edges entering X. The followingresult of [131℄ may be 
onsidered as a 
overing 
ounterpart of Edmonds' disjoint arbores
en
es theorem.Theorem 2.4.1 (Vidyasankar). Let r be a root node of a digraph D = (V,A) so that no edge enters r.It is possible to 
over the edge set of D by k r-arbores
en
es if and only if
̺(v) ≤ k for every v ∈ V − r (2.7)and

k − ̺(X) ≤
∑

[k − ̺(v) : v ∈ Γ−(X)] (2.8)for every ∅ ⊂ X ⊆ V − r, where Γ−(X) is the entran
e of X.Theorem 2.4.1 
an be proved by using Edmonds' weak theorem. One may be interested in a similar
overing 
ounterpart of Theorems 1.1.5 and 1.1.6 as well. The following theorem from [10℄ shows thatsu
h a generalization of Theorem 2.4.1 is indeed valid.Theorem 2.4.2. Let D = (V,A) be a digraph and {r1, . . . , rk} = R ⊆ V be a set of (not ne
essarydistin
t) root-nodes. Let Ui ⊆ V be 
onvex sets with ri ∈ Ui. The edge set A 
an be 
overed by ri-arbores
en
es Fi not leaving Ui if and only if
̺(v) ≤ p1(v) for ea
h v ∈ V (2.9)and

p1(X)− ̺(X) ≤
∑

[p1(v)− ̺(v) : v ∈ Γ−(X)] (2.10)for every ∅ ⊂ X ⊆ V , where Γ−(X) denotes the entran
e of X and p1(X) denotes the number of sets
Ui's for whi
h Ui ∩X 6= ∅ and ri 6∈ X.Proof. First we prove ne
essity. Suppose that there are k proper arbores
en
es 
overing A. We maysuppose that Fi spans Ui for ea
h i ∈ {1, . . . , k}. Sin
e an arbores
en
e Fi 
ontains no edge entering v if
v = ri or v /∈ Ui, and one edge entering v if v 6= ri and v ∈ Ui, the ne
essity of (2.9) follows immediately.Ne
essity of (2.10) 
an be seen as follows. For ea
h e ∈ A let z(e) denote the number of arbores
en
es
overing e minus 1. Then z ≥ 0, moreover ̺z(X)+̺(X) ≥ p1(X) for ea
h ∅ ⊂ X ⊆ V and ̺z(v)+̺(v) =

p1(v) for ea
h v ∈ V . Sin
e ea
h edge entering X has its head in Γ−(X), we have ̺z(X) ≤
∑

[̺z(v) :

v ∈ Γ−(X)] and these imply
p1(X)− ̺(X) ≤ ̺z(X) ≤

∑

[̺z(v) : v ∈ Γ−(X)] =
∑

[p1(v)− ̺(v) : v ∈ Γ−(X)].Now we turn to su�
ien
y. For every node v ∈ V , give a 
opy of v to D denoted by v′. For a subset
X of V let X ′ be the 
opy of X. Add p1(v) parallel edges from v to v′, p1(v)− ̺(v) parallel edges from
v′ to v, and �nally p1(v) parallel edges from u to v′ for every edge uv ∈ A. Let D′ denote the dire
tedgraph thus arising.If there exist F ′

1, . . . , F
′
k disjoint arbores
en
es in D′ su
h that F ′

i is rooted at ri and F ′
i is spanning

Ui ∪ U ′
i (where U ′

i denotes the 
opy of Ui), then these determine k proper arbores
en
es of D 
overing
A. It is easy to see that for every 
onvex set X ⊆ V in D the union X ∪X ′ ⊆ V ∪ V ′ is also 
onvex in
D′.
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en
esIn other 
ase, by Fujishige's theorem, there is a subset W of V ∪V ′ su
h that p′(W ) > ̺′(W ) where
p′(W ) = |{i ∈ {1, . . . , k} : (Ui ∪ U ′

i) ∩W 6= ∅, ri /∈ W}| and ̺′ = ̺D′ . We de�ne the following subsetsof W : X = {v ∈ V : v ∈W}, Y = {v ∈ V : v′ /∈W}, and Z = {v′ ∈W : v /∈W}. We have
p′(W ) ≤ p1(X) +

∑

[p1(v) : v′ ∈ Z].On the other hand
̺D′(W ) ≥ ̺(X) +

∑

[p1(v)− ̺(v) : v ∈ Y ] +
∑

[p1(v) : v ∈ Γ−(X)− Y ] +
∑

[p1(v) : v′ ∈ Z].The explanation of the se
ond sum is that if v ∈ Γ−(X) − Y , then v′ ∈ W also holds. Moreover, thereexists, sin
e v is in the entran
e, u /∈W su
h that uv ∈ A, hen
e there are p1(v) ar
s from u to v′.From these inequalities we get
p1(X) > ̺(X) +

∑

[p1(v) − ̺(v) : v ∈ Y ] +
∑

[p1(v) : v ∈ Γ−(X) − Y ]

≥ ̺(X) +
∑

[p1(v) − ̺(v) : v ∈ Γ−(X)],
ontradi
ting 
ondition (2.10).As we have seen, most of the theorems about pa
king arbores
en
es admit a 
overing 
ounterpart. Itwould be natural to �nd su
h an extension 
orresponding to Theorem 1.1.8. A set {F1, . . . , F|S|} of -notne
essarily edge-disjoint- arbores
en
es is 
alled a 
apa
itated maximal M-independent pa
kingof arbores
en
es if Fi has root π(si) for i = 1, . . . , |S|, the set {sj ∈ S : v ∈ V (Fj)} is independentinM and |{sj ∈ S : v ∈ V (Fj)}| = rM(SP (v)). We propose the following 
onje
ture.Conje
ture 2.4.3. Let (D,S, π) be a digraph with roots and M be a matroid on S with rank fun
-tion rM. It is possible to 
over the edge set of D by a 
apa
itated maximal M-independent pa
king ofarbores
en
es if and only if
̺(v) ≤ rM(SP (v))− rM(Sv) for every v ∈ V (2.11)and

rM(SP (X))− rM(SX)− ̺(X) ≤
∑

[rM(SP (v))− rM(Sv)− ̺(v) : v ∈ Γ−(X)]for every ∅ ⊂ X ⊆ V , where Γ−(X) is the entran
e of X.We only prove ne
essity.Proof of ne
essity. Suppose that there exists a proper 
overing. Clearly, at most rM(SP (v)) − rM(Sv)arbores
en
es not rooted at v 
ontain v, hen
e (2.11) follows.Ne
essity of (2.12) 
an be seen as follows. For ea
h e ∈ A let z(e) denote the number of arbores
en
es
overing e minus 1. Clearly, z ≥ 0. As there exists a 
apa
itated maximal M-independent pa
king ofarbores
en
es, we have ̺z(X) + ̺(X) ≥ rM(SP (X))− rM(SX) for ea
h ∅ ⊂ X ⊆ V by Theorem 1.1.8.



2.4. Covering by arbores
en
es 33Moreover, ̺z(v) + ̺(v) = rM(SP (v))− rM(Sv) for ea
h v ∈ V by the maximality of the pa
king. Sin
eea
h edge entering X has its head in Γ−(X), we have ̺z(X) ≤
∑

[̺z(v) : v ∈ Γ−(X)] and these imply
rM(SP (X))− rM(SX)− ̺(X) ≤ ̺z(X)

≤
∑

[̺z(v) : v ∈ Γ−(X)]

=
∑

[rM(SP (v))− rM(Sv)− ̺(v) : v ∈ Γ−(X)].
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en
es



Chapter 3Covering interse
ting bi-set families
3.1 Proof of Theorem 1.1.6We start this se
tion by proving Fujishige's theorem (Theorem 1.1.6) based on Theorem 1.2.4.Proof of Theorem 1.1.6. If the node set of an arbores
en
e F of root ri interse
ts a subset Z ⊆ V − ri,then F 
ontains an element entering Z. Therefore if the k edge-disjoint arbores
en
es exist, then Zadmits as many entering edges as the number of sets Ui for whi
h Z ∩ Ui 6= ∅ and ri 6∈ Z, that is, (1.4)is indeed ne
essary.Now we prove su�
ien
y. For brevity, we 
all a strongly 
onne
ted 
omponent of D an atom. It isknown that the atoms form a partition of the node set of D and that there is a so-
alled topologi
alordering of the atoms so that there is no edge from a later atom to an earlier one. By a subatom wemean a subset of an atom. Clearly, a subset X ⊆ V is a subatom if and only if any two elements of Xare rea
hable in D from ea
h other. The following observation is obvious from the de�nitions.Proposition 3.1.1. If a subatom X interse
ts a 
onvex set U , then X ⊆ U .De�ne k bi-set families Fi for i = 1, . . . , k as follows. Let

Fi := {(XO,XI) : XO ⊆ V − ri, XI = XO ∩ Ui 6= ∅, XI is a subatom}. (3.1)For ea
h bi-set X, let p2(X) denote the number of Fi's 
ontaining X. It follows immediately that Fi isan interse
ting bi-set family.Proposition 3.1.2. The bi-set families Fi satisfy the mixed interse
ting property.Proof. Let X = (XO,XI) and Y = (YO, YI) be members of Fi and Fj , respe
tively, and suppose that Xand Y are interse
ting, that is, XI ∩YI 6= ∅. By Proposition 3.1.1, we have that XI = XO ∩Ui ⊆ Ui∩Ujand YI = YO ∩ Uj ⊆ Ui ∩ Uj . This implies for sets ZO := XO ∩ YO and ZI := XI ∩ YI that ZO ∩ Ui =

XO∩Ui∩YO = XO∩Ui∩YO∩Uj = ZI and also ZO∩Uj = XO∩YO∩Uj = XO∩Ui∩YO∩Uj = ZI fromwhi
h ZI ⊆ Ui ∩Uj and (ZO −ZI)∩ (Ui ∪Uj) = ∅. Hen
e X ∩ Y = (ZO, ZI) ∈ Fi ∩Fj , as required.Proposition 3.1.3. ̺(X) ≥ p2(X) for ea
h bi-set X.Proof. Let q := p2(X) and suppose that X belongs to F1,F2, . . . ,Fq . Let V ′ := V − (U1 ∪ . . .∪Uq) and
Z := XI ∪ {v ∈ V ′ : XI is rea
hable from v}.Let e = uv be an edge of D entering the set Z. Then u 
annot be in V ′−Z for otherwise XI wouldbe rea
hable from u and then u should belong to Z. Therefore u is in (U1 ∪ . . . ∪ Uq) − Z. Let Ui be35



36 3. Covering interse
ting bi-set familiesone of the sets U1, . . . , Uq 
ontaining u. We 
laim that the head v of e must be in XI . For otherwise weare in a 
ontradi
tion with the hypothesis that Ui is 
onvex sin
e v is rea
hable from Ui (along the edge
uv) and Ui is also rea
hable from v sin
e XI ⊆ Ui is rea
hable from v.It follows that the edge e entering the set Z also enters the bi-set X = (XO,XI). Therefore ̺(X) ≥
̺(Z). By (1.4), we have ̺(Z) ≥ p1(Z). It follows from the de�nition of Z that p1(Z) ≥ q = p2(X), andhen
e ̺(X) ≥ p2(X)Therefore Theorem 1.2.4 applies and hen
e the edges of D 
an be partitioned into subsets A1, . . . , Akso that Ai 
overs Fi for i = 1, . . . , k.Proposition 3.1.4. Ea
h Ai in
ludes an ri-arbores
en
e Fi whi
h spans Ui.Proof. If the requested arbores
en
e does not exist for some i, then there is a non-empty subset Z of
Ui− ri so that Ai 
ontains no edge from Ui−Z to Z. Consider a topologi
al ordering of the atoms andlet Q be the earliest one interse
ting Z. Sin
e no edge leaving a later atom 
an enter Q, no edge withtail in Z enters Q.Let XO := (V −Ui)∪(Z∩Q) and XI := XO∩Ui. Then XI = Z∩Q is a subatom and X = (XO,XI)belongs to Fi. Therefore there is an edge e = uv in Ai whi
h enters X. It follows that v ∈ XI ⊆ Z andthat u ∈ Ui−XI . Sin
e u is not in Z and not in V −Ui, it must be in Ui−Z, that is, e is an edge from
Ui − Z to XI ⊆ Z, 
ontradi
ting the assumption that no su
h edge exists.

It is worth mentioning that Theorem 1.2.4 has an equivalent form that uses T -interse
ting familiesinstead of bi-sets [9℄. For a subset T of V , we 
all the set families F1, . . . ,Fk T -interse
ting if
X,Y ∈ Fi, X ∩ Y ∩ T 6= ∅ ⇒ X ∩ Y,X ∪ Y ∈ Fi.We say that F1, . . . ,Fk satisfy the mixed T -interse
tion property if

X ∈ Fi, Y ∈ Fj, X ∩ Y ∩ T 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj.Then the equivalent form is as follows.Theorem 3.1.5. Let D = (V,A) be a digraph and T a subset of V that 
ontains the head of every edgeof D. Let F1, . . . ,Fk be T -interse
ting families also satisfying the mixed T -interse
tion property. Then
A 
an be partitioned into subsets A1, . . . , Ak so that Ai 
overs Fi if and only if ̺(X) ≥ p(X) for ea
hnon-empty subset X of V where p(X) denotes the number of Fi's 
ontaining X.
3.2 The 
apa
itated 
aseFujishige's theorem 
an also be reformulated in terms of root-sets and bran
hings.



3.2. The 
apa
itated 
ase 37Theorem 3.2.1. Let D = (V,A) be a dire
ted graph and let R = {R1, . . . , Rk} be a list of k (possiblynot distin
t) root-sets. Let Ui ⊆ V be 
onvex sets with Ri ⊆ Ui. There are edge-disjoint Ri-bran
hings
Bi spanning Ui for i = 1, . . . , k if and only if

̺D(Z) ≥ p1(Z) for every subset Z ⊆ V (3.2)where p1(Z) denotes the number of sets Ui's for whi
h Ui ∩ Z 6= ∅ and Ri ∩ Z = ∅.In [114℄ (pp. 920�921), S
hrijver presented a strongly polynomial time algorithm to �nd maximumnumber of r-arbores
en
es under 
apa
ity restri
tions. By following his approa
h, one 
an �nd disjointbran
hings satisfying the 
onditions of Theorem 3.2.1 in strongly polynomial time even in the moregeneral 
ase when a demand fun
tion is given on the set of root-sets. The approa
h of [114℄ does notwork dire
tly as it strongly relies on the supermodularity of the set fun
tion p(Z) =
∑

[m(Ri) : Ri ∈
R, Ri ∩ Z = ∅]. It is easy to see that p1 is no more supermodular (for that very reason the originalproof of Theorem 3.2.1 was far more 
ompli
ated than the one Lovász gave to Edmonds' theorem).Theorem 3.2.2. Let D = (V,A) be a digraph, g : A→ Z+ a 
apa
ity fun
tion, R = {R1, . . . , Rk} a listof root-sets, U = {U1, . . . , Uk} a set of 
onvex sets with Ri ⊆ Ui and m : R → Z+ a demand fun
tion.There is a strongly polynomial time algorithm that �nds (if there exist) m(R) disjoint bran
hings sothat m(Ri) of them are spanning Ui with root-set Ri and ea
h edge e ∈ A is 
ontained in at most g(e)bran
hings.Proof. De�ne the bi-set fun
tion

p2(X) =

{

∑

[m(Ri) : Ri ∈ R, XI ∩Ri = ∅, XI = XO ∩ Ui] if XI 6= ∅ is a subatom,
0 otherwise.By repla
ing every ar
 a by g(a) parallel ar
s, it follows from the proof of Theorem 1.1.6 using bi-setsthat (3.2) is equivalent to requiring that

̺g(X) ≥ p2(X) for every bi-set X ∈ P2. (3.3)The algorithm gradually in
reases the set of triples (Ri, Ui,m(Ri)) during the algorithm, that is,new root sets may appear and we always assign one of the 
onvex sets to a newly appearing root-set.We may assume that g and m are stri
tly positive everywhere and (3.3) is satis�ed.We are done if Ri = Ui for ea
h triple so assume that, say, R1 ⊂ U1. Let e = uv be an ar
 with
u ∈ R1, v ∈ U1 \R1 and de�ne the following parameter.

µ = min
{

g(e), m(R1), min{̺g(Z)− p2(Z) : e enters Z, R1 ∩ ZI 6= ∅ or ZO ∩ U1 6= ZI}
}

. (3.4)Proposition 3.2.3. The value of µ 
an be determined in strongly polynomial time.Proof. Let S denote the atom 
ontaining v. Delete those ar
s of D that enter a node not in S. Note thatif e enters a bi-set Z with p2(Z) > 0 then ̺g(Z) does not 
hange during this step. Extend the graphwith a new node vRi
for ea
h root set Ri ∈ R. Add the ar
s vRi

w for ea
h Ri ∈ R and w ∈ Ui \ (S \Ri)with 
apa
ity m(Ri). Moreover, add a sour
e node s with outgoing ar
s svRi
with 
apa
ity m(Ri) for

Ri ∈ R, and �nally an ar
 su with in�nite 
apa
ity. Let D′ = (V ′, A′) and g′ denote the graph and
apa
ity fun
tion thus arising.



38 3. Covering interse
ting bi-set familiesCompute a maximum �ow in D′ from s to v and let C denote a minimum 
ut 
ontaining v. The
onstru
tion of D′ implies that e enters C and if C ∩ Ri 6= ∅ or C ∩ Ui 6= C ∩ S then vRi
∈ C may beassumed. Hen
e for the bi-set Z = (ZO, ZI) = (C,C ∩ S) we have

̺g′(Z) = ̺g(Z) +
∑

[m(Ri) : Ri ∈ R, ZI ∩Ri 6= ∅ or ZO ∩ Ui 6= ZI ].That is,
̺g′(Z) = ̺g(Z)−

∑

[m(Ri) : Ri ∈ R, ZI ∩Ri = ∅, ZO ∩ Ui = ZI ] +
∑

[m(Ri) : Ri ∈ R]

= ̺g(Z)− p2(Z) +m(R).Hen
e a minimum 
ut de�nes a bi-set Z su
h that e enters Z and ̺g(Z)− p2(Z) is minimal. To ensure
R1 ∩ ZI 6= ∅ or ZO ∩ U1 6= ZI , we 
an run the maximum �ow algorithm for ea
h 
ase when v is shrunktogether with a node in Ui \ (S \ Ri). The minimum of these values gives the minimum appearing in(3.4).By Theorem 3.2.1, there is an ar
 e for whi
h µ is stri
tly positive. Delete (R1, U1,m(R1)) from theset of triples, and add the triple (R1, U1,m(R1) − µ) instead if m(R1) − µ > 0. Moreover, delete thetriple (R1 + v, U1,m(R1 + v)) if exists and add the triple (R1 + v, U1,m(R1 + v) + µ) instead. Finally,revise g(e) by g(e) − µ. Due to the de�nition of µ, the revised problem also meets (3.3) and we 
anapply the basi
 step re
ursively.Now we turn to the running time. First we 
onsider phases when the minimum in (3.4) is taken on
g(e) or m(R1). If the minimum is taken on g(e) for some ar
 e, then the number of ar
s with positive
apa
ity de
reases whi
h may happen at most |A| times. Note that the set of (Ri, Ui,m(Ri)) triples mayin
rease only in these phases. Otherwise, the minimum is taken on m(R1) meaning that (R1, U1,m(R1))gets out from the set of observed triples. The size of ea
h root-set in
reases at most |V | times and theset of triples may in
rease, a

ording to the above, at most |A| times, hen
e the total number of phasesis bounded by (k + |A|)|V |.It only remains to take into a

ount those phases when the minimum is taken on min{̺g(W ) −
p1(W ) : e enters W, R1 ∩W 6= ∅}. The advantage of using bi-sets is that p2 is positively interse
tingsupermodular on P2 (this 
an be seen similarly to Lemma 1.2.5). The 
olle
tion C = {X ∈ P2 : ̺g(X) =

p2(X) > 0} of tight bi-sets in
reases in the 
onsidered phases (̺g(X) > 0 may be assumed, otherwisethe minimum in (3.4) is also taken on g(e) and su
h phases are already 
ounted).Let CO(a) = {XO : X ∈ C, a enters X} for an arbitrary a ∈ A. However, |CO(a)| = |{X ∈ C :

a enters X}| holds for ea
h a. Indeed, for an arbitrary set ZO 
ontaining v, there is at most one set
ZI su
h that v ∈ ZI and p2((ZO, ZI)) > 0. Namely, ZI must be a subatom and it must arise as theinterse
tion of ZO and the atom 
ontaining v. Hen
e for ea
h ZO ∈ CO(a) the 
orresponding inner set
ZI is uniquely determined. This implies that if a bi-set X be
omes tight during the revision step then
XO 6∈ CO(a) before the revision step as otherwise X ∈ C, a 
ontradi
tion.The above immediately implies that if C in
reases then also CO(a) in
reases for some a ∈ A. If anedge a enters both X,Y ∈ C, then ̺g(X ∩ Y ) > 0 and ̺g(X ∪ Y ) > 0. The submodularity of ̺g andpositively interse
ting supermodularity of p2 implies that CO(a) is a latti
e family. As a latti
e family
L is uniquely determined by the preorder de�ned as

s � t ⇔ ea
h set in L 
ontaining t also 
ontains s,



3.3. Polyhedral des
ription 39if L in
reases then � de
reases, whi
h 
an happen at most |V |2 times. Hen
e CO(a) in
reases at most
|V |2 times for ea
h a ∈ A, and the number of phases is O(|A||V |2).Con
luding the above, the total number of phases is bounded by O((k+ |A|)|V |+ |A||V |2), whi
h isdominated by O(k|V |+ |A||V |2).3.3 Polyhedral des
riptionLet D = (V,A) be a digraph, R = {r1, . . . , rk} a set of root-nodes and U = {U1, . . . , Uk} a set of
onvex sets with ri ∈ Ui for ea
h i. We say that the digraph is arbores
en
e-pa
kable (with respe
tto U) if there are k disjoint arbores
en
es F1, . . . , Fk so that Fi is an ri-arbores
en
es spanning Ui. Ournext goal is to des
ribe the 
onvex hull of the in
iden
e ve
tors of arbores
en
e-pa
kable subgraphs of
D. We may suppose that the root nodes r1, . . . , rk are distin
t, ea
h having exa
tly one leaving edgeand no entering ones. Let R = {r1, . . . , rk} and T = V \R, so Ui ∩R = {ri} for ea
h ri ∈ R. For everynon-empty subset Z of T , let p1(Z) denote the number of roots ri for whi
h Z ∩ Ui 6= ∅. In parti
ular,for every v ∈ T , p1(v) is the number of roots ri for whi
h v ∈ Ui.Theorem 1.1.6 
an be reformulated as follows.Theorem 3.3.1. Let D = (V,A) be a digraph in whi
h R is a set of k root-nodes so that the out-degreeand the in-degree of ea
h root-node is one and zero, respe
tively. Let T = V \ R and for ea
h root-node ri let Ui be a 
onvex set for whi
h Ui ∩ R = {ri}. Then D is arbores
en
e-pa
kable if and only if
̺(Z) ≥ p1(Z) for every subset Z ⊆ T .De�ne k bi-set families Fi for i = 1, . . . , k as follows. Let

Fi := {(XO,XI) : XO ⊆ T, XI = XO ∩ Ui 6= ∅, XI is a subatom}.For ea
h bi-set X, let p2(X) denote the number of Fi's 
ontaining X. It follows immediately that Fi isan interse
ting bi-set family.Remark 3.3.2. Suppose that the out-degree of the root nodes in R may be larger than one. Let
U = {U1, . . . , Uk} be a set of 
onvex sets so that Ui ∩ R = {ri} for ea
h ri ∈ R. Furthermore, let
m : R → Z+ be a demand fun
tion on the root nodes so that m(R) = t. By Fujishige's theorem,there are t disjoint arbores
en
es so that ri is the root of mi arbores
en
es spanning Ui if and only if
̺(Z) ≥ p1(Z) for every subset Z ⊆ V where

p1(Z) =
∑

{m(ri)| ri /∈ Z, Z ∩ Ui 6= ∅}.In this 
ase the bi-set families should be de�ned as follows. Let
F j
i := {(XO,XI) : XO ∩ T 6= ∅, XI = XO ∩ Ui, ∅ 6= XI ⊆ T is a subatom},where i = 1, . . . , k and j = 1, . . . ,m(ri). It is easy to see that F j

i is an interse
ting bi-set family. However,this form follows from Theorem 3.3.1 by an easy 
onstru
tion. Sin
e the statements are simpler whenroot nodes has out-degree one, we will use this spe
ial form when formulating our result.



40 3. Covering interse
ting bi-set familiesBefore formulating our result, we prove two useful lemmas exhibiting an interrelation between setsand bi-sets.Lemma 3.3.3. For every bi-set X = (XO,XI) there is a subset Z ⊆ T for whi
h p1(Z) ≥ p2(X) and
∆in(Z) ⊆ ∆in(X).Proof. Let q := p2(X). If q = 0, then Z := ∅ will do. Suppose that q ≥ 1 andX belongs to F1,F2, . . . ,Fq .Let V ′ := V \(U1∪ . . .∪Uq). We 
laim that the set Z := XI ∪{v ∈ V ′ : XI is rea
hable from v} satis�esthe properties required by the lemma.One obviously has p1(Z) ≥ q = p2(X) sin
e Z interse
ts ea
h of U1, . . . , Uq . Consider now an edge
e = uv of D entering Z. The tail u of e 
annot be in V ′ \ Z for otherwise XI would be rea
hable from
u and then u should belong to Z. Therefore u must be in (U1 ∪ . . . ∪ Uq) \ Z. Let Ui be one of the sets
U1, . . . , Uq 
ontaining u. Then the head v of e must be in XI , for otherwise v is rea
hable from Ui (alongthe edge uv) and XI is also rea
hable from v by the de�nition of Z but this 
ontradi
ts the 
onvexityof Ui sin
e XI ⊆ Ui. Hen
e the edge e entering the set Z also enters the bi-set X = (XO,XI).Lemma 3.3.4. For every subset Z ⊆ T ,there are bi-sets X1, . . . ,Xt so that∑[p2(Xj) : j = 1, . . . , t] =

p1(Z) and {∆in(Xj) : j = 1, . . . , t} is a partition of ∆in(Z).Proof. Let CZ := {C1, . . . , Ct} denote the set of atoms of D interse
ting Z and assume that its membersare arranged in a topologi
al ordering, that is, no edge of D leaving a Cj enters a Ci for whi
h i < j.For ea
h j = 1, . . . , t, let Xj = (Xj
O,X

j
I ) where Xj

O := Z ∩ (C1 ∪ . . . ∪Cj) and Xj
I := Z ∩Cj . We 
laimthat these bi-sets Xj satisfy the properties required by the lemma.If an edge e = uv enters a bi-set Xj , then its head v is in Z ∩ Cj while its tail u must be outside

Z by the property of the topologi
al ordering, that is, e enters Z, too. This and the obvious fa
t that
{Xj

I : j = 1, . . . , t} forms a partition of Z imply {∆in(Xj) : j = 1, . . . , t} forms a partition of ∆in(Z).Let UZ := {U ∈ U : U interse
ts Z}. Note that |UZ | has been denoted by p1(Z) and re
all that anatom is either disjoint from or in
luded by a 
onvex set. For j = 1, . . . , t, let
U j
Z := {U ∈ UZ : j is the smallest subs
ript for whi
h Cj ∈ CZ and Cj ⊆ U}.Some of the U j
Z 's may be empty but the non-empty ones form a partition of UZ . For ea
h j = 1, . . . , t,one has p2(Xj) = |U j

Z | and hen
e
p1(Z) = |UZ | =

t
∑

j=1

|U j
Z | =

t
∑

j=1

p2(Xj),as required.Consider the following two polyhedra.
R1 := {x ∈ RA : 0 ≤ x, ̺x(Z) ≥ p1(Z) for every non-empty Z ⊆ T}, (3.5)

R2 := {x ∈ RA : 0 ≤ x, ̺x(X) ≥ p2(X) for everynon-trivial bi-set X = (XO,XI) with XO ⊆ T}. (3.6)Lemma 3.3.5. R1 = R2.



3.4. Further remarks 41Proof. Suppose �rst that x ∈ R1. Let X be an arbitrary bi-set for whi
h p(X) > 0. By Lemma 3.3.3there is a subset Z ⊆ T for whi
h p1(Z) ≥ p2(X) and ∆in(Z) ⊆ ∆in(X). This and the non-negativityof x imply that ̺x(X) ≥ ̺x(Z) ≥ p1(Z) ≥ p2(X) from whi
h x ∈ R2 follows.Se
ond, suppose that x ∈ R2. Let Z be an arbitrary set for whi
h p1(Z) > 0. By Lemma 3.3.4there are bi-sets X1, . . . ,Xt so that ∑[p2(Xj) : j = 1, . . . , t] = p1(Z) and {∆in(Xj) : j = 1, . . . , t} is apartition of ∆in(Z). This and the non-negativity of x imply that ̺x(Z) ≥
∑

[̺x(Xj) : j = 1, . . . , t] ≥
[p2(Xj) : j = 1, . . . , t] = p1(Z) from whi
h x ∈ R1 follows.The following result was proved in [42℄.Theorem 3.3.6 (Frank and Jordán). Let D = (V,A) be a digraph and p a positively interse
tingsupermodular bi-set fun
tion on V . Let g : A→ Z+ ∪ {∞} be a 
apa
ity fun
tion on A so that ̺g(X) ≥
p(X) for every bi-set. The following linear system for x ∈ R+ is totally dual integral (TDI):

{0 ≤ x ≤ g, ̺x(X) ≥ p(X) for every bi-set X}.From this we derive the following.Theorem 3.3.7. The linear system written for x ∈ RA

{0 ≤ x ≤ g, ̺x(Z) ≥ p1(Z) for every non-empty Z ⊆ T} (3.7)is totally dual integral (TDI). In parti
ular, the 
onvex hull of arbores
en
e-pa
kable subgraphs of D isequal to the following polyhedron:
{x ∈ RA : 0 ≤ x ≤ 1, ̺x(Z) ≥ p1(Z) for every non-empty Z ⊆ T}. (3.8)Proof. By theorem 3.3.6, the system

{0 ≤ x ≤ g, ̺x(X) ≥ p2(X) for every bi-set X} (3.9)is TDI. By Lemma 3.3.5, this and (3.7) de�ne the same polyhedron.We say that an inequality qx ≥ β is an integer 
onsequen
e of a inequality system Qx ≥ p if there isan integer ve
tor y so that yQ = q and yp = β. By elementary properties of TDI systems, it su�
es toshow that ea
h inequality from (3.9) is an integer 
ombination of inequalities of (3.7). By Lemma 3.3.3,for a bi-set X = (XO,XI), there is a subset Z ⊆ T for whi
h p1(Z) ≥ p2(X) and ∆in(Z) ⊆ ∆in(X).Therefore the inequality ̺x(X) ≥ p2(X) is indeed a integer 
onsequen
e of (3.7).A general result of Edmonds and Giles [35℄ implies that the polyhedron de�ned by (3.8) is integraland hen
e its verti
es are 0−1 ve
tors. By Theorem 3.3.1, these verti
es 
orrespond to the arbores
en
e-pa
kable subgraphs of D.3.4 Further remarksTheorem 1.2.4 gives a 
ommon generalization of Szeg®'s theorem on 
overing interse
ting set families(Theorem 1.2.3) and the theorem of Fujishige on pa
king disjoint arbores
en
es spanning 
onvex sets(Theorem 1.1.6). Unfortunately, it does not imply the result of Cs. Király (Theorem 1.1.8), hen
e itwould be interesting to formulate a generalization of 
overing bi-set families using matroids.We 
onje
ture that some -maybe rather modi�ed- variant of the following 
onje
ture holds.



42 3. Covering interse
ting bi-set familiesConje
ture 3.4.1. Let D = (V,A) be a digraph, F1, . . . ,Fk be interse
ting families of bi-sets onground set V satisfying the mixed interse
tion property, and M = ({1, . . . , k}, rM) be a matroid onground set {1, . . . , k} with rank fun
tion rM. For a bi-set X, let IX = {i : X ∈ Fi} and assume that
̺(X) ≥ rM(IX) for ea
h bi-set X with XI = XO. Then there are sets I ′X ⊆ IX for ea
h bi-set Xsatisfying the following 
onditions:(i) the families F ′

i = {X ∈ Fi : i ∈ I ′X} are interse
ting and satisfy the mixed interse
tion property;(ii) if IX ⊆ IY then I ′Y ∩ IX ⊆ I ′X ;(iii) ̺(X) ≥ |I ′X | for ea
h bi-set X;(iv) |I ′X | = rM(IX) for ea
h bi-set X with XI = XO.The above 
onje
ture, if it is true, would imply Theorem 1.1.8. Indeed, let (D,S, π) be a digraphwith roots andM be a matroid on S = {s1, . . . , sk} with rank fun
tion rM. Let Ui be the set of nodesrea
hable from π(si) in D. De�ne Fi as in (3.1). It is easy to see that (1.6) implies ̺(X) ≥ rM(IX)for ea
h bi-set X with XI = XO. By (i), (iii) and Theorem 1.2.4, the edge set 
an be partitioned in
k parts A1, . . . ,Ak su
h that Ai 
overs F ′

i . Let U ′
i =

⋃{XI : i ∈ I ′X}. The 
hoi
e of the Fi's and(ii) imply that U ′
i is 
onvex for ea
h i. However, without (iv) the 
hoi
e I ′X = ∅ would satisfy the
onditions. If we apply (iv) to non-trivial bi-sets 
onsisting of a single node we get that ea
h node v is
ontained in rM({i : v ∈ Ui}) members of the new 
onvex sets. These together imply that Ai 
ontainsan arbores
en
es spanning U ′

i for ea
h i, and by (iv) these gives a maximalM-independent pa
king ofarbores
en
es.



Chapter 4Square-free 2-mat
hings
4.1 Conne
tivity and square-free 2-mat
hingsLet G = (V,E) be an undire
ted graph with node set V and edge set E, and n and m denotethe number of nodes and the number of edges, respe
tively. A 
y
le C, whi
h is denoted by C =

(v1, v2, . . . , vl), is a subgraph 
onsisting of distin
t nodes v1, . . . , vl and edges v1v2, . . . , (vl−1vl, vlv1. Fora subgraph H of G, the node set and the edge set of H are denoted by VH and EH , respe
tively. Re
allthat for an integer k, we say that a graph G = (V,E) is k-
onne
ted if |V | ≥ k + 1 and G − X is
onne
ted for every X ⊆ V with |X| ≤ k − 1. The 
omplement graph of G = (V,E) is the simplegraph Ḡ = (V, Ē) su
h that uv ∈ Ē if and only if uv 6∈ E for distin
t u, v ∈ V .The degree of a node v ∈ V in G is the number of edges in
ident with v. The degree sequen
eof an edge set F ⊆ E is the ve
tor dF ∈ ZV su
h that dF (v) is the number of edges in F in
ident with
v. Note that if a self-loop e is in
ident with v, e is 
ounted twi
e. We say that a graph G = (V,E) issub
ubi
 (resp. 
ubi
) if dE(v) ≤ 3 (resp. dE(v) = 3) for every v ∈ V . An edge set M ⊆ E is said tobe a 2-mat
hing (resp. 2-fa
tor) if dM (v) ≤ 2 (resp. dM (v) = 2) for every v ∈ V . In other words, a
2-mat
hing is a node-disjoint 
olle
tion of paths and 
y
les. For a simple undire
ted graph G = (V,E),an edge set M ⊆ E is a square-free 2-mat
hing if M is a 2-mat
hing that 
ontains no 
y
le of lengthfour as a subgraph.We now look at the properties of the 
omplement graphs of (n− t)-
onne
ted graphs.Claim 4.1.1.1. G is (n− 2)-
onne
ted if and only if Ḡ 
ontains no K1,2, that is, Ē is a mat
hing.2. G is (n− 3)-
onne
ted if and only if Ḡ 
ontains neither K1,3 nor K2,2, that is, Ē is a square-free

2-mat
hing.3. G is (n−4)-
onne
ted if and only if Ḡ 
ontains neither K1,4 nor K2,3, in parti
ular Ḡ is sub
ubi
.Proof. By the de�nition of k-
onne
tivity, for an integer t, a simple graph G = (V,E) is (n−t)-
onne
tedif and only if Ḡ 
ontains no 
omplete bipartite graph with t+1 nodes. Sin
e a graph has no K1,d if andonly if its maximum degree is at most d− 1, we obtain the results.In what follows, we deal with simple graphs when we 
onsider the (n−3)-
onne
tivity augmentationproblem and the square-free 2-mat
hing problem, and so we often omit to de
lare that the graph issimple. Non-simple graphs appear only when we shrink graphs.43



44 4. Square-free 2-mat
hingsDe�nition 4.1.2 (Shrinking a square). Let C = (v1, v2, v3, v4) be a 
y
le of length four in G = (V,E).Shrinking of C in G 
onsists of the following operations:
• identify v1 with v3, and denote the 
orresponding node by u1,
• identify v2 with v4, and denote the 
orresponding node by u2, and
• identify all edges between u1 and u2.In the obtained graph, the edge between u1 and u2 
orresponding to EC is 
alled a square-edge.Let C1, C2, . . . , Cq be node-disjoint 
y
les of length four, and let G◦ = (V ◦, E◦) be the graph obtainedfrom G = (V,E) by shrinking C1, C2, . . . , Cq. Note that G◦ might have self-loops and parallel edges,whereas G does not. We also note that if G is sub
ubi
, G◦ is also sub
ubi
. In a shrunk graph G◦, asquare is a 
y
le of length four whose nodes are not in
ident to a square-edge. In other words, a 
y
lein G◦ is a square if its 
orresponding edges in G form a 
y
le of length four. We say that an edge set ina shrunk graph G◦ is square-free if it 
ontains no square.4.2 Jump systemsLet V be a �nite set. For u ∈ V , we denote by χu the 
hara
teristi
 ve
tor of u, with χu(u) = 1and χu(v) = 0 for v ∈ V \ {u}. For x, y ∈ ZV , a ve
tor s ∈ ZV is 
alled an (x, y)-in
rement if

x(u) < y(u) and s = χu for some u ∈ V , or x(u) > y(u) and s = −χu for some u ∈ V .A jump system, introdu
ed by Bou
het and Cunningham [16℄, is de�ned as follows.De�nition 4.2.1 (Jump system). A nonempty set J ⊆ ZV is said to be a jump system if it satis�esan ex
hange axiom, 
alled the 2-step axiom:For any x, y ∈ J and for any (x, y)-in
rement s with x + s 6∈ J , there exists an (x + s, y)-in
rement t su
h that x+ s+ t ∈ J .A set J ⊆ ZV is a 
onstant-parity system if x(V ) − y(V ) is even for any x, y ∈ J . Here x(S) =
∑

v∈S x(v) for x ∈ ZV and S ⊆ V . For 
onstant-parity jump systems, Geelen observed a strongerex
hange property:(EXC) For any x, y ∈ J and for any (x, y)-in
rement s, there exists an (x+ s, y)-in
rement t su
hthat x+ s+ t ∈ J and y − s− t ∈ J .This property 
hara
terizes a 
onstant-parity jump system (see [107℄ for details).Theorem 4.2.2 (Geelen). A nonempty set J is a 
onstant-parity jump system if and only if it satis�es(EXC).A 
onstant-parity jump system is a generalization of the base family of a matroid, an even delta-matroid [133, 134℄, and a base polyhedron of an integral polymatroid (or a submodular system) [47℄.The degree sequen
es of all subgraphs in an undire
ted graph form a typi
al example of a 
onstant-parity jump system [16, 102℄. Cunningham [25℄ showed that the set of degree sequen
es of all Ck-free
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2-mat
hings is a jump system for k ≤ 3, but not a jump system for k ≥ 5. Kobayashi, Szabó, andTakazawa [90, 119℄ showed that it is also a jump system when k = 4.E�
ient algorithms for optimization problems on jump systems are studied in [108, 116℄. For a set
S ⊆ ZV , we de�ne Φ(S) = maxv∈V {maxy∈S y(v) −miny∈S y(v)}.Theorem 4.2.3 (Shioura and Tanaka). Let J ⊆ ZV be a �nite jump system, and c ∈ RV be a ve
tor.Suppose that a ve
tor x0 ∈ J is given, and we 
an 
he
k whether x ∈ J or not in γ time. Then, we 
an�nd a ve
tor x ∈ J maximizing cx in O(n3 log Φ(J)γ) time.We 
an also �nd a ve
tor maximizing the sum of univariate 
on
ave fun
tions e�
iently. A univariatefun
tion φ : Z→ R is 
on
ave if it satis�es

2φ(x) ≥ φ(x− 1) + φ(x+ 1)for any x ∈ Z. A univariate fun
tion φ is 
onvex if −φ is 
on
ave. The following result appearedin [108℄.Theorem 4.2.4 (Murota and Tanaka). Let J ⊆ ZV be a �nite jump system, and φv : Z → R bea univariate 
on
ave fun
tion for ea
h v ∈ V . Suppose that a ve
tor x0 ∈ J is given, and we 
an
he
k whether x ∈ J or not in γ time. Then, we 
an �nd a ve
tor x ∈ J maximizing ∑v∈V φv(x) in
O(n3Φ(J)γ) time.Note that Shioura and Tanaka [116℄ gave an algorithm for the problem that runs in O(n4(log Φ(J))2γ)time. However, if Φ(J) is �xed, it is slower than the algorithm in Theorem 4.2.4.4.3 Polynomial time algorithms for the problemsLet γ1 denote the time to solve the b-fa
tor problem when b(v) ≤ 2. That is, for a not ne
essarilysimple graph G = (V,E) with |V | = n and a ve
tor b ∈ {0, 1, 2}V , we 
an determine whether thereexists an edge set F ⊆ E su
h that dF = b in γ1 time. It is of the same order as the running timeof �nding a maximum 
ardinality mat
hing, and γ1 is bounded by O(

√
nm logn

n2

m
) [57℄. In sub
ubi
graphs, sin
e m = O(n), we have γ1 = O(n

3
2 ).Our �rst results are the following.Theorem 4.3.1. In sub
ubi
 graphs, the square-free 2-mat
hing problem 
an be solved in O(n3γ1) time.Theorem 4.3.2. The (n− 3)-
onne
tivity augmentation problem is solvable in O(n3γ1) time.Theorem 4.3.2 obviously follows from Theorem 4.3.1. Note that we 
an 
onstru
t the 
omplementgraph in O(n2) time, whi
h is shorter than O(n3γ1) time. Our proof for Theorem 4.3.1 is based on thefa
t that the degree sequen
es of all square-free 2-mat
hings in a sub
ubi
 graph form a jump system.Let Jsq(G) ⊆ ZV denote the set of all degree sequen
es of square-free 2-mat
hings in G, that is,

Jsq(G) = {dM |M is a simple square-free 2-mat
hing in G}.Then the following theorem holds [90, 119℄.
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hingsTheorem 4.3.3 (Kobayashi, Szabó, and Takazawa). For any sub
ubi
 graph G, Jsq(G) is a 
onstant-parity jump system.Although a stronger result is given in [90, 119℄, we give a new proof for this theorem in Se
tion 4.4whi
h 
an be extended to the weighted version.On the other hand, the membership problem of Jsq(G) 
an be solved in polynomial time, whoseproof is given in Se
tion 4.3.1.Lemma 4.3.4. Given a sub
ubi
 graph G = (V,E) and a ve
tor x ∈ ZV , we 
an determine whether
x ∈ Jsq(G) or not in O(γ1) time.By 
ombining Theorems 4.2.3 and 4.3.3 and Lemma 4.3.4, we obtain Theorem 4.3.1. Note that
(0, 0, . . . , 0) ∈ ZV is a ve
tor 
ontained in Jsq(G).We give a faster algorithm for the square-free 2-mat
hing problem in Se
tion 4.3.2, whi
h does notuse jump systems. However, the advantage of using a jump system is that we 
an immediately extendthe result to optimization problems with the aid of some results on jump systems.When the weight fun
tion is node-indu
ed on V , the weighted square-free 2-mat
hing problem isthe problem of �nding a square-free 2-mat
hing M maximizing a linear fun
tion of dM . Therefore, byTheorems 4.2.3 and 4.3.3 and Lemma 4.3.4, we obtain the following 
orollaries.Corollary 4.3.5. The weighted square-free 2-mat
hing problem in sub
ubi
 graphs is solvable in O(n3γ1)time if the weight fun
tion is node-indu
ed on V .Corollary 4.3.6. The weighted (n− 3)-
onne
tivity augmentation problem is solvable in O(n3γ1) timeif the weight fun
tion is node-indu
ed on V .In the same way as these 
orollaries, we obtain the following by Theorem 4.2.4.Corollary 4.3.7. Let φv : Z→ R be a univariate 
on
ave fun
tion for ea
h v ∈ V . For a sub
ubi
 graph
G = (V,E), we 
an �nd a square-free 2-mat
hing M maximizing

∑

v∈V

φv(dM (v))in O(n3γ1) time.Corollary 4.3.8. Let φv : Z → R be a univariate 
onvex fun
tion for ea
h v ∈ V . For an (n − 4)-
onne
ted graph G = (V,E), we 
an �nd in O(n3γ1) time an edge set E′ ⊆ Ē minimizing
∑

v∈V

φv(dE∪E′(v))su
h that G′ = (V,E ∪ E′) is a simple (n− 3)-
onne
ted graph.4.3.1 Proof of Lemma 4.3.4In what follows we give a proof for Lemma 4.3.4.
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y
les C1, C2, . . . , Cq of length four su
h that x(v) = 2 forea
h v ∈ ⋃V (Ci). Obviously, if there is a 
y
le Ci su
h that V (Ci) spans a K4 then x 6∈ Jsq(G). Thus,we may assume that V (Ci) does not span a K4.Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking C1, C2, ..., Cq as inDe�nition 4.1.2. De�ne E1 ⊆ E as the set of all shrunk edges, that is, E1 = E(C1)∪ · · ·∪E(Cq), and let
E0 = E \E1. Similarly, de�ne V1 ⊆ V as the set of all shrunk nodes, that is, V1 = V (C1)∪ · · · ∪ V (Cq),and let V0 = V \V1. Therefore E0 and V0 are also subsets of E◦ and V ◦, respe
tively. Note that E◦ may
ontain self-loops and also parallel edges.Let x◦ ∈ ZV ◦ be the ve
tor obtained from x by setting

x◦(v) =







x(v) if v ∈ V0,
2 if v ∈ V ◦ \ V0.We will show that x ∈ Jsq(G) if and only if x◦ is the degree sequen
e of some 2-mat
hing in G◦.Let x ∈ Jsq(G) and let M be a square-free 2-mat
hing in G = (V,E) with dM = x. Note that

|E(Ci)∩M | = 2 or |E(Ci)∩M | = 3 for i = 1, 2, . . . , p, be
ause G is sub
ubi
. Let ui1 and ui2 denote thenodes arising when shrinking Ci = (vi1, v
i
2, v

i
3, v

i
4). Let I denote the set of indi
es for whi
h |E(Ci)∩M | =

3. Then de�ne M◦ as
M◦ = (M ∩ E0) ∪

(

⋃

i∈I

{ui1ui2}
)

.One 
an see easily that M◦ is a 2-mat
hing in G◦ with dM◦ = x◦.Conversely, let M◦ be a 2-mat
hing in G◦ = (V ◦, E◦) with dM◦ = x◦. Let C = (v1, v2, v3, v4) beone of the shrunk 
y
les and let u1, u2 be the 
orresponding nodes in G◦. If u1u2 6∈ M◦ then either
{v1v2, v3v4} or {v1v4, v2v3} 
an be added to M◦ ∩E0 without forming a square sin
e G is sub
ubi
 (weuse here the assumption that V (Ci) does not span a K4). One 
an also see that if u1u2 ∈M◦ then threeproperly 
hosen edges of C 
an be added to M◦ ∩ E0 without forming a square (see Figure 4.1). Whatwe do exa
tly is that we blow up the 
y
les one by one. In ea
h step we extend the a
tual 2-mat
hingto a new one in the extended graph using one of the two extensions des
ribed above in su
h a way thatthe arising 2-mat
hing has no square. Re
all that a square is de�ned as a 
y
le of length four whose allfour nodes are 
ontained in V0. In this way M◦ ∩E0 
an be extended to a square-free 2-mat
hing M of
G = (V,E) with dM = x.The above redu
tion 
an be done in linear time and we 
an determine whether x◦ is a degree sequen
eof a 2-mat
hing or not in O(γ1) time whi
h proves the lemma.4.3.2 Faster algorithmIn this se
tion we give another algorithm for the square-free 2-mat
hing problem that runs in O(γ1)time. A faster algorithm for the (n− 3)-
onne
tivity augmentation problem follows from the algorithm.However, in this 
ase, we have to 
onsider the time to 
onstru
t the 
omplement graph, whi
h is denotedby γ0. Obviously, γ0 is bounded by O(n2), but it depends on how the input graph is represented.Theorem 4.3.9. The square-free 2-mat
hing problem in sub
ubi
 graphs 
an be solved in O(γ1) time.The (n − 3)-
onne
tivity augmentation problem is solvable in O(γ0 + γ1) time, where γ0 is the time to
onstru
t the 
omplement graph.
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hings
: edges in M

u1 u2

u2u1

v1

v1

v2

v2 v3

v3

v4

v4

Figure 4.1: Constru
ting M from M◦Proof. Let G = (V,E) be a sub
ubi
 graph. If G 
ontains a 
omplete graph on four nodes then this
K4 forms a 
omponent of G sin
e the graph is sub
ubi
. Clearly, a maximum square-free 2-mat
hing
ontains exa
tly three edges of su
h a 
omponent. By handling these 
omponents separately, we mayassume that G 
ontains no K4.Take a maximal family of node-disjoint 
y
les C1, C2, . . . , Cq of length four. Our �rst observation isthat for any maximum square-free 2-mat
hing M in G either |M ∩ Ci| = 2 or |M ∩ Ci| = 3 for every
Ci = (vi1, v

i
2, v

i
3, v

i
4). Moreover, we may assume the following:(A) If |M ∩ Ci| = 2 then M ∩ Ci = {vi1vi2, vi3vi4} or {vi1vi4, vi2vi3}.Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking C1, C2, . . . , Cq. De�ne

E0, E1 and V0, V1 on the same lines with Lemma 4.3.4.We will show that for any maximum square-free 2-mat
hing M in G satisfying 
ondition (A) we 
an�nd a 2-mat
hing M◦ in G◦ with |M◦| = |M | − 2q. Conversely, for any maximum 2-mat
hing M◦ in
G◦ we 
an de�ne a square-free 2-mat
hing M in G so that |M | = |M◦|+ 2q. Sin
e a 2-mat
hing in G◦with maximum 
ardinality 
an be found in O(γ1) time that would prove the theorem.The 
orresponden
e des
ribed in Lemma 4.3.4 works again. Namely, letM be a maximum square-free
2-mat
hing in G satisfying 
ondition (A) and let I denote the set of indi
es for whi
h |E(Ci)∩M | = 3.Then de�ne M◦ as

M◦ = (M ∩ E0) ∪
(

⋃

i∈I

{ui1ui2}
)

.One 
an see easily that M◦ is a 2-mat
hing in G◦ and the observation above implies |M◦| = |M | − 2q.Conversely, let M◦ be a maximum 2-mat
hing in G◦. Let C = (v1, v2, v3, v4) be one of the shrunk
y
les and let u1, u2 be the 
orresponding nodes in G◦. If u1u2 6∈ M◦ then either {v1v2, v3v4} or
{v1v4, v2v3} 
an be added to M◦ ∩E0 without forming a square sin
e G is sub
ubi
 (again, we use herethe assumption that G 
ontains no K4). One 
an also see that if u1u2 ∈M◦ then three properly 
hosenedges of C 
an be added to M◦∩E0 without forming a square. In both 
ases, the size of the 2-mat
hing
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reases by two. Hen
e M◦ ∩ E0 
an be extended to a square-free 2-mat
hing M of G = (V,E) with
|M | = |M◦|+ 2q.Now it is understandable why K4's are handled di�erently. If we let G 
ontain a K4 then aftershrinking the 
y
les the K4 
orresponds to an edge with two self-loops at the end-nodes in G◦. However,a maximum 2-mat
hing in G◦ 
ontains the two self-loops and a maximum square-free 2-mat
hing in G
ontains three edges from the K4 so in this 
ase the size of the 2-mat
hing in
reases only by one whenblowing ba
k the 
orresponding 
y
le.As above, the square-free 2-mat
hing problem 
an be redu
ed to the ordinary maximum 2-mat
hingproblem, whi
h 
an be solved in O(γ1) time.The latter half of the theorem is immediately derived from the �rst half.4.4 Proof of Theorem 4.3.3This se
tion is devoted to the proof of Theorem 4.3.3, that is, we show that Jsq(G) is a 
onstant-parity jump system for any sub
ubi
 graph G. Re
all that G is simple. In this se
tion, we give analgorithm for �nding an (x + s, y)-in
rement t su
h that x + s + t ∈ Jsq(G) and y − s − t ∈ Jsq(G).Without loss of generality, we assume that s = −χu for some u ∈ V .Let M and N be edge sets in an undire
ted (not ne
essarily simple) graph. We say that a path
P = (v0, v1, v2, . . . , vl) is an (M,N)-alternating path if
• vivi+1 ∈M \N if i is even,
• vivi+1 ∈ N \M if i is odd, and
• vivi+1 6= vjvj+1 for i 6= j.Obviously, dM∆E(P ) = dM −χv0 + (−1)lχvl and dN∆E(P ) = dN + χv0 − (−1)lχvl . By taking the longest

(M,N)-alternating path, we 
an see the following.Lemma 4.4.1. For 2-mat
hings M,N in an undire
ted graph and for a (dM , dN )-in
rement s = −χu,there exists an (M,N)-alternating path P beginning with v0 = u su
h that both M∆E(P ) and N∆E(P )are 2-mat
hings (not ne
essarily square-free), dM∆E(P ) = dM + s + t, and dN∆E(P ) = dN − s − t forsome (dM + s, dN )-in
rement t.Let L be a subset of edges and let C1, C2, . . . , Cq be node-disjoint 
y
les of length four su
h that
|E(Ci) ∩ L| = 3 for i = 1, 2, . . . , p. If an edge set L◦ ⊆ E◦ is obtained from L ⊆ E by shrinking
C1, C2, . . . , Cq, we say that L◦ is the shrunk edge set of L, and L is an expanded edge set of L◦.Note that the shrunk edge set L◦ 
ontains all square-edges in G◦.We now de�ne a map φ : ZV → ZV ◦ by

(φ(x))(u) =
∑

{x(v) | v ∈ V, v 
orresponds to u}

− 2|{square-edges in
ident to u}| (4.1)for x ∈ ZV and u ∈ V ◦. One 
an see that for an edge set L ⊆ E satisfying that |E(Ci) ∩ L| = 3 for
i = 1, 2, . . . , p, φ(dL) is the degree sequen
e of the shrunk edge set of L. Conversely, the following lemmaholds [93℄.



50 4. Square-free 2-mat
hingsLemma 4.4.2 (Kobayashi and Takazawa). Let L◦ ⊆ E◦ be a 2-mat
hing in G◦ that 
ontains all square-edges and x be a ve
tor in {0, 1, 2}V . If φ(x) is the degree sequen
e of L◦, there exists an expanded edgeset L of L◦ in G su
h that dL = x. Furthermore, su
h L is unique.4.4.1 Finding an (x+ s, y − s)-in
rementAlthough we need an (x + s, y)-in
rement t to prove Theorem 4.3.3, in this subse
tion, we give apro
edure to �nd an (x+ s, y− s)-in
rement t su
h that x+ s+ t ∈ Jsq(G) and y− s− t ∈ Jsq(G). Afterthat, we modify the pro
edure to obtain an (x+ s, y)-in
rement t in Se
tion 4.4.2.For given degree sequen
es x, y ∈ Jsq(G), take edge sets M,N ⊆ E su
h that dM = x and dN = y.Let s = −χu be an (x, y)-in
rement for some u ∈ V . Let C1, C2, . . . , Cq be node-disjoint 
y
les of lengthfour in G su
h that E(Ci) ⊆ M ∪ N and |E(Ci) ∩M | = |E(Ci) ∩ N | = 3 for i = 1, 2, . . . , p. We takesu
h C1, C2, . . . , Cq maximally, and shrink them. Let G◦ = (V ◦, E◦) be the obtained graph, and let
M◦, N◦, x◦, y◦, u◦ and s◦ be 
ounterparts in G◦ to M,N, x, y, u and s, respe
tively.If s◦ = −χu◦ is not an (x◦, y◦)-in
rement, thenG has a square C = (u, v1, v2, v3) su
h that dM (u) = 2,
dN (u) = 1, dM (v2) = 1, dN (v2) = 2, and C is shrunk in G◦. In this 
ase, t = χv2 is an (x+s, y)-in
rementsu
h that x+ s+ t ∈ Jsq(G) and y − s− t ∈ Jsq(G) by Lemma 4.4.2.Thus, in what follows in this subse
tion, we only 
onsider the 
ase when s◦ = −χu◦ is an (x◦, y◦)-in
rement. Re
all that a square is a 
y
le of length four whose nodes are not in
ident to a square-edge.Then, G◦ satisfy the following 
ondition.(B) Both edge sets M◦ and N◦ 
ontain all square-edges in G◦, and G◦ has no square C su
h that

E(C) ⊆M◦ ∪N◦ and |E(C) ∩M◦| = |E(C) ∩N◦| = 3.In order to obtain an (x + s, y − s)-in
rement t, it su�
es to �nd an (x◦ + s◦, y◦ − s◦)-in
rement
t◦ and edge sets M∗, N∗ in the shrunk graph G◦ su
h that M∗ and N∗ are square-free 2-mat
hings in
G◦, dM∗ = x◦ + s◦ + t◦, and dN∗ = y◦ − s◦ − t◦. This is be
ause a unit ve
tor t 
orresponding to t◦ isa desired (x+ s, y − s)-in
rement by Lemma 4.4.2. Thus, in what follows, we des
ribe a pro
edure that�nds an (x◦ + s◦, y◦ − s◦)-in
rement t◦ and edge sets M∗, N∗ in G◦.Let P = (v0, v1, v2, . . . , vl) be an (M◦, N◦)-alternating path beginning with v0 = u◦ su
h that both
M◦∆E(P ) and N◦∆E(P ) are 2-mat
hings, dM◦∆E(P ) = dM◦ + s◦ + t◦, and dN◦∆E(P ) = dN◦ − s◦ − t◦for some (x◦ + s◦, y◦)-in
rement t◦. The existen
e of su
h a path is guaranteed by Lemma 4.4.1. We
hoose v1 su
h that N + v0v1 is square-free if possible. Furthermore, we assume the minimality of P ,that is, any subpath (v0, v1, v2, . . . , vp) does not satisfy the above 
onditions for 1 ≤ p ≤ l− 1. Let P (p)be the subpath (v0, v1, v2, . . . , vp) of P , and de�ne M (p) = M◦∆E(P (p)) and N (p) = N◦∆E(P (p)).If M (l) and N (l) are square-free, then t◦ := dM (l) − dM◦ − s◦ is an (x◦ + s◦, y◦)-in
rement by thede�nition of P , and M (l), N (l), and t◦ are the desired outputs. Otherwise, let p be the integer su
h that
M (0),M (1), . . . ,M (p) and N (0), N (1), . . . , N (p) are square-free, and M (p+1) or N (p+1) 
ontains a square.We 
onsider the 
ase when p is even, that is,M (p+1) is square-free and N (p+1) has a square 
ontaining
vpvp+1. The 
ase when p is odd 
an be dealt with in the same way. Let C1 = (vp+1, vp, u1, u2) be thesquare in N (p+1). When p ≥ 1, by the minimality of l, M (p) is not a 2-mat
hing, that is, dM (p)(vp) = 3.Therefore {vpvp+1, vpu1} ⊆ M (p), be
ause G◦ is sub
ubi
. Furthermore, {vpvp+1, vpu1} ⊆ M (p) is alsotrue when p = 0 by the following 
laim and the de�nition of P .



4.4. Proof of Theorem 4.3.3 51: edges in M .: edges in N .v0 u3

u2u1

(Parallel edges represent the same edge.)Figure 4.2: An illustration of Claim 4.4.3.Claim 4.4.3. One of the followings holds:
• there exists an edge e ∈ δ(v0) ∩ (M◦ \N◦) su
h that N◦ ∪ {e} is square-free, or
• G◦ has a square C = (v0, u1, u2, u3) su
h that {v0u1, v0u3} ⊆ M◦ and {v0u1, u1u2, u2u3} ⊆ N◦(see Figure 4.2).Proof. It is obvious be
ause dM◦(v0) > dN◦(v0).Then, by the 
ondition (B), vp+1u2, u1u2 6∈ M (p). Sin
e the graph is sub
ubi
 and vp+1u2, u1u2 6∈

M (p), we have dM (p)(u2) ≤ 1.Now we de�ne
M ′ = M (p) − vpvp+1 + vp+1u2,

N ′ = N (p) + vpvp+1 − vp+1u2(see Figure 4.3). Obviously, N ′ is square-free. Sin
e dM (p)(u2) ≤ 1 and dN(p)(u2) = 2, M ′ and N ′ are
2-mat
hings and dM ′−dM◦−s◦ = χu2 is a (dM◦+s◦, dN◦−s◦)-in
rement. Therefore, ifM ′ is square-free,then M ′ and N ′ are the desired 2-mat
hings and t◦ = χu2 is the desired unit ve
tor.Otherwise, M ′ has a square C2 = (vp+1, u2, u3, u4) 
ontaining vp+1u2. Then, the following 
laimholds.Claim 4.4.4. u3 6= vp.Proof. Assume that u3 = vp. Sin
e vpu1 ∈M ′, we have u1 = u4 and u1vp+1 ∈M ′. Then, |M◦∩E[C2]|+
|N◦ ∩ E[C2]| = |M ′ ∩ E[C2]| + |N ′ ∩ E[C2]| = 7, where E[C2] is the set of edges whose end-nodes areboth in V (C2). This 
ontradi
ts that M◦ and N◦ are square-free 2-mat
hings.By this 
laim, {u3, u4} ∩ {vp, vp+1} = ∅. Now we de�ne

M ′′ = M ′ − u2u3, N ′′ = N ′ + u2u3(see Figure 4.4). Obviously, M ′′ is a square-free 2-mat
hing. Furthermore, N ′′ is square-free, be
ause
N ′′ 
ontains u3u2, u2u1, u1vp, vpvp+1, whi
h means that it has no square 
ontaining u2u3. If dN ′(u3) ≤
1, then M ′′ and N ′′ are the desired 2-mat
hings and t◦ = −χu3 is the desired unit ve
tor, be
ause
dM ′(u3) = 2.Otherwise, dN ′(u3) = 2 and dN ′′(u3) = 3. Sin
e G◦ is sub
ubi
, u3u4 ∈ N ′.Claim 4.4.5. u4vp+1 6∈ N ′.



52 4. Square-free 2-mat
hings
: edges in M (p).: edges in N (p).

vp vp+1

u2u1 : edges in M ′.: edges in N ′.
vp vp+1

u2u1

Figure 4.3: De�nitions of M ′ and N ′.
vp vp+1

u2u1 : edges in M ′.: edges in N ′.u3
u4 vp vp+1

u2u1 : edges in M ′′.: edges in N ′′.u3
u4

Figure 4.4: De�nitions of M ′′ and N ′′.
vp vp+1

u2u1 : edges in M ′′.: edges in N ′′.u3
u4 vp vp+1

u2u1 : edges in M ′′′.: edges in N ′′′.u3
u4

Figure 4.5: De�nitions of M ′′′ and N ′′′.Proof. If u4vp+1 ∈ N ′, then |M◦ ∩ E(C2)| + |N◦ ∩ E(C2)| = |M ′ ∩ E(C2)| + |N ′ ∩ E(C2)| = 6, whi
h
ontradi
ts the 
ondition (B).We de�ne
M ′′′ = M ′′ − u2vp+1 + u2u3,

N ′′′ = N ′′ − u3u4 + u4vp+1(see Figure 4.5). Then, δ(vp+1)∩M ′′′ = {vp+1u4} and δ(vp+1)∩N ′′′ = {vpvp+1, vp+1u4}. Hen
e M ′′′ and
N ′′′ are square-free 2-mat
hings and t◦ = dM ′′′−dM◦−s◦ = −χvp+1 is a (dM◦ +s◦, dN◦ −s◦)-in
rement.



4.5. NP-hardness of the weighted problem 534.4.2 Finding an (x+ s, y)-in
rementWe have already presented a pro
edure to �nd an (x+ s, y − s)-in
rement. To obtain an (x+ s, y)-in
rement t, we 
hoose M and N satisfying the following assumption.Assumption 4.4.6. For x, y ∈ Jsq(G), let M and N be square-free 2-mat
hings with dM = x and
dN = y maximizing |M ∩N |.We show that under Assumption 4.4.6 we 
an �nd an (x+ s, y)-in
rement by the pro
edure in theprevious subse
tion. It su�
es to show that we 
an �nd an (x◦ + s◦, y◦)-in
rement t◦ in the shrunkgraph G◦. Note that an (x◦ + s◦, y◦ − s◦)-in
rement t◦ is not an (x◦ + s◦, y◦)-in
rement if and only if
t◦ = −s◦. We also note that, by Assumption 4.4.6, M◦ and N◦ maximize |M◦ ∩N◦| among all square-free 2-mat
hings in G◦ su
h that both of them 
ontain all square-edges and their degree sequen
es are
x◦ and y◦, respe
tively. Clearly, the modi�ed 2-mat
hings in our proof 
ontain all square-edges in ea
hstep, sin
e the path is alternating and we modify in squares, where a square is a 
y
le of length fourwhose nodes are not in
ident to a square-edge.Suppose that the output (M∗, N∗, t◦) in the previous subse
tion satis�es that t◦ = −s◦, that is,
dM∗ = dM◦ and dN∗ = dN◦ . Then, either |M∗ ∩ N∗| > |M◦ ∩ N◦| holds or a pair of square-free 2-mat
hings (M∗, N◦) satis�es that dM∗ = x◦, dN◦ = y◦, and |M∗ ∩ N◦| > |M◦ ∩ N◦|. More pre
isely,the following 
laims hold.
• If p is even and (M∗, N∗) = (M ′, N ′), then |M∗ ∩N◦| − |M◦ ∩N◦| ≥ |E(P (p)) ∩N◦| = p

2 .
• If p is odd (in this 
ase, we alternate M and N in the pro
edure in the last subse
tion) and

(M∗, N∗) = (M ′′, N ′′), then |M∗ ∩N◦| − |M◦ ∩N◦| ≥ |E(P (p+1)) ∩N◦| = p+1
2 .

• If p is odd (in this 
ase, we alternate M and N in the pro
edure in the last subse
tion) and
(M∗, N∗) = (M ′′′, N ′′′), then |M∗ ∩ N∗| − |M◦ ∩ N◦| = 1, be
ause M∗ ∩ N∗ = ((M◦ ∩ N◦) ∪
{(u2, u3), (vp+1, u4)}) \ {(u3, u4)}.This 
ontradi
ts Assumption 4.4.6.Thus the output t◦ is an (x◦ + s◦, y◦)-in
rement and its 
orresponding unit ve
tor t ∈ ZV is an

(x+ s, y)-in
rement, whi
h 
ompletes the proof of Theorem 4.3.3.4.5 NP-hardness of the weighted problemThe obje
tive of this se
tion is to show the NP-hardness of the weighted square-free 2-mat
hingproblem in sub
ubi
 graphs. A
tually, we show the following stronger result, whi
h extends Z. Király'sresult for bipartite graphs.Theorem 4.5.1. The weighted square-free 2-mat
hing problem is NP-hard even if the given graph is
ubi
, bipartite, and planar.First, we show the NP-hardness of the problem of �nding a square-free 2-fa
tor of maximum totalweight, 
alled the weighted square-free 2-fa
tor problem. After that we derive Theorem 4.5.1 fromthis result.
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ue1 ue4

ue3ue2 ve4

ve3

ve1

ve2

ve11

ve12
ve32

ve31

ve21

ve22

Figure 4.6: De�nitions of V e, Ee, and Ev .Theorem 4.5.2. The weighted square-free 2-fa
tor problem is NP-hard even if the given graph is 
ubi
,bipartite, and planar.Proof. We give a polynomial redu
tion from the independent set problem in planar 
ubi
 graphs tothe weighted square-free 2-fa
tor problem. For a graph G = (V,E), a node set I ⊆ V is independentif there exists no edge in E 
onne
ting two nodes in I. The independent set problem is to �nd anindependent set I of maximum size, and this problem is NP-hard even if the input graph is 
ubi
 andplanar [54℄.Let G = (V,E) be a 
ubi
 planar graph whi
h is an instan
e of the independent set problem. We
onstru
t a new graph G′ = (V ′, E′) as follows. As shown in Figure 4.6, de�ne a node set V e and anedge set Ee 
orresponding to e = uv ∈ E by
V e = {ue1, ue2, ue3, ue4, ve1, ve2, ve3, ve4},
Ee = {ue1ue2, ue2ue3, ue3ue4, ue4ue1,

ve1v
e
2, v

e
2v

e
3, v

e
3v

e
4, v

e
4v

e
1, u

e
3v

e
4, v

e
3u

e
4}.For any node v ∈ V with δ(v) = {e1, e2, e3}, de�ne an edge set Ev by

Ev = {ve11 ve22 , ve21 ve32 , ve31 ve12 },and de�ne
V ′ =

⋃

e∈E

V e, E′ =

(

⋃

e∈E

Ee

)

∪
(

⋃

v∈V

Ev

)

.Note that Ev is depending on the ordering of e1, e2, and e3, and if three edges in δ(v) are arranged inan appropriate order for ea
h v ∈ V , then G′ is planar. It is obvious that G′ is 
ubi
 and bipartite.Set L = 3|V |+ 1, and de�ne the weight w : E′ → R+ by
w(e′) =



















L if e′ = ue1u
e
2, v

e
1v

e
2, u

e
3v

e
4, v

e
3u

e
4 for some e = uv ∈ E,

1 if e′ ∈ Ev for some v ∈ V ,
0 otherwise.Then the following 
laim holds.
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ue1 ue4

ue3ue2 ve4

ve3

ve1

ve2 ue1 ue4

ue3ue2 ve4

ve3

ve1

ve2 ue1 ue4

ue3ue2 ve4

ve3

ve1

ve2

Figure 4.7: Three patterns of M ∩ Ee.Claim 4.5.3. The original graph G = (V,E) has an independent set of size k if and only if G′ = (V ′, E′)
ontains a square-free 2-fa
tor whose total weight is 4|E|L+ 3k.Proof of Claim 4.5.3. Let M ⊆ E′ be a square-free 2-fa
tor in G′ whose total weight is at least 4|E|L.We show that su
h a square-free 2-fa
tor in G′ and an independent set of G 
orrespond to ea
h other.First, by the de�nition of L, one 
an see that M 
ontains all edges of weight L. Then, sin
e M is asquare-free 2-fa
tor, we have the following three possibilities for ea
h e = uv ∈ E (see Figure 4.7):
M ∩ Ee =



















Ee \ {ue3ue4, ve3ve4},

Ee \ {ue1ue4, ue2ue3, ve3ve4},

Ee \ {ve1ve4, ve2ve3, ue3ue4}.

(4.2)Note that a 2-fa
tor is a 
olle
tion of 
y
les 
overing all nodes.For a node v ∈ V with δ(v) = {e1, e2, e3}, let Cv be a 
y
le of length six in G′ through ve11 , ve12 , ve21 ,

ve22 , ve31 , and ve32 . Then, ea
h 
y
le in M is 
ontained in Ee for some e ∈ E or 
oin
ides with Cv for some
v ∈ V .Let VM ⊆ V be a node set de�ned by VM = {v | v ∈ V, E(Cv) ⊆M}. By (4.2), VM is an independentset of G. On the other hand, when we are given an independent set I of G, we 
an 
onstru
t a square-free 2-fa
tor M in G′ su
h that M 
ontains Cv for v ∈ I and w(M) ≥ 4|E|L by (4.2). As above, anindependent set I of G and a square-free 2-fa
tor M in G′ with w(M) ≥ 4|E|L 
orrespond to ea
hother.Sin
e M 
ontains 3|VM | edges of weight 1, w(M) = 4|E|L+ 3|VM |, whi
h shows the 
laim.By this 
laim, the independent set problem in G is equivalent to the weighted square-free 2-fa
torproblem in (G′, w).Now we 
an easily give a proof of Theorem 4.5.1.Proof of Theorem 4.5.1. Let G = (V,E) and w be an instan
e of the weighted square-free 2-fa
torproblem. De�ne a new weight fun
tion w′ : E → R+ by w′(e) = L+w(e), where L = n(maxe∈E w(e))+1.We 
onsider an instan
e (G,w′) of the weighted square-free 2-mat
hing problem. Then, by the de�nitionof w′, the optimal solution M of the weighted square free 2-mat
hing problem must be a 2-fa
tor if
w′(M) ≥ nL, and in this 
ase M is also an optimal solution of the original problem. If w′(M) < nL, we
an 
on
lude that G has no 2-fa
tors.Therefore, we 
an redu
e the weighted square-free 2-fa
tor problem to the weighted square-free
2-mat
hing problem, whi
h means that Theorem 4.5.1 
an be derived from Theorem 4.5.2.
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hingsSin
e the graph G′ in the proof of Theorem 4.5.2 
ontains no 
omplete bipartite graph with �venodes (i.e. K1,4 and K2,3) as a subgraph, its 
omplement graph is (|V ′| − 4)-
onne
ted. Hen
e, we alsoobtain the following theorem.Theorem 4.5.4. The weighted (n − 3)-
onne
tivity augmentation problem is NP-hard.
4.6 Weighted square-free 2-mat
hingsWe have already seen in Se
tion 4.5 that the weighted square-free 2-mat
hing problem in sub
ubi
graphs is NP-hard for general weight fun
tions. In this se
tion, we show that the weighted square-free
2-mat
hing problem is polynomially solvable if the weight fun
tion is node-indu
ed on every square.Suppose that for a weighted (not ne
essarily simple) graph (G,w) and for a ve
tor x ∈ {0, 1, 2}V ,we 
an �nd in γ2 time an edge set F ⊆ E maximizing w(F ) su
h that dF = x. Note that γ2 is boundedby O(n(m + n log n)) [51℄ and O(m log(nw(E))

√

nα(m,n) log n) [53℄, where α is the inverse of theA
kermann fun
tion.Theorem 4.6.1. In a weighted sub
ubi
 graph (G,w), if w is node-indu
ed on every square in G, thenthe weighted square-free 2-mat
hing problem is solvable in O(n3γ2) time.In what follows, we give a proof of Theorem 4.6.1. In our proof, we show the relation between theweighted square-free 2-mat
hing problem and M-
on
ave fun
tions, whi
h are a quantitative extensionof jump systems.4.6.1 M-
on
ave fun
tionsAn M-
on
ave (M-
onvex) fun
tion on a 
onstant-parity jump system is a quantitative extensionof a jump system, whi
h is a generalization of valuated matroids [28, 30℄, valuated delta-matroids [29℄,and M-
on
ave (M-
onvex) fun
tions on base polyhedra [105, 106℄.De�nition 4.6.2 (M-
on
ave fun
tion on a 
onstant-parity jump system [107℄). For J ⊆ ZV , we 
all
f : J → R an M-
on
ave fun
tion on a 
onstant-parity jump system if it satis�es the followingex
hange axiom:(M-EXC) For any x, y ∈ J and for any (x, y)-in
rement s, there exists an (x+ s, y)-in
rement t su
hthat x+ s+ t ∈ J , y − s− t ∈ J , and f(x) + f(y) ≤ f(x+ s+ t) + f(y − s− t).It dire
tly follows from (M-EXC) that J satis�es (EXC), and hen
e J is a 
onstant-parity jumpsystem. We 
all a fun
tion f : J → R an M-
onvex fun
tion if −f is an M-
on
ave fun
tion on a
onstant-parity jump system. M-
on
ave fun
tions on 
onstant-parity jump systems appear in many
ombinatorial optimization problems su
h as the weighted mat
hing problem, the minsquare fa
torproblem [2℄, and the weighted even fa
tor problem in odd-
y
le-symmetri
 digraphs [94℄. Some propertiesof M-
on
ave fun
tions are investigated in [89℄, and e�
ient algorithms for maximizing an M-
on
avefun
tion on a 
onstant-parity jump system are given in [108, 116℄.



4.6. Weighted square-free 2-mat
hings 57Theorem 4.6.3 (Murota and Tanaka). Let J ⊆ ZV be a �nite 
onstant-parity jump system, and
f : J → Z be an M -
on
ave fun
tion on J . Suppose that a ve
tor x0 ∈ J is given, and we 
an 
he
kwhether x ∈ J or not and evaluate f(x) in γ time. Then we 
an �nd a ve
tor x ∈ J maximizing f(x)in O(n3Φ(J))γ) time.Note that O(n4(log Φ(J))2γ) time algorithm is proposed in [116℄ also for this problem.4.6.2 Relation with M-
on
ave fun
tionsWe 
onsider a generalization of Theorem 4.3.3. For a weighted sub
ubi
 graph (G,w), de�ne afun
tion fsq on Jsq(G) by

fsq(x) = max

{

∑

e∈M

w(e)

∣

∣

∣

∣

M is a square-free 2-mat
hing, dM = x

}

.Then, the following theorem holds.Theorem 4.6.4. For a weighted sub
ubi
 graph (G,w), if w is node-indu
ed on every square in G, fsqis an M-
on
ave fun
tion on the 
onstant-parity jump system Jsq(G).In what follows, we give a proof of this theorem. In a similar way as Theorem 4.3.3, we use thepro
edure in Se
tion 4.4.1 to �nd an (x+ s, y)-in
rement t satisfying (M-EXC) for given x, y, and
s. We now 
onsider the weight of the output. De�ne E1 ⊆ E as the set of all shrunk edges, that is,
E1 = E(C1) ∪ · · · ∪ E(Cq), and let E0 = E \ E1. De�ne w(F ) =

∑

e∈F w(e) for F ⊆ E. Then thefollowing lemma holds.Lemma 4.6.5. Let M and N be square-free 2-mat
hings in G, whose shrunk edge sets in G◦ are M◦ and
N◦, respe
tively. Let M∗, N∗ be square-free 2-mat
hings in G◦ obtained from M and N by the pro
edurein Se
tion 4.4.1. Then, w(M∗ ∩ E0) + w(N∗ ∩E0) = w(M◦ ∩ E0) + w(N◦ ∩ E0).Proof. If (M∗, N∗) = (M (l), N (l)), (M ′, N ′), (M ′′, N ′′), then M∗+N∗ = M◦+N◦, where `+' means theunion when we 
onsider the multipli
ity of the edges. Hen
e, w(M∗∩E0)+w(N∗∩E0) = w(M◦∩E0)+

w(N◦∩E0). If (M∗, N∗) = (M ′′′, N ′′′) thenM∗+N∗ = M◦+N◦−{u2vp+1, u3u4}+{u2u3, vp+1u4}, where`−' means the di�eren
e of sets when we 
onsider the multipli
ity of the edges. Sin
e w is node-indu
edon vp+1u2, u3u4, we have w(M∗ ∩E0) + w(N∗ ∩ E0) = w(M◦ ∩ E0) + w(N◦ ∩ E0).Lemma 4.6.6. Let M∗, N∗ and t◦ be the outputs of the pro
edure in Se
tion 4.4.1. Suppose that M∗∗and N∗∗ are square-free 2-mat
hings whi
h are expanded edge sets of M∗ and N∗, respe
tively, and t isa (dM + s, dN − s)-in
rement 
orresponding to t◦ su
h that dM∗∗ = dM + s+ t and dN∗∗ = dN − s− t.Then, w(M∗∗) + w(N∗∗) = w(M) + w(N).Proof. By Lemma 4.6.5, it su�
es to show that
w(M∗∗ ∩ E(Ci)) + w(N∗∗ ∩ E(Ci)) = w(M ∩ E(Ci)) + w(N ∩ E(Ci)) (4.3)for any shrunk 
y
le Ci. Sin
e dM∗∗∩E0 + dN∗∗∩E0 = dM∩E0 + dN∩E0 and dM∗∗ + dN∗∗ = dM + dN , itholds that dM∗∗∩E(Ci) + dN∗∗∩E(Ci) = dM∩E(Ci) + dN∩E(Ci). Then the equation (4.3) holds be
ause w isnode-indu
ed on Ci.



58 4. Square-free 2-mat
hingsWe are now ready to show Theorem 4.6.4.Proof of Theorem 4.6.4. For x, y ∈ Jsq(G) and an (x, y)-in
rement s, let M and N be square-free 2-mat
hings su
h that dM = x, dN = y, w(M) = fsq(x), and w(N) = fsq(y). As with Assumption 4.4.6,we assume that M and N maximize |M ∩N | among su
h 2-mat
hings.Let M∗∗, N∗∗, and t be as in Lemma 4.6.6. If t is not an (x+ s, y)-in
rement, then dM∗∗ = dMand dN∗∗ = dN . Sin
e w(M∗∗) + w(N∗∗) = w(M) + w(N) by Lemma 4.6.6, w(M∗∗) = w(M) and
w(N∗∗) = w(N). However, either |M∗∗ ∩N∗∗| > |M ∩ N | or |M∗∗ ∩N | > |M ∩N | holds in the sameway as Se
tion 4.4, whi
h 
ontradi
ts the maximality of |M ∩N |. Thus, t is an (x+ s, y)-in
rement.On the other hand, by Lemma 4.6.6, we have

fsq(x) + fsq(y) = w(M) + w(N)

= w(M∗∗) + w(N∗∗)

≤ fsq(x+ s+ t) + fsq(y − s− t).Hen
e fsq is an M-
on
ave fun
tion on Jsq.4.6.3 Polynomial time algorithmNow we are ready to give a proof of Theorem 4.6.1 with the aid of previous works on M-
on
avefun
tions. As a generalization of Lemma 4.3.4, we show the following lemma.Lemma 4.6.7. Given a weighted sub
ubi
 graph (G,w) and a ve
tor x ∈ Jsq(G), we 
an 
al
ulate fsq(x)in O(γ2) time if w is node-indu
ed on every square.Proof. Take a maximal family of node-disjoint 
y
les C1, C2, . . . , Cq of length four su
h that x(v) = 2for ea
h v ∈ ⋃V (Ci). Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking
C1, C2, . . . , Cq. Let ui1 and ui2 denote the nodes arising when shrinking Ci = (vi1, v

i
2, v

i
3, v

i
4). Let πi bea fun
tion on V (Ci) su
h that w(e) = πi(u) + πi(v) for every edge e = (u, v) ∈ E(Ci), and let π bethe fun
tion on ⋃V (Ci) de�ned by π(v) = πi(v) for v ∈ V (Ci). Sin
e the 
y
les C1, . . . , Cq are disjointwe 
an de�ne su
h π. Let E0, E1, V0, V1 and x◦ be the same as in the proof of Lemma 4.3.4. We de�ne

w◦ : E◦ → R as follows (see Figure 4.8):
w◦(e) =



















w(e) when u, v ∈ V0,
w(e) − π(v) when u ∈ V0 and v ∈ V ◦ \ V0,
w(e) − π(u)− π(v) when u, v ∈ V ◦ \ V0,for ea
h e = uv ∈ E0, and
w◦(e) = π(vi1) + π(vi2) + π(vi3) + π(vi4)for ea
h e = ui1u

i
2 ∈ E◦ \ E0.We will show that fsq(x) = f(x◦) + π(V1) where
f(x◦) = max

{

∑

e∈M◦

w◦(e)

∣

∣

∣

∣

M◦ is a 2-mat
hing in G◦, dM◦ = x◦

}

.
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π1

π2

π4

π3

π5

π6 π7

π8

w(a)

w(b) w(c)

w(d)

w(e) w(f)

w(g)

w(a) − π1

w(b) − π2 w(c) − π3 w(e) − π6

w(d) − π4 − π5

w(g) − π8

w(f)− π7

: edges in M

: edges in M◦

w(M) = w(a) + w(d) + w(f) + π1 + π4 + π5 + π7 + 2π2 + 2π3 + 2π6 + 2π8

w◦(M◦) = w(a) + w(d) + w(f) + π2 + π3 + π6 + π8

∑4
i=1 πi

∑8
i=5 πi

Figure 4.8: Example of w◦(M◦)Clearly, that would prove the lemma sin
e f(x◦) 
an be 
al
ulated in O(γ2) time.For a square-free 2-mat
hing M with dM = x we 
an get a 2-mat
hing M◦ in G◦ with dM◦ = x◦,and 
onversely, for any 2-mat
hing M◦ of G◦ with dM◦ = x◦ we 
an de�ne a square-free 2-mat
hing Mof G with dM = x as des
ribed in Lemma 4.3.4. One only has to observe that for a 
orresponding pair
M,M◦, we have w(M) = w◦(M◦)+π(V1). This means that for any M with dM = x and w(M) = fsq(x)we 
an �nd an M◦ with w◦(M◦) = fsq(x) − π(V1), and 
onversely, for any M◦ with dM◦ = x◦ and
w◦(M◦) = f(x◦) we 
an �nd an M with w(M) = f(x◦) + π(V1), hen
e we are done.Theorem 4.6.1 follows from Lemma 4.6.7 and Theorems 4.6.3 and 4.6.4.4.7 A min-max formulaIn this se
tion we give a min-max formula that 
hara
terizes the maximum size of a square-free
2-mat
hing in a sub
ubi
 graph. The proof is based on the 
onne
tion between square-free 2-mat
hingsin G and 2-mat
hings in G◦ that was des
ribed in Se
tion 4.3.The following 
hara
terization of the maximum size of a 2-mat
hing (not ne
essarily square-free)
an be derived from a 
onstru
tion of Tutte [126℄.Theorem 4.7.1. Let G = (V,E) be a graph. The maximum size of a 2-mat
hing in G is equal to the
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hingsminimum value of
τG(U,S) = |V |+ |U | − |S|+

∑

T

⌊12 |E(T, S)|⌋, (4.4)where U and S are disjoint subsets of V , S is independent, and T ranges over the 
omponents of
G− U − S.We drop the subs
ript G if it is 
lear from the 
ontext. Our �rst observation is that U 
an beeliminated from the formula in the sub
ubi
 
ase.Theorem 4.7.2. Let G = (V,E) be a sub
ubi
 graph. The maximum size of a 2-mat
hing in G is equalto the minimum value of

τ ′G(S) = |V | − |S|+
∑

T

⌊12 |E(T, S)|⌋, (4.5)where S is an independent subset of V , and T ranges over the 
omponents of G− S.Proof. Let U and S be disjoint subsets of V that minimize (4.4). If U = ∅, then we are done, otherwisetake a node u ∈ U . As G is sub
ubi
, d(u) ≤ 3 and so we have the following 
ases.
• If u has all of its neighbors in U∪S, then u is a 
omponent of G−(U−u)−S and ⌊12 |E(u, S)|⌋ ≤ 1.Hen
e τ(U − u, S) ≤ τ(U,S).
• If u has exa
tly one neighbor in V \ (U ∪S), then let T be the 
omponent of G−U −S 
ontainingthe neighbor of u. Then ⌊12 |E(T + u, S)|⌋ ≤ ⌊12 |E(T, S)|⌋ + 1, hen
e τ(U − u, S) ≤ τ(U,S).
• If u has exa
tly two neighbors in V \ (U ∪ S), then we have two sub
ases. If these neighborsare 
ontained in the same 
omponent T of G − U − S then ⌊12 |E(T + u, S)|⌋ ≤ ⌊12 |E(T, S)|⌋ + 1so τ(U − u, S) ≤ τ(U,S). If the two neighbors are 
ontained in T1 and T2, then T1 + T2 + uwill form one 
omponent of G − (U − u) − S. It is easy to see that ⌊12 |E(T1 + T2 + u, S)|⌋ ≤
⌊12 |E(T1, S)|⌋ + ⌊12 |E(T2, S)|⌋+ 1 whi
h implies τ(U − u, S) ≤ τ(U,S) again.
• If u has three neighbors in V \ (U ∪ S), then, depending on the position of these neighbors in the
omponents of G−U −S, we may get one from two or three 
omponents when leaving u out from
U . One 
an easily 
he
k that the sum in (4.4) belonging to the 
omponents of G − U − S mayin
rease only by one in ea
h 
ase while the size of U always de
reases by one. That means that
τ(U − u, S) ≤ τ(U,S).The observations above imply that if U and S attain the minimum in (4.4) and the graph is sub
ubi
,then we 
an make U empty by trimming its nodes one by one so that the value τ(U,S) does not in
rease.At the end, we get an independent set S for whi
h τ ′(S) = τ(U,S), and we are done.Now we turn to the min-max formula 
hara
terizing the maximum size of a square-free 2-mat
hing.Let G be a sub
ubi
 graph, let S be an independent subset of V , and take a set C of node-disjoint 
y
les

C1, . . . , Cq of length four. We de�ne the C-
omponents of G− S as follows.De�nition 4.7.3 (C-
omponent). We say that u, v ∈ V \ S are in the same C-
omponent of G − S ifand only if one of the followings hold:
• u and v are in the same 
omponent of G− S, or
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• u ∈ V (T1), v ∈ V (T2) (where T1 and T2 are 
omponents of G − S), and there is a 
y
le C =

(v1, v2, v3, v4) ∈ C su
h that v1 ∈ V (T1), v3 ∈ V (T2), v2, v4 ∈ S.We say that C = (v1, v2, v3, v4) ∈ C �ts a C-
omponent T if v1, v3 ∈ V (T ) and v2, v4 ∈ S.In other words, a C-
omponent is the union of some 
omponents of G − S that are 
onne
ted with
y
les from C in a spe
ial 
on�guration. Using this de�nition, we 
an formalize our result.Theorem 4.7.4. Let G = (V,E) be a sub
ubi
 graph and let C be a maximal set of node-disjoint 
y
lesof length four. The maximum size of a square-free 2-mat
hing in G is equal to the minimum value of
τG(S) = |V | − |S|+

∑

T

⌊12 (|E(T, S)| − |CT |)⌋ − |K|, (4.6)where S is an independent subset of V , T ranges over the C-
omponents of G− S, CT ⊆ C denotes theset of 
y
les �tting T , and K is the set of K4's in G.Seemingly, the minimum value of (4.6) also depends on the 
hoi
e of C. The theorem implies that we
an anyhow take node-disjoint 
y
les maximally, the minimum value of τG(S) will always be the same,namely, the maximum size of a square-free 2-mat
hing.Proof. As a K4 forms a 
omponent of G, �rst we handle su
h a 
omponent separately. Let K ∈ K be a
K4-subgraph of G. For an independent set S ⊆ V , |S ∩K| = 0 or 1 by the de�nition of independen
e,and in both 
ases, |S∩K| = ⌊12(|E(K−S, S)|−|CK−S |)⌋. Thus, a square-free 2-mat
hing M of maximumsize satis�es that

|M ∩E(K)| = 3 = |K| − |S ∩K|+ ⌊12 (|E(K − S, S)| − |CK−S|)⌋ − 1,and hen
e it su�
es to 
onsider the 
ase when G has no K4 as a subgraph.First we show that the maximum is not more than the minimum. Let M be a square-free 2-mat
hingand take an independent subset S of V . We 
laim that for ea
h C-
omponent T of G− S, the numberof edges in M spanned by V (T ) ∪ S is at most |V (T )|+ ⌊12(|E(T, S)| − |CT |)⌋. Indeed,
2|M ∩ E(T + S)| = 2|M ∩ E(T )| + 2|M ∩ E(T, S)|

≤ 2|M ∩ E(T )| + |M ∩ E(T, S)|+ |E(T, S)| − |CT |
≤ 2|V (T )|+ |E(T, S)| − |CT |.Here, T + S denotes the graph indu
ed by V (T ) ∪ S. Hen
e we have

|M | ≤
∑

T

(|V (T )|+ ⌊12(|E(T, S)| − |CT |)⌋)

= |V | − |S|+
∑

T

⌊12(|E(T, S)| − |CT |)⌋.Now we turn to the reverse inequality. A

ording to the above mentioned, we may assume that Gdoes not 
ontain a K4. Let C = {C1, . . . , Cq} and let G◦ = (V ◦, E◦) denote the graph obtained from
G = (V,E) by shrinking C1, C2, . . . , Cq . By Theorem 4.7.2, the maximum size of a 2-mat
hing in G◦ isequal to the minimum value of

τ ′G◦(S◦) = |V ◦| − |S◦|+
∑

T ◦

⌊12 |E◦(T ◦, S◦)|⌋. (4.7)
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hingsFrom now let S◦ ⊆ V ◦ be an independent set attaining the minimum in (4.7). In Se
tion 4.3, wehave already shown that the maximum size of a square-free 2-mat
hing in G is equal to τ ′G◦(S◦) + 2q.So we only have to �nd an independent subset S of V su
h that τG(S) = τ ′G◦(S◦) + 2q.Let S denote the set of nodes in V that 
orresponds to S◦. Sin
e no self-loops are in
ident to nodesin S◦ by the de�nition of an independent set, S is obviously independent. We 
laim that τG(S) =

τ ′G◦(S◦) + 2q. To see this, we will blow ba
k the 
y
les one by one and show that (4.7) in
reases by twoat ea
h step. Assume that some of the 
y
les are already blown ba
k, and G′ and S′ are the a
tual graphand an independent set, while G′′ and S′′ are those arising after blowing ba
k the next square-edge. Wealso use the notation C′ and C′′ for the set of 
y
les already blown ba
k.If the edge has both of its end-nodes in V ′ \ S′ then |V ′′| = |V ′| + 2, |S′′| = |S′| and the set ofedges going between S′ and V ′ \S′ does not 
hange. Hen
e τG′′(S′′) = τG′(S′)+2. Now assume that thesquare-edge has one of its end-nodes in S′ and the other in T ′ where T ′ is a C′-
omponent of G′ − S′.Then we have |V ′′| = |V ′|+ 2, |S′′| = |S′|+ 1, and |E(T ′′, S′′)| − |C′′T ′′ | = |E(T ′, S′)| − |C′T ′ |+ 2. Hen
e
τG′′(S′′) = τG′(S′) + 2 again, and we are done.Remark 4.7.5. It is easy to see that both an algorithm and a min-max theorem 
an be presented inthe slightly more general 
ase when a list of forbidden squares is given in the graph. That is, if we denoteby L the list, we are looking for a maximum L-free 2-mat
hing M where L-free means that M 
ontainsat most three edges from ea
h square in L. The only di�eren
e is that we have to take node-disjoint
y
les of length four maximally from L and only shrink these 
y
les.By using the min-max result, we 
an prove a spe
ial 
ase of a 
onje
ture of Jordán appeared in [79℄.To des
ribe the 
onje
ture, �rst we give some de�nitions.We 
all an ordered pair L = (Z,P) a 
lump of G if Z is a 
ut of size k − 1 and P is a partition of
V \Z su
h that no edge of G joins two distin
t member of P. A 
lump L 
overs a pair of nodes u, v if
u and v belong to distin
t members of P. A bush B is a set of 
lumps su
h that ea
h pair of nodes is
overed by at most two of them. A bush B 
overs a pair of nodes if it 
ontains a 
lump 
overing them.Two bushes B1 and B2 are disjoint if no pair of nodes is 
overed by both of them. Let

σ(B) = ⌈12
∑

(Z,P)∈B

(|P| − 1)⌉.It is easy to see that in order to make G k-
onne
ted, one must add a set of at least ∑B∈D σ(B) edgesto G for any 
olle
tion D of disjoint bushes.Conje
ture 4.7.6 (Jordán). Let G be a (k − 1)-
onne
ted graph. Then the minimum number of edgesthat must be added to G to make it k-
onne
ted is equal to the maximum value of ∑B∈D σ(B), wherethe maximum is taken over all sets of pairwise disjoint bushes D of G.The 
onje
ture 
an be easily veri�ed for k = n− 1 and n− 2. Now we show how it follows from ourmin-max result when k = n− 3.Theorem 4.7.7. Let G be an (n − 4)-
onne
ted graph. Then the minimum number of edges that mustbe added to G to make it (n − 3)-
onne
ted is equal to the maximum value of ∑B∈D σ(B), where themaximum is taken over all sets of pairwise disjoint bushes D of G.



4.7. A min-max formula 63Proof. Obviously, the maximum is at most the minimum. We prove the reverse inequality. Let Ḡ = (V, Ē)be the 
omplement of the graph, whi
h is a sub
ubi
 graph. We have already seen that a graph is
(n − 3)-
onne
ted if and only if its 
omplement is a square-free 2-mat
hing. Take a maximal familyof node-disjoint 
y
les C1, . . . , Cq of length four in Ḡ. However, we know, by the min-max result, thatthe minimum number of edges that must be added to G to make it (n − 3)-
onne
ted is equal to themaximum value of

|Ē| − (|V | − |S|+
∑

T

⌊12(|Ē(T, S)| − |CT |)⌋ − |K|), (4.8)where S is an independent subset of V in Ḡ, T ranges over the C-
omponents of Ḡ − S, and K is theset of K4's of Ḡ. Assume that S attains the minimum in (4.8). Let T1, . . . , Tt be the C-
omponents of
Ḡ− S interse
ting no K4. We will de�ne a set of disjoint bushes D of G su
h that

∑

B∈D

σ(B) ≥ |Ē| − (|V | − |S|+
∑

T

⌊12 (|Ē(T, S)| − |CT |)⌋ − |K|), (4.9)whi
h would 
learly prove the theorem.For i = 1, . . . , t, let Bi be the set of the following 
lumps:
• for v ∈ Ti with dḠ(v) = 3, let L be the star of v, namely L = (Z,P) where Z = V \ (NḠ(v)∪{v})and P = {{v}, NḠ(v)};
• for a 
y
le C = (v1, v2, v3, v4) ∈ C �tting Ti, let L = (Z,P) be a 
lump su
h that Z = V \ V (C)and P = {{v1, v3}, {v2, v4}}.Here NG(v) is the set of nodes adja
ent to v in G.Clearly, these pairs are 
lumps in G. Moreover, ea
h pair of nodes is 
overed by at most two of them.Hen
e the Bi's form a set D of pairwise disjoint bushes of G. We have

σ(Bi) = ⌈12
∑

(Z,P)∈Bi

(|P| − 1)⌉

= ⌈12 (|{v ∈ V (Ti) : dḠ(v) = 3}|+ |CTi
|)⌉

≥ ⌈12 (
∑

v∈Ti

(dḠ(v)− 2) + |CTi
|)⌉

= ⌈12 (2|Ē(Ti)|+ |Ē(Ti, S)| − 2|V (Ti)|+ |CTi
|)⌉

= |Ē(Ti)| − |V (Ti)|+ ⌈12(|Ē(Ti, S)|+ |CTi
|)⌉

= |Ē(Ti + S)| − |V (Ti)| − ⌊12 (|Ē(Ti, S)| − |CTi
|)⌋Note that for a subgraph T of Ḡ = (V, Ē), Ē(T ) is the set of edges of T .For T ∈ K, the bush BT will 
ontain a single 
lump twi
e. Namely, if V (T ) = {v1, v2, v3, v4}, then

L = (Z,P) is de�ned by Z = V \ V (T ) and P = {{v1}, {v2}, {v3}, {v4}}. Clearly, σ(BT ) = 3. Bysumming these values over the bushes de�ned above we get
∑

B∈D

σ(B) ≥
t
∑

i=1

(|Ē(Ti + S)| − |V (Ti)| − ⌊12(|Ē(Ti, S)| − |CTi
|)⌋) + 3|K|

=
∑

T

(|Ē(T + S)| − |V (T )| − ⌊12 (|Ē(T, S)| − |CT |)⌋) + |K|

= |Ē| − (|V | − |S|+
∑

T

⌊12 (|Ē(T, S)| − |CT |)⌋ − |K|),
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hingswhere T ranges over the C-
omponents of G − S and the se
ond equality follows from |Ē(T + S)| =
6, |V (T )| = 4 if T ∈ K and |Ē(T +S)| = 6, |V (T )| = 3, |Ē(T, S)| = 3 if T + v ∈ K for some v ∈ S.



Chapter 5
Kt,t- and Kt+1-free t-mat
hings

Let K be a list of forbidden Kt,t and Kt+1 subgraphs where t ≥ 2 is assumed throughout the 
hapter.For disjoint subsets X,Y of V we denote by K[X] and K[X,Y ] the members of K 
ontained in X andhaving edges only between X and Y , respe
tively. That is, K[X,Y ] stands for forbidden Kt,t's whose
olour 
lasses are subsets of X and Y . Re
all that VK and EK denote the node-set and edge-set of theforbidden graph K ∈ K, respe
tively.5.1 Main theoremBefore stating our theorem, let us re
all the well-known min-max formula on the maximum size ofa b-mat
hing (see e.g. [114, Vol A, p. 562.℄).Theorem 5.1.1 (Maximum size of a b-mat
hing). Let G = (V,E) be a graph with an upper bound
b : V → Z+. The maximum size of a b-mat
hing is equal to the minimum value of

b(U) + |E[W ]|+
∑

T

⌊

1
2(b(T ) + |E[T,W ]|)

⌋ (5.1)where U and W are disjoint subsets of V , and T ranges over the 
onne
ted 
omponents of G−U −W .Let us now formulate our theorem. There are minor te
hni
al di�
ulties when t = 2 that do noto

ur for larger t. In order to make both the formulation and the proof simpler it is worth introdu
ing thefollowing de�nitions. We refer to forbidden K2,2 and K3 subgraphs as squares and triangles, respe
tively.De�nition 5.1.2. For t = 2, we 
all a 
omplete subgraph on four nodes square-full if it 
ontains threeforbidden squares.Note that, by assumption (1.10), every square-full subgraph is a 
onne
ted 
omponent of G. Wedenote the number of square-full 
omponents of G by S(G) for t = 2, and de�ne S(G) = 0 for t > 2. Itis easy to see that a K-free b-mat
hing 
ontains at most three edges from ea
h square-full 
omponentof G. The following de�nition will be used in the proof of the theorem.De�nition 5.1.3. For t = 2, a forbidden triangle is 
alled square-
overed if its node set is 
ontainedin the node set of a forbidden square, otherwise un
overed.The theorem is as follows. 65



66 5. Kt,t- and Kt+1-free t-mat
hingsTheorem 5.1.4. Let G = (V,E) be a graph with an upper bound b : V → Z+ and K be a list of forbidden
Kt,t and Kt+1 subgraphs of G so that (1.8), (1.9) and (1.10) hold. Then the maximum size of a K-free
b-mat
hing is equal to the minimum value of

b(U) + |E[W ]| − |K̇[W ]|+
∑

T∈P

⌊

1
2(b(T ) + |E[T,W ]| − |K̇[T,W ]|)

⌋

− S(G) (5.2)where U and W are disjoint subsets of V , P is a partition of the 
onne
ted 
omponents of G− U −Wand K̇ ⊆ K is a 
olle
tion of node-disjoint forbidden subgraphs.For �xed U,W,P and K̇ the value of (5.2) is denoted by τ(U,W,P, K̇). It is easy to see that the
ontribution of a square-full 
omponent to (5.2) is always 3 and a maximum K-free b-mat
hing 
ontainsexa
tly 3 of its edges. Hen
e we may 
ount these 
omponents of G separately, so the following theoremimmediately implies the general one.Theorem 5.1.5. Let G = (V,E) be a graph with an upper bound b : V → Z+ and K be a list of forbidden
Kt,t and Kt+1 subgraphs of G so that (1.8), (1.9) and (1.10) hold. Furthermore, if t = 2, assume that Ghas no square-full 
omponent. Then the maximum size of a K-free b-mat
hing is equal to the minimumvalue of

b(U) + |E[W ]| − |K̇[W ]|+
∑

T∈P

⌊

1
2(b(T ) + |E[T,W ]| − |K̇[T,W ]|)

⌋ (5.3)where U and W are disjoint subsets of V , P is a partition of the 
onne
ted 
omponents of G− U −Wand K̇ ⊆ K is a 
olle
tion of node-disjoint forbidden subgraphs.Proof of max ≤ min in Theorem 5.1.5. Let M be a K-free b-mat
hing. Then 
learly |M ∩ (E[U ] ∪
E[U, V \ U ])| ≤ b(U) and |M ∩ E[W ]| ≤ |E[W ]| − |K̇[W ]|. Moreover, for ea
h T ∈ P we have

2 · |M ∩ (E[T ] ∪ E[T,W ])| = 2 · |M ∩ E[T ]|+ 2 · |M ∩ E[T,W ]|
≤ 2 · |M ∩ E[T ]|+ |M ∩ E[T,W ]|
+ |E[T,W ]| − |K̇[T,W ]|
≤ b(T ) + |E[T,W ]| − |K̇[T,W ]|.These together prove the inequality.

5.2 ShrinkingIn the proof of max ≥ min we use two shrinking operations to get rid of the Kt,t and Kt+1 subgraphsin K.De�nition 5.2.1 (Shrinking a Kt,t subgraph). Let K be a Kt,t subgraph of G = (V,E) with 
olour
lasses KA and KB . Shrinking K in G 
onsists of the following operations (see Figure 5.1:
• identify the nodes in KA, and denote the 
orresponding node by ka,
• identify the nodes in KB , and denote the 
orresponding node by kb, and
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KB

KA ka

kb

t− 1 edges
Figure 5.1: Shrinking a Kt,t subgraph

VK

k

⌊ t+1
2 ⌋ − 1 loops

Figure 5.2: Shrinking a Kt+1 subgraph
• repla
e the edges between KA and KB with t − 1 parallel edges between ka and kb (we 
all theset of these edges a shrunk bundle between ka and kb).When identifying the nodes in KA and KB , the edges (and also loops) spanned by KA and KB arerepla
ed by loops on ka and kb, respe
tively. Ea
h edge e ∈ E \EK is denoted by e again after shrinkinga Kt,t subgraph and is 
alled the image of the original edge. By abuse of notation, for an edge set

F ⊆ E \EK , the 
orresponding subset of edges in the 
ontra
ted graph is also denoted by F . Hen
e foran edge set F ⊆ E \ EK we have hF (KA) = dF (ka), hF (KB) = dF (kb).De�nition 5.2.2 (Shrinking a Kt+1 subgraph). Let K be a Kt+1 subgraph of G = (V,E). Shrinking
K in G 
onsists of the following operations (see Figure 5.2:
• identify the nodes in VK , and denote the 
orresponding node by k,
• repla
e the edges in EK by ⌊ t+1

2

⌋

− 1 loops on the new node k.Again, for an edge set F ⊆ E \ EK , the 
orresponding subset of edges in the 
ontra
ted graph isalso denoted by F .We usually denote the graph obtained by applying one of the shrinking operations by G◦ = (V ◦, E◦).Throughout the se
tion, the graph G, the fun
tion b and the list K of forbidden subgraphs are supposedto satisfy the 
onditions of Theorem 5.1.5. It is easy to see, by using (1.10), that two members of K areedge-disjoint if and only if they are also node-disjoint, hen
e we simply 
all su
h pairs disjoint.



68 5. Kt,t- and Kt+1-free t-mat
hingsThe following two lemmas give the 
onne
tion between the maximum size of a K-free b-mat
hing in
G and a K◦-free b◦-mat
hing in G◦ where b◦ is a properly de�ned upper bound on V ◦ and K◦ is a listof forbidden subgraphs in the 
ontra
ted graph.Lemma 5.2.3. Let G◦ = (V ◦, E◦) be the graph obtained by shrinking a Kt,t subgraph K. Let K◦ bethe set of forbidden subgraphs disjoint from K and de�ne b◦ as b◦(v) = b(v) for v ∈ V \ VK and
b◦(ka) = b◦(kb) = t. Then the di�eren
e between the maximum size of a K-free b-mat
hing in G and themaximum size of a K◦-free b◦-mat
hing in G◦ is exa
tly t2 − t.Lemma 5.2.4. Let G◦ = (V ◦, E◦) be the graph obtained by shrinking a Kt+1 subgraph K ∈ K where
K is un
overed if t = 2. Let K◦ be the set of forbidden subgraphs disjoint from K and de�ne b◦ as
b◦(v) = b(v) for v ∈ V \ VK , b◦(k) = t if t is even and b◦(k) = t + 1 if t is odd. Then the di�eren
ebetween the maximum size of a K-free b-mat
hing in G and the maximum size of a K◦-free b◦-mat
hingin G◦ is exa
tly ⌊ t22 ⌋.The proof of Lemma 5.2.3 is based on the following 
laim.Claim 5.2.5. Assume that K ∈ K is a Kt,t subgraph with 
olour 
lasses KA and KB and M ′ is a
K-free b-mat
hing of G − EK . Then M ′ 
an be extended to a K-free b-mat
hing M of G with |M | =
|M ′|+ t2 −max{1, hM ′(KA), hM ′(KB)}.Proof. First we 
onsider the 
ase t ≥ 3. Let P be a minimum size mat
hing of K 
overing ea
h node
v ∈ VK with dM ′(v) = 1 (note that dM ′(v) ≤ 1 for v ∈ VK as d(v) ≤ t + 1). If there is no su
h node,then let P 
onsist of an arbitrary edge in EK . We 
laim that M = M ′ ∪ (EK \ P ) satis�es the above
onditions. Indeed, M is a b-mat
hing and |M ∩ EK | = t2 −max{1, hM ′(KA), hM ′(KB)} 
learly holds,so we only have to verify that it is also K-free.Assume that there is a forbidden Kt,t subgraph K ′ in M with 
olour 
lasses K ′

A,K
′
B . EK ′ must
ontain an edge uv ∈ EK ∩M with u ∈ K ′

A and v ∈ K ′
B. By symmetry, we may assume that u ∈ KA.As b(u) = t, ΓM (u) = K ′

B and also |ΓM (u) ∩KB | ≥ t− 1. Hen
e |K ′
B ∩KB | ≥ t− 1. Consider a node

z ∈ KA. Sin
e dM (z,KB) ≥ t − 1 and t ≥ 3, we get dM (z,K ′
B) > 0, thus KA ⊆ ΓM(K ′

B). Be
ause of
ΓM (K ′

B) = K ′
A, this gives KA = K ′

A. KB = K ′
B follows similarly, giving a 
ontradi
tion.If there is a forbidden Kt+1 subgraph K ′ in M , then EK ′ must 
ontain an edge uv ∈ EK ∩ M ,

u ∈ KA. As above, |VK ′ ∩KB | ≥ t− 1. Using t ≥ 3 again, KA ⊆ ΓM (VK ′ ∩KB) ⊆ VK ′. But KA ⊆ VK ′is a 
ontradi
tion sin
e t+ 1 = |VK ′ | ≥ |VK ′ ∩KA|+ |VK ′ ∩KB | ≥ t+ t− 1 = 2t− 1 > t+ 1.Now let t = 2 and KA = {v1, v3}, KB = {v2, v4}. If max{hM ′(KA), hM ′(KB)} ≤ 1, then we mayassume by symmetry that dM ′(v1) = dM ′(v2) = 0. Clearly, M = M ′ ∪ {v1v2, v1v4, v2v3} is a K-free2-mat
hing. If max{hM ′(KA), hM ′(KB)} = 2, we 
laim that at least one of M1 = M ′ ∪{v1v2, v3v4} and
M2 = M ′ ∪ {v1v4, v2v3} is K-free. Assume M1 
ontains a forbidden square or triangle K ′; by symmetryassume it 
ontains the edge v1v2. If K ′ 
ontains v3v4 as well, then K ′ is the square v1v3v4v2. Otherwise,it 
onsists of v1v2 and a path L of length 2 or 3 between v1 and v2, not 
ontaining v3 and v4. In the�rst 
ase, the only forbidden subgraph possibly 
ontained in M2 is the square v1v3v2v4, implying that
{v1, v2, v3, v4} is a square-full 
omponent, a 
ontradi
tion. In the latter 
ase, it is easy to see that M2
annot 
ontain a forbidden subgraph.



5.2. Shrinking 69Proof of Lemma 5.2.3. First we show that if M is a K-free b-mat
hing in G then there is a K◦-free
b◦-mat
hing M◦ in G◦ with |M◦| ≥ |M | − (t2 − t). Let M ′ = M \ EK . Clearly, |M ∩ EK | ≤ t2 −
max{1, hM ′(KA), hM ′(KB)}. In G◦, let M◦ be the union of M ′ and t−max{1, dM ′(ka), dM ′(kb)} paralleledges from the shrunk bundle between ka and kb. Is is easy to see that M◦ is a K◦-free b◦-mat
hing in
G◦ with |M◦| ≥ |M | − (t2 − t).The proof is 
ompleted by showing that for an arbitrary K◦-free b◦-mat
hing M◦ in G◦ there existsa K-free b-mat
hing M in G with |M | ≥ |M◦| + (t2 − t). Let H denote the set of parallel edges in theshrunk bundle between ka and kb, and let M ′ = M◦ \H. Now |M◦ ∩H| ≤ t−max{1, dM ′(ka), dM ′(kb)}and, by Claim 5.2.5, M ′ may be extended to a K-free b-mat
hing in G with |M ∩ EK | = t2 −
max{1, hM ′(KA), hM ′(KB)}, that is

|M | = |M◦| − |M◦ ∩H|+ |M ∩ EK | ≥ |M◦| − (t−max{1, dM ′(ka), dM ′(kb)})
+ (t2 −max{1, hM ′(KA), hM ′(KB)}) ≥ |M◦|+ (t2 − t).

Lemma 5.2.4 
an be proved in a similar way by using the following 
laim.Claim 5.2.6. Assume that K ∈ K is a Kt+1 subgraph and M ′ is a K-free b-mat
hing of G − EK . If
t = 2, then assume that K is un
overed. Then M ′ 
an be extended to obtain a K-free b-mat
hing M of
G with |M | = |M ′|+

(

t+1
2

)

−
⌈

max{1,hM′(VK )}
2

⌉.Proof. Let P be a minimum size subgraph of K 
overing ea
h node v ∈ VK with dM ′(v) = 1 (so Pis a mat
hing or a mat
hing and one more edge in EK). If there is no su
h node, then let P 
onsistof an arbitrary edge in EK . For t = 2 and 3, we will 
hoose P in a spe
i�
 way, as given later in theproof. We show that M = M ′ ∪ (EK \ P ) satis�es the above 
onditions. Indeed, M is a b-mat
hing and
|M ∩ EK | =

(

t+1
2

)

−
⌈

max{1,hM′(K)}
2

⌉ 
learly holds, so we only have to show that it is also K-free.Assume that there is a forbidden Kt+1 subgraph K ′ in M . EK ′ must 
ontain an edge uv ∈ EK ∩M .By the minimal 
hoi
e of P at least one of |ΓM (u) ∩ VK | ≥ t− 1 and |ΓM (v) ∩ VK | ≥ t− 1 is satis�edwhi
h implies |VK ′ ∩ VK | ≥ t − 1. For t ≥ 3 this immediately implies VK ⊆ ΓM(VK ′ ∩ VK) ⊆ VK ′ , a
ontradi
tion.If t = 2, then |VK ′∩VK | ≥ 1 does not imply VK ⊆ VK ′ and an improper 
hoi
e of P may enable M to
ontain a forbidden K3. The only su
h 
ase is when hM ′(VK) = 3, VK = {v1, v2, v3}, VK ′ = {v2, v3, v4},
v2v4, v3v4 ∈ M ′ and P = {v1v2, v1v3} (Figure 5.3). In this 
ase, we may leave the edge in
ident to v1from M ′ and then P = {v2v3} is a good 
hoi
e. Indeed, the only problem 
ould be that v1v2v3v4 is aforbidden square, 
ontradi
ting K being un
overed.Otherwise hM ′(VK) ≤ 2 implies |P | ≤ 1. Hen
e at least one of |ΓM (u)∩VK | = 2 and |ΓM (v)∩VK | = 2is satis�ed meaning K ′ = K, a 
ontradi
tion again.Now assume that there is a forbidden Kt,t subgraph K ′ in M with 
olour 
lasses K ′

A,K
′
B . Thesame argument gives a 
ontradi
tion for t ≥ 4. However, in 
ase of t = 3, 
hoosing P arbitrarilymay enable M to 
ontain a forbidden K3,3 in the following single 
on�guration: VK = {v1, v2, v3, v4},

K ′
A = {v1, v2, x}, K ′

B = {v3, v4, y}, xv3, xv4, yv1, yv2, xy ∈ M ′ and P = {v1v2, v3v4} (Figure 5.4). Inthis 
ase, P = {v1v4, v2v3} is a good 
hoi
e.
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v1

v2

v3

v4

: edges in M: edges in P

v1

v2

v3

v4

: edges in M: edges in PFigure 5.3: Choi
e of P for t = 2 in the proof of Claim 5.2.6
v1 v2

v4v3 y

x

K ′
A

K ′
B

K : edges in M ′: edges in P: edges in E \ (P ∪M ′)

v1 v2

v4v3 y

x

K ′
A

K ′
B

K

Figure 5.4: Choi
e of P for t = 3 in the proof of Claim 5.2.6
v1

v3

v2

v4

v5 : edges in M: edges in P

v1

v3

v2

v4

v5 : edges in M: edges in PFigure 5.5: Choi
e of P for t = 2 in the proof of Claim 5.2.6Finally, for t = 2 no forbidden square appears if hM ′(K) ≤ 2 as otherwise K would be a square-
overed triangle. If hM ′(K) = 3, then su
h a square K ′ may appear only if VK = {v1, v2, v3}, VK ′ =

{v2, v3, v4, v5}, v3v4, v4v5, v5v2 ∈M ′, P = {v1v2, v1v3} (v1 6= v4, v5 as K is un
overed). In this 
ase both
P = {v1v2, v2v3} and P = {v1v3, v2v3} give a proper M (Figure 5.5).Proof of Lemma 5.2.4. First we show that if M is a K-free b-mat
hing in G then there is a K◦-free
b◦-mat
hing M◦ in G◦ with |M◦| ≥ |M | −

⌊

t2

2

⌋. Let M ′ = M \ EK . Clearly, |M ∩ EK | ≤
(

t+1
2

)

−
⌈

max{1,hM′ (VK)}
2

⌉. In G◦, let M◦ be the union of M ′ and ⌊ t−max{1,dM′ (k)}
2

⌋ or ⌊ t+1−max{1,dM′ (k)}
2

⌋ loopson k depending on whether t is even or not, respe
tively. Is is easy to see thatM◦ is a K◦-free b◦-mat
hingin G◦ with |M◦| ≥ |M | −
⌊

t2

2

⌋.The proof is 
ompleted by showing that for an arbitrary K◦-free b◦-mat
hing M◦ in G◦ there existsa K-free b-mat
hing M in G with |M | ≥ |M◦|+
⌊

t2

2

⌋. Let H denote the set of loops on k obtained when



5.3. Proof of Theorem 5.1.5 71shrinking K, and let M ′ = M◦ \ H. Now |M◦ ∩ H| ≤
⌊

t−max{1,dM′ (k)}
2

⌋ if t is even and |M◦ ∩ H| ≤
⌊

t+1−max{1,dM′ (k)}
2

⌋ if t is odd. By Claim 5.2.5,M ′ 
an be extended modi�ed as to get a K-free b-mat
hingin G with |M ∩ EK | =
(

t+1
2

)

−
⌈

max{1,hM′(VK)}
2

⌉, that is
|M | = |M◦| − |M◦ ∩H|+ |M ∩ EK | ≥ |M◦| −

⌊

t−max{1,dM′ (k)}
2

⌋

+
(

t+1
2

)

−
⌈

max{1,hM′ (VK)}
2

⌉

≥ |M◦|+
⌊

t2

2

⌋if t is even and
|M | = |M◦| − |M◦ ∩H|+ |M ∩ EK | ≥ |M◦| −

⌊

t+1−max{1,dM′ (k)}
2

⌋

+
(

t+1
2

)

−
⌈

max{1,hM′ (VK)}
2

⌉

≥ |M◦|+
⌊

t2

2

⌋if t is odd.5.3 Proof of Theorem 5.1.5We prove max ≥ min by indu
tion on |K|. For K = ∅, this is simply a 
onsequen
e of Theorem 5.1.1.Assume now that K 6= ∅ and let K be a forbidden subgraph su
h that K is un
overed if t = 2. Let
G◦ = (V ◦, E◦) denote the graph obtained by shrinking K, let b◦ be de�ned as in Lemma 5.2.3 or 5.2.4depending on whether K is a Kt,t or a Kt+1. We denote by K◦ the list of forbidden subgraphs disjointfrom K.By indu
tion, the maximum size of a K◦-free b◦-mat
hing in G◦ is equal to the minimum value of
τ(U◦,W ◦,P◦, K̇◦). Let us 
hoose an optimal U◦,W ◦,P◦, K̇◦ so that |U◦| is minimal. The following 
laimgives a useful property of U◦.Claim 5.3.1. Assume that v ∈ U is su
h that d(v,W ) + |Γ(v) ∩ (V \W )| ≤ b(v) + 1. Then τ(U −
v,W,P ′, K̇) ≤ τ(U,W,P, K̇) where P ′ is obtained from P by repla
ing its members in
ident to v by theirunion plus v.Proof. By removing v from U , b(U) de
reases by b(v). |E[W ]| − |K̇[W ]| remains un
hanged, while thebound on d(v,W ) + |Γ(v) ∩ (V \W )| implies that the in
rement in the sum over the 
omponents of
G− U −W is at most b(v).Case 1: K is a Kt,t with 
olour 
lasses KA and KB.By Lemma 5.2.3, the di�eren
e between the maximum size of a K-free b-mat
hing in G and themaximum size of a K◦-free b◦-mat
hing in G◦ is exa
tly t2 − t. We will de�ne U,W,P and K̇ su
h that

τ(U,W,P, K̇) = τ(U◦,W ◦,P◦, K̇◦) + t2 − t. (5.4)The shrinking repla
es KA and KB by two nodes ka and kb with t− 1 parallel edges between them.Let U,W and P denote the pre-images of U◦,W ◦,P◦ in G, respe
tively and let K̇ = K̇◦ ∪ {K}. By(1.10), dG◦−kb(ka), dG◦−ka(kb) ≤ t. Sin
e b◦(ka) = b◦(kb) = t, Claim 5.3.1 and the minimal 
hoi
e of
|U◦| implies that if ka ∈ U◦, then kb ∈W ◦.Hen
e we have the following 
ases (T ◦ denotes a member of P◦). In ea
h 
ase we are only 
onsideringthose terms in τ(U◦,W ◦,P◦, K̇◦) that 
hange when taking τ(U,W,P, K̇) instead.
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Shrinking

τ(U◦,W ◦,P◦, K̇◦) = 5τ(U,W,P, K̇) = 5 + 32 − 3 = 11Figure 5.6: Extending M◦

• ka ∈ U◦, kb ∈W ◦: b(U) = b◦(U◦) + t2 − t.
• ka, kb ∈W ◦: |E[W ]| = |E◦[W ◦]|+ t2 − t+ 1 and |K̇[W ]| = |K̇◦[W ◦]|+ 1.
• ka ∈W ◦, kb ∈ T ◦: |E[T,W ]| = |E◦[T ◦,W ◦]|+ t2 − t+ 1, b(T ) = b◦(T ◦) + t2 − t and |K̇[T,W ]| =
|K̇◦[T ◦,W ◦]|+ 1 (see Figure 6.9 for an example).

• ka ∈ T ◦, kb ∈W ◦: similar to the previous 
ase.
• ka, kb ∈ T ◦: b(T ) = b◦(T ◦) + 2t2 − 2t.(5.4) is satis�ed in ea
h of the above 
ases, hen
e we are done. Note that in the �rst and the last
ase we may leave out K from K̇ as it is not 
ounted in any term.Case 2: K is a Kt+1.By Lemma 5.2.4, the di�eren
e between the maximum size of a K-free b-mat
hing in G and themaximum size of a K◦-free b◦-mat
hing in G◦ is ⌊ t22 ⌋. We show that for the pre-images U,W and P of

U◦,W ◦ and P◦ with K̇ = K̇◦ ∪ {K} satisfy
τ(U,W,P, K̇) = τ(U◦,W ◦,P◦, K̇◦) +

⌊

t2

2

⌋

. (5.5)After shrinking K = (VK , EK) we get a new node k with ⌊ t+1
2

⌋

− 1 loops on it. (1.10) implies thatthere are at most t+ 1 non-loop edges in
ident to k. Sin
e b◦(k) ≥ t, Claim 5.3.1 implies k 6∈ U . Hen
ewe have the following two 
ases (T ◦ denotes a member of P◦).
• k ∈W ◦: |E[W ]| = |E◦[W ◦]|+

(

t+1
2

)

−
⌊

t+1
2

⌋

+ 1 and |K̇[W ]| = |K̇◦[W ◦]|+ 1.
• k ∈ T ◦: b(T ) = b◦(T ◦) + t2 if t is even and b(T ) = b◦(T ◦) + t2 − 1 for an odd t.



5.4. Algorithm 73(5.5) is satis�ed in both 
ases, hen
e we are done. We may also leave out K from K̇ in the se
ond
ase as it is not 
ounted in any term.5.4 AlgorithmIn this se
tion we show how the proof of Theorem 5.1.5 immediately yields an algorithm for �ndinga maximum K-free b-mat
hing in strongly polynomial time. In su
h problems, an important questionfrom an algorithmi
 point of view is how K is represented. For example, in the K-free b-mat
hingproblem for bipartite graphs solved by Pap in [110℄, the set of ex
luded subgraphs may be exponentiallylarge. Therefore Pap assumes that K is given by a membership ora
le, that is, a subroutine is givenfor determining whether a given subgraph is a member of K. However, with su
h an ora
le there is nogeneral method for determining whether K = ∅. Fortunately, we do not have to ta
kle su
h problems:by the next 
laim, we may assume that K is given expli
itly, as its size is linear in n. We use n = |V |,
m = |E| for the number of nodes and edges of the graph, respe
tively.Claim 5.4.1. If the graph G = (V,E) satis�es (1.8) and (1.10), then the total number of Kt,t and Kt+1subgraphs is bounded by (t+3)n

2 .Proof. Assume that v ∈ V is 
ontained in a forbidden subgraph and so dG(v) = t + 1. If we sele
tan edge in
ident to v, the remaining t edges may be 
ontained in at most one Kt+1 subgraph hen
ethe number of Kt+1's 
ontaining v is at most t + 1. However, these t edges also determine one of the
olour 
lasses of those Kt,t's 
ontaining them. If we pi
k a node v′ from this 
olour 
lass (implying
dG(v

′) = t + 1), pi
k an edge in
ident to v′ (but not to v), then the remaining t edges, if they do so,exa
tly determine the other 
olour 
lass of a Kt,t subgraph. Therefore the number of Kt,t subgraphs
ontaining v is bounded by (t+1)t = t2+t. Hen
e the total number of forbiddenKt,t andKt+1 subgraphsis at most (t2+t)n
2t + (t+1)n

t+1 = (t+3)n
2 .Now we turn to the algorithm. First we 
hoose an in
lusionwise maximal subset H = {H1, . . . ,Hk}of disjoint forbidden subgraphs greedily. For t = 2, let us always 
hoose squares as long as possible andthen go on with triangles. This 
an be done in O(t3n) time as follows. Maintain an array of size mthat en
odes for ea
h edge whether it is used in one of the sele
ted forbidden subgraphs or not. Whenin
reasing H, one only has to 
he
k whether any of the edges of the examined forbidden subgraph isalready used, whi
h takes O(t2) time. This and Claim 5.4.1 together give an O(t3n) bound.Let us shrink the members of H simultaneously (this 
an be easily done sin
e they are disjoint),resulting in a graph G′ = (V ′, E′) with a bound b′ : V ′ → Z+ and no forbidden subgraphs sin
e H wasmaximal. One 
an �nd a maximal b′-mat
hing M ′ in G′ in O(|V ′||E′| log |V ′|) = O(nm logm) time as in[50℄. Using the 
onstru
tions des
ribed in Lemmas 5.2.3 and 5.2.4 for Hk, ...,H1, this 
an be modi�edinto a maximal K-free b-mat
hing M . Note that, for t = 2, Hi is always un
overed in the a
tual graphby the sele
tion rule. A dual optimal solution U,W,P, K̇ 
an be 
onstru
ted simultaneously as in theproof of Theorem 5.1.5. The best time bound of the shrinking and extension steps may depend on thedata stru
ture used and the representation of the graph. In any 
ase, one su
h step may be performedin O(m) time and |H| = O(n), hen
e the total running time is O(t3n+ nm logm).
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Chapter 6Polyhedral des
riptions
6.1 Main resultsLet G = (V,E) be a graph and b : V → Z+ an upper bound on the node set su
h that for any T ∈ Tand any node v of T ,

dG(v) ≤ 3, (6.1)
b(v) = 2. (6.2)These settings 
learly in
ludes and generalizes the triangle-free 2-fa
tor and 2-mat
hing problems insub
ubi
 graphs.In this 
hapter we give new proofs of Theorems 1.4.5 and 1.4.7 in a slightly more general form, basedon a newly introdu
ed 
ontra
tion operation. The proof easily extends to the polyhedral des
riptionof T -free b-fa
tors under assumptions (6.1) and (6.2). Hartvigsen and Li showed that the polyhedraldes
ription of T -free 2-mat
hings is far more 
ompli
ated, and proved their fundamental 
hara
terizationin [63℄. We give a slight generalization of their ni
e result by extending our 
ontra
tion te
hniques.Yet giving a polyhedral des
ription of triangle-free (or, more generally, T -free) 2-fa
tors and 2-mat
hings of arbitrary graphs is still open. One might wonder whether the des
ription for sub
ubi
graphs 
ould be a valid des
ription for the general 
ase. Unfortunately, the answer is negative as shownby the 
ounterexample of Figure 6.9.As the 
onsidered graphs may 
ontain parallel edges and self-loops, it may happen that two non-identi
al triangles share the same node-set, that is, T1 and T2 are triangles with VT1 = VT2 but ET1 6= ET2 .We 
all these triangles node-identi
al. If there exists a pair of node-identi
al triangles in G then, by(6.1) and (6.2), no b-fa
tor exists.Theorem 6.1.1. Let G = (V,E), b : V → Z+ and T a 
olle
tion of triangles satisfying (6.1) and (6.2).Assume that there are no node-identi
al triangles in G. The T -free b-fa
tor polytope is determined by

(i) 0 ≤ x(e) ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) = b(v) (v ∈ V ), (P7)
(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | ((K,F ) odd),
(iv) x(ET ) = 2 (T ∈ T ).Our main result is the proof of the following theorem whi
h gives a slight generalization of Theo-rem 1.4.7. The method we use is also inspired by Edmonds' mat
hing algorithm, but di�erent from thatof [63℄ and is based on a new shrinking approa
h. 75



76 6. Polyhedral des
riptionsTheorem 6.1.2. Let G = (V,E), b : V → Z+ and T a 
olle
tion of triangles satisfying (6.1) and (6.2).The T -free b-mat
hing polytope is determined by
(i) 0 ≤ x(e) ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) ≤ b(v) (v ∈ V ),

(iii) x(E[K]) + x(F ) +
∑

T∈T x(ET ) ≤ ((K,F,T) odd (P8)
⌊ b(K)+|F |+3|T|

2 ⌋ tri-
omb of Type 2),
(iv) x(ET ) ≤ 2 (T ∈ T ),
(v) x(ET1 ∪ ET2) ≤ 2 (T1, T2 ∈ T , VT1 = VT2).Assumption (6.1) here is essential: the theorem is false if we remove the degree bound dG(v) ≤ 3 onnodes of forbidden triangles. An example is shown in Se
tion 6.9.6.2 Shrinking odd pairsWe prove Theorem 1.4.2 by indu
tion on b(V ), |V | and |E|. In the proof we use a shrinking oper-ation to get a smaller graph on whi
h the indu
tion step 
an be applied. Note that 
ondition (iii) inTheorems 1.4.2 and 6.1.1 is required for odd pairs. If b(V ) is odd then (V, ∅) is an odd pair and thus(P2) and (P7) are infeasible. In the sequel we assume that b(V ) is even.De�nition 6.2.1 (Shrinking an odd pair). Shrinking an odd pair (K,F ) 
onsists of the followingoperations (see Figure 6.1):

• repla
e K by an edge pq with b◦(p) = |F | and b◦(q) = 1,
• de�ne b◦(v) = b(v) for ea
h v ∈ V \K,
• repla
e ea
h edge e with eu ∈ K, ev ∈ V \K by an edge pev if e ∈ F , otherwise by qev.

K V −K V −K
b◦(q) = 1

b◦(p) = |F |:: edges in δ(K) \ Fedges in FFigure 6.1: Shrinking an odd pair (K,F )We usually denote the graph obtained by shrinking an odd pair by G◦ = (V ◦, E◦). By abuse ofnotation, ea
h edge e ∈ δ(K) is denoted by e again after shrinking the pair and is 
alled the image ofthe original edge. Hen
e the interse
tion E ∩ E◦ stands for the set of all edges not indu
ed by K, inother words, E◦ − pq ⊆ E. Similarly, V ◦ \ {p, q} ⊆ V .



6.2. Shrinking odd pairs 77Assume that x ∈ RE satis�es (P2). An odd pair (K,F ) is 
alled x-tight if it satis�es (iii) withequality. When shrinking an x-tight pair, we use the notation x◦ for the image of x, namely
x◦(e) =







x(e) if e ∈ E◦ − pq,
|F | − x(F ) if e = pq.The main advantage of the shrinking operation is the following.Lemma 6.2.2. Let G = (V,E) be a graph with b : V → Z+. Assume that x ∈ RE satis�es (P2) and

(K,F ) is an x-tight pair. Then x◦ satis�es (P2) in G◦ = (V ◦, E◦) with b◦.Proof. (i) 
learly holds for edges di�erent from pq. Con
erning pq, x◦(pq) = |F | − x(F ) ≥ 0. Thetightness of (K,F ) implies x◦(pq) = |F | − x(F ) = 1− x(δ(K) \ F ) ≤ 1.For a node v in V ◦ \ {p, q}, by the de�nition of shrinking, x◦(δ̇(v)) = x(δ̇(v)) = b(v) = b◦(v). Also,
x◦(δ̇(p)) = x(F ) + x◦(pq) = |F | = b◦(p). By the tightness of (K,F ), x◦(δ̇(q)) = x(δ(K) \ F ) + x◦(pq) =

1 = b◦(q).It only remains to show that x◦ satis�es (iii) in G◦. First, observe that -assuming b(V ) is even-
(Z,H) is an odd pair if and only if (Z̄,H) is also an odd pair. For these two pairs, 
ondition (iii) isidenti
al.

(iii) immediately follows for odd pairs (Z,H) with Z ⊆ V ◦ \ {p, q} as x satis�ed (iii) in the originalproblem. By taking (Z̄,H) instead, it also holds if p, q ∈ Z. Again by possibly 
hanging Z to Z̄, itremains to show that (iii) is satis�ed if p ∈ Z, q 6∈ Z.If pq ∈ H, then add q to Z and delete pq from H. We have previously seen that the odd pair
(Z ′,H ′) = (Z + q,H − pq) satis�es (iii), thus

x(δ(Z) \H)− x(H) ≥ x(δ(Z ′) \H ′)− x(H ′)− x(δ(q))

≥ (1− |H ′|)− 1

= 1− |H|.If pq 6∈ H, then �rst 
onsider the 
ase when F ∩ (δ(Z) \H) 6= ∅. Let f be an edge in this set. De�ne
(Z ′,H ′) = (Z + q,H + f), whi
h is again an odd pair satisfying (iii). Then

x(δ(Z) \H)− x(H) ≥ x(δ(Z ′) \H ′)− x(H ′) + 2x(pq)− x(δ(q)) + 2x(f)

≥ (1− |H ′|) + 2(x(pq) + x(f))− 1

= 1− |H|+ 2(x(pq) + x(f)− 1)

≥ 1− |H|.For the last inequality, we use that x(δ(p)) = |F |, and the degree of p is |F | + 1. Hen
e pq and f , twoedges in
ident to p must have x value together at least 1.If F ∩ (δ(Z) \H) = ∅, then let F1 = F ∩H, F2 = F \H. De�ne Z ′ = Z − p, H ′ = (H \ F1) ∪ F2.
(Z ′,H ′) is odd sin
e b(Z ′)+ |H ′| = b(Z)+ |H|− |F |− |F1 |+ |F2| = b(Z)+ |H|− 2|F1|. As we have seen,



78 6. Polyhedral des
riptionsthe pair (Z ′,H ′) satis�es (iii), so
x(δ(Z) \H)− x(H) ≥ x(δ(Z ′) \H ′)− x(H ′) + x(F2) + x(pq)− x(F1)

≥ (1− |H ′|) + x(δ̇(p))− 2x(F1)

≥ (1− |H ′|) + |F | − 2|F1|
= 1− |H|.This 
ompletes the proof.

6.3 Proof of Theorem 1.4.2It is easy to see that ea
h b-fa
tor satis�es (i) and (ii). To show that (iii) indeed holds for a b-fa
tor
M ⊆ E, add all equalities dM (v) = b(v) for v ∈ K. This gives

2|M ∩ E[K]|+ |M ∩ δ(K)| = b(K). (6.3)Adding the inequalities |M ∩ F | ≤ |F | and −|M ∩ (δ(K) \ F )| ≤ 0, we get 2|M ∩ E[K]| + 2|M ∩ F | ≤
b(K) + |F |. This yields |M ∩ E[K]| + |M ∩ F | ≤ ⌊12 (b(K) + |F |)⌋ = 1

2(b(K) + |F | − 1) sin
e (K,F ) isodd. Subtra
ting the double of this from (6.3), we get |M ∩ (δ(K)\F )|− |M ∩F | ≥ 1−|F |, as required.Re
all that we may assume that b(V ) is even sin
e otherwise there exists no b-fa
tor and the polytope(P2) is empty.It remains to show that (i), (ii) and (iii) 
ompletely determine the b-fa
tor polytope, that is, any
x ∈ RE satisfying (P2) is a 
onvex 
ombination of in
iden
e ve
tors of b-fa
tors. Assume that this doesnot hold. Let us 
hoose x to be a vertex of the polytope des
ribed by (P2) not 
ontained in the b-fa
torpolytope.We 
hoose this 
ounterexample in su
h a way that (|ℓ(V )|, b(V ), |V |, |E|) is lexi
ographi
ally minimal.This implies that 0 < x < 1 as edges with x(e) = 0 
ould be deleted, while if x(e) = 1 we 
an delete
e and de
rease the b values on its ends by one (if e is a loop on v then de
rease b(v) by 2). It is easyto see that the x′ and b′ thus obtained would satisfy (i) − (iii) thus giving a smaller 
ounterexample,a 
ontradi
tion. Also, it 
an be shown that, in presen
e of parallel edges, the total x value of paralleledges between two nodes should be stri
tly smaller than one.As b(v) ≥ 1 for ea
h v ∈ V , ea
h node has degree at least 2 in G, so |E| ≥ |V |. G is 
onne
ted,otherwise one of its 
omponents would be a smaller 
ounterexample. If |E| = |V |, then G is an even
y
le as it implies that b ≡ 1 and b(V ) is even. By (ii), x is alternately µ and 1 − µ for some value
0 < µ < 1 on the edges of this 
y
le, hen
e it is the 
onvex 
ombination of the two perfe
t mat
hings ofthe graph, a 
ontradi
tion.So |E| > |V |. As x is a vertex, it satis�es |E| linearly independent 
onstraints among (P2) withequality. From |E| > |V |, there is a tight odd pair (K,F ) linearly independent from the equalities ofform (ii).Proposition 6.3.1. For any tight odd pair (K,F ) independent from equalities of form (ii), the shrinkingof (K,F ) results in a lexi
ographi
ally smaller problem, and the same holds for (K̄, F ).



6.3. Proof of Theorem 1.4.2 79Proof. The se
ond part follows by 
omplementing K and by the observation that (K,F ) is independentfrom equalities of form (ii) if and only if (K̄, F ) does so.What we have to prove is that either (A) ℓ(K) 6= ∅, or (B) ℓ(K) = ∅ and b(K) > |F | + 1, or (C)
ℓ(K) = ∅, b(K) = |F | + 1 and |K| > 2, or (D) ℓ(K) = ∅, b(K) = |F | + 1, |K| = 2 and E[K] > 1 as
(|ℓ(V )|, b(V ), |V |, |E|) de
reases only in these 
ases. However, we will show that either (A), (B) or (C)is satis�ed.We 
laim that G[K] is 
onne
ted. Indeed, assume indire
tly that K = K1 ∪K2 where K1 ∩K2 = ∅and there is no edge between K1 and K2. De�ne Fi = F ∩ δ(Ki) for i = 1, 2. Then one of the pairs
(K1, F1), (K2, F2) is odd while the other is not, say (K1, F1) is odd. We have

1− |F | = x(δ(K) \ F )− x(F )

= x(δ(K1) \ F1)− x(F1) + x(δ(K2) \ F2)− x(F2)

≥ 1− |F1| − |F2|
= 1− |F |,thus we have equality everywhere. That means that x(δ(K2)\F2)−x(F2) = −|F2|, whi
h is only possible(by 0 < x < 1) if δ(K2) = ∅, 
ontradi
ting the 
onne
tivity of G. Hen
e G[K] must be 
onne
ted.Assume that (A) does not hold, so ℓ(K) = ∅ and (B) does not hold either, so b(K) ≤ |F | + 1.We show that b(K) = |F | + 1 in this 
ase. Otherwise b(K) ≤ |F | − 1 as (K,F ) is an odd pair. As

x(F ) ≥ |F |−1, only b(K) = |F |−1 is possible. By 0 < x < 1, E[K] = ∅ and so |K| = 1 by the previousobservation. If F = δ(v), the tightness of (K,F ) is identi
al to x(δ̇(v)) = b(v), 
ontradi
ting linearindependen
e. Hen
e δ(v) \F 6= ∅ and thus x(δ(v) \F ) > 0. Also, x(F ) ≤ b(v) ≤ |F | − 1. Consequently,
x(δ(v) \ F )− x(F ) > 1− |F |, a 
ontradi
tion.Now we show that |K| ≥ 2. If K = {v} then x(δ(v) \ F ) ≥ 1 as x(δ̇(v)) = |F | + 1 and ℓ(v) = ∅. If
F 6= ∅ then x(F ) < |F | as x < 1, so (iii) 
annot hold with equality. Hen
e F = ∅ and x(δ(v)) = 1 = b(v),so the tightness of (K,F ) is identi
al to x(δ̇(v)) = b(v), 
ontradi
ting independen
e.Assume that (C) does not hold either, so ℓ(K) = ∅, b(K) = |F |+1 and |K| = 2. We show that thisleads to 
ontradi
tion. Let K = {u, v}, and let C be the set of parallel edges between u and v. Then wehave

x(δ(K) \ F )− x(F ) = b(u) + b(v)− 2x(C)− 2x(Fu)− 2x(Fv).As b(u) + b(v) = |F | + 1, either b(u) ≤ |Fu| or b(v) ≤ |Fv |, say the �rst holds. In this 
ase x(C) +

x(Fu) ≤ b(u) ≤ |Fu|, so x(C) + x(Fu) + x(Fv) ≤ |Fu| + |Fv |. Here Fv = ∅, otherwise stri
t inequalityholds by x < 1, 
ontradi
ting the tightness of (K,F ), and also b(u) = |Fu| follows. Then the tightnessof the pair 
an be reformulated as x(δ(u) \ C) − 2x(Fu) = 1 − |Fu|. By subtra
ting this from equality
2x(C)+x(δ(K)) = |F |+1, we get 2x(C)+x(δ(K)\δ(u))+2x(Fu) = 2|Fu| = 2b(u). But x(C)+x(Fu) ≤
b(u), hen
e δ(K) \ δ(u) = ∅ and x(C) + x(Fu) = x(C) + x(δ(u)) = b(u) = |Fu|, b(v) = 1. That meansthat the tightness of (K,F ) is identi
al to x(δ(u)) = b(u), 
ontradi
ting linear independen
e.Note that (K̄, F ) is also x-tight. Let G◦

1 = (V ◦
1 , E

◦
1), b

◦
1, x

◦
1 and G◦

2 = (V ◦
2 , E

◦
2 ), b

◦
2, x

◦
2 denote theproblems we get after shrinking (K,F ) and (K̄, F ), respe
tively. By Proposition 6.3.1, the indu
tionstep 
an be applied, and -by the minimality of G- x◦i is the 
onvex 
ombination of in
iden
e ve
torsof b◦i -fa
tors of G◦

i . Note, that a b◦i -fa
tor 
ontains either ea
h edge of F and exa
tly one edge from
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Figure 6.2: Illustration of the shrinking method
δ(K) \F , or all but one edges of F , the edge piqi and none of the edges of δ(K) \F . We 
an write these
ombinations in the form x◦1 = 1

k

∑

χMi
and x◦2 = 1

k

∑

χNj
for some k ∈ Z+, where the Mi's and Nj 'sare (not ne
essarily distin
t) b◦1- and b◦2-fa
tors, respe
tively (note that x◦ is rational, being a vertex ofa rational polytope).Then ea
h edge e ∈ δ(K) \ F is 
ontained in exa
tly kx(e) number of Mi's and Nj 's. Ea
h of them
ontains the entire F . We 
an pair these b-fa
tors and `glue' them together to get kx(e) b-fa
tors of G
ontaining the edge e. This 
an be done for ea
h edge e ∈ δ(K) \F . Similarly, for ea
h edge e ∈ F thereare exa
tly k(1 − x(e)) Mi's and Nj 's that does not 
ontain e. Noti
e that these 
ontain all edges in

F − e and none in δ(K) − F . Again, pair and glue these together to get b-fa
tors of G not 
ontaining
e. For an illustration of this step, see Figure 6.2.These b-fa
tors altogether yield x as a 
onvex 
ombination of b-fa
tors of G, a 
ontradi
tion.Remark 6.3.2. Note that the above proof also gives a new proof of Theorem 1.4.3 by using the well-known 
onstru
tion given below.Take a 
opy of G denoted by G′ and for ea
h v ∈ V add b(v) new edges between v and v′. Let G∗be the graph thus arising and de�ne b∗(v) = b∗(v′) = b(v). Theorem 1.4.3 follows as the restri
tion of a
b∗-fa
tor of G∗ to G gives a b-mat
hing in G, and the restri
tion of the b∗-fa
tor polytope of G∗ to Ggives exa
tly the polytope des
ribed by P3.



6.4. Triangle-free b-fa
tors 816.4 Triangle-free b-fa
torsIn this se
tion, we extend the proof of Theorem 1.4.2 to Theorem 6.1.1. Besides shrinking odd pairs,we also need to shrink triangles. The following shrinking operation appeared in [12℄.De�nition 6.4.1 (Shrinking a triangle). Assume G, b and T satisfy (6.1) and (6.2). Shrinking atriangle T ∈ T 
onsists of the following operations (see Figure 6.3):
• repla
e T by a node t,
• repla
e ea
h edge e ∈ E \ET with eu ∈ VT , e

v ∈ V \ VT by an edge tev, and ea
h edge e ∈ E \ETwith eu, ev ∈ VT by a loop e on t,
• let b◦(t) = 2 and de�ne b◦(v) = b(v) if v 6= t,
• let T ◦ denote the set of triangles in T node-disjoint from T .

b◦(t) = 2

t1

t2 t3Figure 6.3: Shrinking a triangleSimilarly to De�nition 6.2.1, we use the notation G◦ = (V ◦, E◦) for the shrunk graph with E◦ ⊆ Eand V ◦ − t ⊆ V . It is easy to see that G◦, b◦ and T ◦ also satisfy (6.1) and (6.2).Assume that x ∈ RE satis�es (P7). When shrinking a triangle, we use the notation x◦ for the imageof x, that is, x◦(e) = x(e) for ea
h e ∈ E◦.Lemma 6.4.2. Let G = (V,E), b : V → Z+ and T a 
olle
tion of triangles satisfying (6.1) and (6.2).Assume that there are no node-identi
al forbidden triangles in T . If x ∈ RE satis�es (P7) and T ∈ T isa forbidden triangle, then x◦ satis�es (P7) in G◦ = (V ◦, E◦) with b◦ and T ◦.Proof. (i), (iii) and (iv) easily follow from the same inequalities in the original graph. Also, (ii) holdsfor nodes di�erent from t. As T is x-tight, x◦(δ̇(t)) = x(δ(VT )) =
∑

x(δ̇(ti))− 2x(ET ) = 2 = b◦(t).Now we turn to the proof of Theorem 6.1.1. It is 
lear that a T -free b-fa
tor satis�es (i)− (iv) ((iii)
an be veri�ed as in the proof of Theorem 1.4.2).It remains to show that (i)−(iv) 
ompletely determine the polytope in question, that is, any x ∈ REsatisfying (P7) is a 
onvex 
ombination of in
iden
e ve
tors of T -free b-fa
tors. Assume that this doesnot hold. Let us 
hoose x to be a vertex of the polytope des
ribed by (P7) not 
ontained in the T -free
b-fa
tor polytope.We 
hoose this 
ounterexample in su
h a way that (|V |, |E|) is lexi
ographi
ally minimal. Thisimmediately implies that T = ∅. Indeed, if there is a triangle T ∈ T then it is automati
ally tight,that is, x(ET ) = 2. Shrink T to a single node t as in De�nition 6.4.1, obtaining G◦, b◦, T ◦, x◦. ByLemma 6.4.2, these satisfy (P7). As |V ◦| < |V |, x◦ is a 
onvex 
ombination of T ◦-free b◦-fa
tors Mi of
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G◦. Note that b◦(t) = 2 and dG◦(t) ≤ 3 follows by (6.1). Let x◦ = 1

k

∑

λiχM◦
i
. For ea
h i, |M◦

i ∩δ(t)| = 2.Moreover, |M◦
i ∩ δ(tj)| ≤ 1 for j = 1, 2, 3. We extend M◦

i to a T -free b-mat
hing of G as follows: if
|M◦

i ∩ δ(tj)| = |M◦
i ∩ δ(tj+1)| = 1 (indi
es are meant modulo 3) then Mi = M◦

i ∪ {eTj,j+2, e
T
j+1,j+2}.Proposition 6.4.3. Mi is a T -free b-fa
tor of G.Proof. Assume that |M◦

i ∩ δ(t1)| = |M◦
i ∩ δ(t2)| = 1. Mi 
annot 
ontain a triangle in T ◦, and neither
ontains T due to the 
onstru
tion. It su�
es to 
he
k that it does not 
ontain a triangle T ′ ∈ T whi
hshares a node with T . By (6.1), T and T ′ must have an edge in 
ommon. If the 
ommon edge is eT12,then Mi does not 
ontain T ′ sin
e eT12 6∈ Mi. If the 
ommon edge is eT13 then eT13, e

T
23 ∈ Mi and (6.2)implies that the edge of T ′ not in
ident to t1 is not in Mi. The same argument works if the 
ommonedge of T and T ′ is eT23.As b(tj) = 2 for j = 1, 2, 3 and x(ET ) = 2, an easy 
omputation shows that x(eTj,j+1) = x(δ̇(tj+2) \

ET ). This implies that x = 1
k

∑

χMi
, a 
ontradi
tion. So T = ∅ indeed holds and the theorem followsfrom Theorem 1.4.2.6.5 Extending the shrinking operationsTheorem 6.1.1 turned out to easily follow from Theorem 1.4.2 due to the fa
t that a forbiddentriangle is always tight if (6.1) and (6.2) hold. Not surprisingly, this does not hold for b-mat
hings. Inthis se
tion, we extend the notion of shrinking to tri-
ombs. To prove Theorem 6.1.2, we also need toslightly modify the notion of shrinking a triangle. We start with the latter one.De�nition 6.5.1 (Shrinking a triangle - extended). Assume G, b and T satisfy (6.1) and (6.2).Shrinking a triangle T ∈ T 
onsists of the following operations (see Figure 6.4):

• repla
e T by two nodes t, t′,
• repla
e ea
h edge e ∈ E \ET with eu ∈ VT , e

v ∈ V \ VT by an edge tev, and ea
h edge e ∈ E \ETwith eu, ev ∈ VT by a loop e on t,
• add three edges between t and t′ denoted by g1, g2 and g3,
• let b◦(t) = 2, b◦(t′) = 2 and de�ne b◦(v) = b(v) if v 6= t, t′,
• let T ◦ denote the set of triangles in T node-disjoint from T .We use the notation G◦ = (V ◦, E◦) for the shrunk graph with E◦ \{g1, g2, g3} ⊆ E and V ◦ \{t, t′} ⊆

V . It is easy to see that G◦, b◦ and T ◦ also satisfy (6.1) and (6.2).Assume that x ∈ RE satis�es (P8). A triangle T ∈ T is 
alled x-tight if it satis�es (iv) withequality. Let T ∈ T be a tight triangle with VT = {t1, t2, t3} and δ(t1) \ ET = f1, δ(t2) \ ET = f2 and
δ(t3) \ ET = f3 (two of these edges may 
oin
ide). When shrinking T , we use the notation x◦ for theimage of x, namely

x◦(e) =







x(e) if e ∈ E◦ \ E◦[t, t′],
x(eTi+1,i+2)− x(fi) if e = gi for i = 1, 2, 3.
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t1

t2 t3
b◦(t) = 2

b◦(t′) = 2f1

f2

f3

f1

f2

f3

e12e13

e23

g1 g2 g3

Figure 6.4: Shrinking a triangle - extendedRemark 6.5.2. In 
ase of x being a b-fa
tor, x(gi) = 0 for ea
h i, making the presen
e of edges
g1, g2, g3 unne
essary. That is the reason for the simpler de�nition of shrinking a triangle when provingTheorem 6.1.1.Lemma 6.5.3. Let G = (V,E), b : V → Z+ and T a 
olle
tion of triangles satisfying (6.1) and (6.2).Assume that x ∈ RE satis�es (P8) and T is an x-tight triangle. Then x◦ satis�es (P8) in G◦ = (V ◦, E◦)with b◦ and T ◦.Proof. Let VT = {t1, t2, t3} and δ(t1)\ET = f1, δ(t2)\ET = f2 and δ(t3)\ET = f3 again. Then (i), (iv)and (v) easily follow from the same inequalities in the original graph and from x(gi) = x(eTi+1,i+2) −
x(fi) ≥ 0. Also, (ii) holds for nodes di�erent from t and t′. Clearly, x◦(δ̇(t)) = x(ET ) = 2 = b◦(t). Asfor t′, x◦(δ̇(t′)) = x(ET )−

∑

i x(δ(ti) \ET ) ≤ 2 = b◦(t′).Con
erning (iii), for a tri-
omb (Z,H,R) with Z ⊆ V ◦,H ⊆ δ(Z),R ⊆ T ◦ the required inequalityfollows from the same inequality for (Z \ {t, t′}, H \ (δ(t) ∪ δ(t′)), R) in the original graph.As mentioned earlier, forbidden triangles are not automati
ally tight in 
ase of b-mat
hings. Thisphenomenon lead us to extend the notion of shrinking to more 
omplex stru
tures than odd pairs,namely to tri-
ombs, already introdu
ed in Se
tion 1.4.De�nition 6.5.4 (Shrinking a tri-
omb of Type 1). Shrinking a tri-
omb (K,F,T) of Type 1 
onsistsof the following operations (see Figure 6.5):
• repla
e K by an edge pq with b◦(p) = |F |+ |T| and b◦(q) = 1,
• repla
e ea
h triangle T ∈ T with VT = {u, v, w} and VT∩K = {u} by edges prT , rT sT , rT tT ,sT v, tTwwhere rT , sT and tT are new nodes with b◦(rT ) = 2, b◦(sT ) = b◦(tT ) = 1, and we also set
b◦(v) = b◦(w) = 1,
• de�ne b◦(v) = b(v) for ea
h v ∈ V \ (K ∪ VT),
• repla
e ea
h edge e ∈ E with eu ∈ K, ev ∈ V \ K by an edge pev if e ∈ F , and by qev if
e ∈ δ(K) \ (F ∪ ET),
• let T ◦ denote the set of triangles in T node-disjoint from K ∪ VT.We usually denote the graph obtained by shrinking a tri-
omb of Type 1 by G◦ = (V ◦, E◦). Byabuse of notation, ea
h edge e ∈ δ(K) \ ET is denoted by e again after shrinking the tri-
omb and is
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K V −K V −K

b◦(q) = 1

b◦(p) = |F |+ |T|:: edges in δ(K) \ Fedges in F ∪ET

rT

sT

tT

u

v

w

v

w

Figure 6.5: Shrinking a tri-
omb of Type 1
alled the image of the original edge. Hen
e the interse
tion E ∩E◦ stands for the set of all edges notindu
ed by K nor by a triangle in T.Assume that x ∈ RE satis�es (P8). When shrinking a tri-
omb of Type 1, we use the notation x◦for the image of x, namely
• for an edge e ∈ E ∩E◦ let x◦(e) = x(e),
• for a triangle T ∈ T with VT = {u, v, w} and VT ∩K = {u} 
onsider the new edges mentioned inDe�nition 6.5.4, and de�ne

x◦(prT ) = 2x(eTvw) + x(eTuv) + x(eTuw)− 2,

x◦(rT sT ) = 2− x(eTvw)− x(eTuv),

x◦(rT tT ) = 2− x(eTvw)− x(eTuw),

x◦(sT v) = x(eTvw) + x(eTuv)− 1,

x◦(tTw) = x(eTvw) + x(eTuw)− 1,

• de�ne x◦(pq) = |F |+ 3|T| − x(F )−∑T∈T x(ET )−
∑

T∈T x(eT ).Re
all that eT denotes the spe
ial edge of triangle T , that is, the edge in ET having no end in K.De�nition 6.5.5 (Shrinking an odd tri-
omb of Type 2). Shrinking a tri-
omb (K,F,T) of Type 2
onsists of the following operations (see Figure 6.6):
• repla
e K by an edge pq with b◦(p) = |F |+ |T| and b◦(q) = 1,
• repla
e ea
h triangle T ∈ T with VT = {u, v, w} and VT ∩K = {u, v} by an edge prT , a loop lTon rT , and two parallel edges between rT and wT (denoted by rTw

1 and rTw
2) where rT is a newnode with b◦(r) = 2,

• de�ne b◦(v) = b(v) for ea
h v ∈ V \K,
• repla
e ea
h edge e ∈ E with eu ∈ K, ev ∈ V \ K by an edge pev if e ∈ F , and by qev if
e ∈ δ(K) \ (F ∪ ET),
• let T ◦ denote the set of triangles in T node-disjoint from K.
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K V −K V −K

b◦(q) = 1

b◦(p) = |F |+ |T|:: edges in δ(K) \ Fedges in F ∪ ET

rT

w

u

v

w

Figure 6.6: Shrinking a tri-
omb of Type 2We usually denote the graph obtained by shrinking a tri-
omb of Type 2 by G◦ = (V ◦, E◦). Again,ea
h edge e ∈ δ(K) \ ET is denoted by e again after shrinking the tri-
omb.Assume that x ∈ RE satis�es (P8). When shrinking a tri-
omb of Type 2, we use the notation x◦for the image of x, namely
• for an edge e ∈ E ∩ E◦ let x◦(e) = x(e),
• for a triangle T ∈ T with VT = {u, v, w} and VT ∩K = {u, v} 
onsider the new edges mentionedin De�nition 6.5.5, and de�ne

x◦(prT ) = 2x(eTuv) + x(eTvw) + x(eTuw)− 2,

x◦(lT ) = 2− x(eTuv)− x(eTvw)− x(eTuw),

x◦(rTw
1) = x(eTuw),

x◦(rTw
2) = x(eTvw),

• de�ne x◦(pq) = |F |+ 3|T| − x(F )−∑T∈T x(ET )−
∑

T∈T x(eT ).Re
all that eT denotes the spe
ial edge of triangle T , that is, the edge in ET having both ends in K.An odd tri-
omb (K,F,T) of Type 2 is 
alled x-tight (or tight, for short) if it satis�es (iii) withequality. A tri-
omb (K,F,T) of Type 1 is 
alled tight if (K̄, F,T) is a tight tri-
omb of Type 2. If
T = ∅ then (K,F ) is 
alled a tight pair instead.The following simple observation will be useful later.Proposition 6.5.6. Let (K,F,T) be an x-tight tri-
omb of any type for some 0 < x < 1 satisfying(P8). For any F ′ ⊆ F,T′ ⊆ T,T′′ ⊆ T and H ⊆ δ(K) \ (F ∪ ET) we have

x(H) ≤ 1and
|F ′|+ 2|T′|+ |T′′| − 1 ≤ x(F ′) +

∑

T∈T′

x(ET ) +
∑

T∈T′′

x(eT ) ≤ |F ′|+ 2|T′|+ |T′′|.Moreover, if at least one of F ′ and T′′ is nonempty then the upper bound hold with stri
t inequality.
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riptionsProof. We may assume that the tri-
omb is of Type 2. Summing up inequalities x(δ̇(v)) ≤ b(v) for
v ∈ K, x(e) ≤ 1 for e ∈ F , x(ET ) ≤ 2 and x(eT ) ≤ 1 for T ∈ T gives

2x(E[K]) + x(δ(K)) + x(F ) +
∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≤ b(K) + |F |+ 3|T|.As (K,F,T) is x-tight, we have
x(E[K]) + x(F ) +

∑

T∈T

x(ET ) =
b(K)+|F |+3|T|−1

2 .These together imply x(δ(K) \ (F ∪ ET)) ≤ 1, hen
e proving the �rst part. The upper bound in these
ond part follows from x < 1 (from what stri
t inequality immediately follows if F ′ or T′′ is notempty). On the other hand, the tightness of the tri-
omb means that we may loose at most 1 whensumming up the inequalities as des
ribed above, hen
e
x(F ) +

∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≥ |F |+ 3|T| − 1,from what the lower bound follows by x < 1.In the sequel, we will refer to the following spe
ial 
ase of Proposition 6.5.6 several times.Corollary 6.5.7. If v is a node without loops and x(δ(v)) = b(v) = d(v) − 1 then x(F ) ≥ |F | − 1 forany F ⊆ δ(v).Proof. The tri-
omb (v, δ(v), ∅) is odd as b(v) + |δ(v)| = b(v) + d(v) = 2d(v) − 1 and is also tight as
x(δ(v)) = d(v)− 1 = b(v)+|δ(v)|−1

2 . The statement follows from Proposition 6.5.6.The main advantage of shrinking odd pairs was that the arising graph G◦ and ve
tor x◦ still satis�ed(P2). The above de�nitions also have this useful property, as shown in the following lemma. The proofis rather te
hni
al and needs a lot of 
omputation, hen
e is left to the end of this 
hapter. The readermay skip it in order to follow the main idea of the proof of Theorem 6.1.2.Lemma 6.5.8. Let G = (V,E), b : V → Z+ and T a 
olle
tion of triangles satisfying (6.1) and (6.2).Assume that x ∈ RE, 0 < x < 1 satis�es (P8) and (K,F,T) is an x-tight tri-
omb of Type 2. Theneither shrinking (K,F,T) or (K̄, F,T), (6.1) and (6.2) hold for G◦ = (V ◦, E◦). Moreover, b◦,T ◦ and x◦satis�es (P8).Remark 6.5.9. In the above, we only de�ned shrinking for tri-
ombs either of Type 1 or 2. Thede�nition 
ould be easily generalized to shrink gadgets having both triangles 1-�tting and 2-�ttingthem. The reason for not introdu
ing shrinking in that way was the form of des
ription (P8).6.6 Proof of Theorem 6.1.2It is easy to see that ea
h T -free b-mat
hing satis�es (i), (ii), (iv) and (v). To show that (iii)indeed holds for a T -free b-mat
hing M ⊆ E, take an odd tri-
omb (K,F,T) and add up inequalities
dM (v) ≤ b(v) for v ∈ K, |M ∩ F | ≤ |F |, |M ∩ ET | ≤ 2 and |M ∩ eT | ≤ 1 for T ∈ T. This gives
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2|M ∩ E[K]|+ |M ∩ δ(K)| + |M ∩ F |+

∑

T∈T

(|M ∩ ET |+ |M ∩ eT |) ≤ b(K) + |F |+ 3|T|.Clearly, |M∩F |+|M∩ET| ≤ |M∩δ(K)|+∑T∈T |M∩eT |, so |M∩E[K]|+|M∩F |+∑T∈T |M∩ET | ≤
⌊12(b(K) + |F | + 3|T|)⌋, as required. The above proof easily implies that (iii) is also valid for even tri-
ombs, where a tri-
omb (K,F,T) is 
alled even if b(K) + |F |+ |T| is even.It remains to show that (i)− (v) 
ompletely determine the T -free b-mat
hing polytope, that is, any
x ∈ RE satisfying (P8) is a 
onvex 
ombination of in
iden
e ve
tors of T -free b-mat
hings. Assume thatthis does not hold. Let us 
hoose x to be a vertex of the polytope des
ribed by (P8) not 
ontained inthe T -free b-mat
hing polytope.We 
hoose this 
ounterexample in su
h a way that (|T |, |ℓ(V )|, b(V ), |V |, |E|) is lexi
ographi
allyminimal. G is 
onne
ted, otherwise one of its 
omponents would be a smaller 
ounterexample. As x isa vertex, it satis�es |E| linearly independent 
onstraints among (P8) with equality. We 
all a node, atri-
omb or a triangle x-tight (or simply tight for short) if the 
orresponding inequality, whi
h is oftype (ii), (iii) or (iv), respe
tively, is satis�ed with equality. Also, the 
orresponding inequality is 
alled
x-tight. We also use this notation for even tri-
ombs satisfying (iii) with equality.From now on, our aim is to show that there is a tight tri-
omb or triangle whose shrinking resultsin a lexi
ographi
ally smaller problem. Then we show that a proper 
onvex 
ombination for the smallerproblem 
an be transformed into a 
onvex 
ombination for the original problem giving x, thus leadingto 
ontradi
tion. However, this latter step requires mu
h more work than it did in 
ase of b-fa
tors.We start with some te
hni
al observations.Proposition 6.6.1. For ea
h T ∈ T , VT does not span parallel edges.Proof. Assume to the 
ontrary that VT = {u, v, w} spans parallel edges, say between v and w as onFigure 6.7. By (6.1), d(u), d(v), d(w) ≤ 3. We 
laim that G is in fa
t 
onsists of these three nodes, orthese three nodes plus an edge in
ident to u. Indeed, d(u) ≤ 3 implies that if |V | ≥ 4 then u has athird neighbour di�erent from v and w, say z, and uz is a 
utting edge in G. Let G1 and G2 denote thegraphs 
onsisting of a 
omponent of G − uz plus uz. We denote by x1, b1,T1 and x2, b2,T2 the naturalrestri
tion of x, b and T to G1 and G2, respe
tively. If both of these graphs have at least two nodes thenwe get two lexi
ographi
ally smaller instan
es, hen
e xi is a 
onvex 
ombination of Ti-free bi-mat
hingsof Gi. These 
ould be glued together as to get a 
onvex 
ombination of T -free b-mat
hings of G giving
x, a 
ontradi
tion.

u

v w

z

e1 e2

e3

e4

f

Figure 6.7: VT spanning parallel edges
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riptionsSo G is in fa
t 
onsists of four or three nodes. Let us 
onsider the �rst 
ase, the se
ond 
an behandled similarly (by using (v) of (P8)). We use the notation of Figure 6.7. First assume that bothtriangles are forbidden. Delete z from G. The graph thus arising is not a 
ounterexample, hen
e therestri
tion of x to G − z is a 
onvex 
ombination of T -free b-mat
hings of G − z. Let 1
k

∑

χMi
denotethis 
ombination and let λI = 1

k
|{i : Mi = {ej : j ∈ I}}| for I ⊆ {1, 2, 3, 4}. Moreover, take a 
onvex
ombination with λ12 as small as possible. That means that λ12 = 0 or λ3 = λ4 = λ34 = 0. Indeed,assume to the 
ontrary that both λ12 > 0 and λ34 > 0 hold. Take an Mi with e1, e2 ∈ Mi and an Mjwith e3, e4 ∈Mj and ex
hange the edges e1 and e3 between them. Then we get T -free b-mat
hings stillgiving the restri
tion of x to G− z but the value of λ12 de
reased, a 
ontradi
tion. The other 
ases 
anbe proved similarly.If λ12 = 0 then f 
an be added to any of these b-mat
hings, a 
ontradi
tion. So λ3 = λ4 = λ34 = 0and λ12 + λ13 + λ14 + λ23 + λ24 + λ1 + λ2 = 1. If λ12 ≤ 1− x(f) then we 
an add the edge f to some ofthese b-mat
hings with 
oe�
ients in total equals x(f) and so get a proper 
onvex 
ombination in theoriginal graph, a 
ontradi
tion. Hen
e x(δ̇(u)) = x(f) + 2λ12 + λ13 + λ14 + λ23 + λ24 + λ1 + λ2 > 2, a
ontradi
tion.Now assume that only one of the triangles, say {e1, e2, e3}, is forbidden. Delete z from G. The graphthus arising is not a 
ounterexample, hen
e the restri
tion of x to G−z is a 
onvex 
ombination of T -free

b-mat
hings of G − z. Let 1
k

∑

χMi
denote this 
ombination and let λI = 1

k
|{i : Mi = {ej : j ∈ I}}|for I ⊆ {1, 2, 3, 4}. Moreover, take a 
onvex 
ombination with λ12 as small as possible, and beside this,

λ124 as small as possible. That means that λ12 = 0 or λ3 = λ4 = λ34 = 0, and also λ124 = 0 or
λ3 = λ4 = 0. If both λ12 = λ124 = 0 then f 
an be added to any of these b-mat
hings, a 
ontradi
tion.Otherwise if λ12 + λ124 ≤ 1− x(f) then we 
an add the edge f to some of these b-mat
hings with total
oe�
ients x(f) and so get a proper 
onvex 
ombination in the original graph, a 
ontradi
tion again.Hen
e λ12 + λ124 > 1− x(f) and λ12 + λ13 + λ14 + λ23 + λ24 + λ34 + λ1 + λ2 = 1. We have

x(E[VT ]) + x(f) = 3λ124 + 2λ12 + 2λ13 + 2λ14 + 2λ23 + 2λ24 + 2λ34 + λ1 + λ2 + x(f)

= λ124 + 2 + x(f)

> 3− λ12.As x satis�es (iii) of (P8) for the odd pair (VT , f), λ12 > 0 must hold. But then λ34 = 0 and so
x(δ̇(u)) = x(f) + 2λ124 + 2λ12 + λ13 + λ14 + λ23 + λ24 + λ1 + λ2 > 2, a 
ontradi
tion.Proposition 6.6.2. 0 < x(e) < 1 for ea
h e ∈ E.Proof. Clearly, edges with x(e) = 0 
ould be deleted, 
ontradi
ting minimality.If x(e) = 1 and T = ∅, delete e and de
rease b on its endnodes by 1 (if e is a loop on v then de
rease
b(v) by 2). However, the situation is more 
ompli
ated if T 6= ∅. If e ∈ ET for some T ∈ T , it mayhappen that there is a proper 
onvex 
ombination in the smaller graph, but it 
an not be extended tothe original problem be
ause a triangle may arise. Hen
e we use a simple tri
k here to show x(e) < 1.Assume that x(uv) = 1 and let Tuv ⊆ T denote the set of triangles 
ontaining uv (there are at mosttwo su
h triangles as (6.1) holds). Note that the edge uv is well-de�ned as there exist no parallel edgesbetween u and v by Proposition 6.6.1. For a triangle T ∈ Tuv, let tT denote its third node.By (6.1), tT has at most one neighbour di�erent from u and v, denoted by zT (if exists). Delete
e = uv from G, de
rease b(u) and b(v) by one, for ea
h T ∈ Tuv de
rease b(tT ) by one, delete -if exists-
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Figure 6.8: Ex
luding saturated edges
tT zT and add a new edge t′T zT where t′T is a new node. The graph thus arising will be denoted by
G′ = (V ′, E′). The modi�ed degree pres
ription is denoted by b′ (with b′(t′T ) = 1 for a new node) andthe natural image of x on E′ is denoted by x′ (that is, x′(t′T zT ) = x(tT zT )). Let T ′ ⊆ T denote theset of triangles disjoint from the triangles in Tuv. The degree 
ondition implies that two triangles arenode-disjoint if and only if they are edge-disjoint. It is easy to 
he
k that x′ satis�es (P8) in G′ with b′and T ′.As |T ′| < |T |, x′ is a 
onvex 
ombination of in
iden
e ve
tors of T ′-free b′-mat
hings of G′, say
x′ = 1

k

∑

χM ′
i
. These b′-mat
hings use at most one of eTutT , eTvtT for ea
h T ∈ Tuv. If we extend M ′

iby uv and edges {tT zT : T ∈ Tuv, t′T zT ∈ M ′
i}, we get a T -free b-mat
hing Mi of G by (6.2) andProposition 6.6.1.An easy 
omputation shows that x = 1

k

∑

χMi
, hen
e x is a 
onvex 
ombination of T -free b-mat
hingsof G, a 
ontradi
tion.So we may assume that 0 < x(e) < 1 for ea
h edge e ∈ E.Proposition 6.6.3. For ea
h u, v ∈ V , x(E[u, v]) < 1.Proof. If |E[u, v]| = 1 then the proposition follows from Proposition 6.6.2. Otherwise no edge in E[u, v]is 
ontained in a forbidden triangle by Proposition 6.6.1 and we 
an de
rease the x-values on them by onein total and also de
rease b(u), b(v) by one, thus obtaining a smaller 
ounterexample, a 
ontradi
tion.Claim 6.6.4. There is no x-tight triangle T ∈ T .Proof. Assume that there exists a tight triangle T and let VT = {t1, t2, t3}. Shrink T to a single node tas in De�nition 6.5.1, obtaining G◦, b◦, T ◦, x◦. By Lemma 6.5.3, these satisfy (P8).As |T ◦| < |T |, x◦ is a 
onvex 
ombination of T ◦-free b◦-mat
hings M◦

i of G◦. Let x◦ = 1
k

∑

χM◦
iand let αjl =

1
k
|{i : fj, fl ∈Mi}|, βjl = 1

k
|{i : fj, gl ∈Mi}| and �nally γjl =

1
k
|{i : gj , gl ∈Mi}| where

f1, f2, f3, g1, g2, g3 are as in De�nition 6.5.1. As x◦(δ̇(t)) = 2, we have ∑αjl +
∑

βjl +
∑

γjl = 1.Proposition 6.6.5. There exist a proper 
onvex 
ombination for what ∑βjj = 0.Proof. Take a 
ombination in whi
h∑βjj is minimal and assume that β11 > 0. This immediately impliesthat β22, β23, β32, β33, γ23 = 0 as otherwise we 
ould easily modify the b◦-mat
hings and de
rease∑βjj .
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riptionsWe have the following equalities.
α12 + α13 + β11 + β12 + β13 = x(f1),

α12 + α23 + β21 = x(f2),

α13 + α23 + β31 = x(f3),

β11 + β21 + β31 + γ12 + γ13 = x(t2t3)− x(f1),

β12 + γ12 = x(t1t3)− x(f2),

β13 + γ13 = x(t1t2)− x(f3).From these and from x(ET ) = 2 we get α23 − β11 = 1− x(t2t3) > 0. Hen
e there is an Mi, say M1,with f1, g1 ∈ M1 and another one, say M2, with f2, f3 ∈ M2. The proof of Theorem 4.1 of [88℄ impliesthat we 
an take an alternating path P in M1△M2 starting at t′ su
h that M1△P and M2△P are also
T ◦-free b◦-mat
hings of G◦. Hen
e β11 
an be de
reased while β22 and β33 do not 
hange, so in total
∑

βii 
an be de
reased, and the proposition follows.Take a 
onvex 
ombination 1
k

∑

χMi
as in Proposition 6.6.5. We extend the M◦

i 's to T -free b-mat
hings of G as follows: if M◦
i ∩ δ(t) = {fj , fl} or {fj, gl} or {gj , gl} where j 6= l then de�ne

Mi = M◦
i ∪ (ET − eTj,l).It su�
es to verify that the b-mat
hings thus arising are T -free b-mat
hings of G. Indeed, they
annot 
ontain any triangle in T ◦, and neither 
ontain T due to the 
onstru
tion. For a triangle T ′ ∈ Twhi
h shares a node with T , by (6.1), T and T ′ must have an edge in 
ommon. By Proposition 6.6.1,they do not have the same node-set but then (6.2) implies that at least one of the edges of T ′ is not in

Mi.The 
onvex 
ombination of the Mi's gives x. To see this, it su�
es to 
he
k that the 
ombinationgives x(eTj,j+1) in total for ea
h j = 1, 2, 3. This is assured by the 
hoi
e of the 
oe�
ients as T istight.If x is a b-fa
tor, that is, x(δ̇(v)) = b(v) for ea
h v ∈ V then ea
h T ∈ T is tight. By Theorem 1.4.2and Claim 6.6.4, x is not a b-fa
tor. So our aim is now to show that there is an x-tight odd tri-
omb
(K,F,T) of Type 2 whose shrinking lexi
ographi
ally de
reases (|T |, b(V ), ℓ(V ), |V |, |E|), and the sameholds for (K̄, F,T).The next proposition states that, as one would expe
t, b ≤ d 
an be assumed.Proposition 6.6.6. b(v) ≤ min{d(v), ⌈x(δ̇(v))⌉ + 1} for ea
h v ∈ V .Proof. Assume that b(v) > d(v) for some v ∈ V . By (6.1) and (6.2), v is not a node of a triangle. Set
b(v) := d(v). We 
laim that the inequalities of (P8) remain valid, 
ontradi
ting the minimal 
hoi
e of the
ounterexample. Assume indire
tly that there is a tri-
omb (K,F,T) with v ∈ K violating (iii) after themodi�
ation. However, for the tri-
omb (K−v, F \Fv∪E[v,K−v],T) the left hand side of (iii) de
reasesby x(ℓ(v)) + x(Fv) while the right de
reases by exa
tly 1

2(d(v) + |Fv| − |E[v,K − v]|) = |ℓ(v)| + |Fv |(
ompared to (K,F,T) after the modi�
ation) implying that (K−v, F \Fv∪E[v,K−v],T) is a violatingodd tri-
omb in the original problem, a 
ontradi
tion.
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h v ∈ V then (i), (ii), (iv) and (v) 
learly remains valid in (P8).Assume that there is an odd tri-
omb (K,F,T) violating (iii) after the modi�
ation. Inequalities of form
(iii) are obtained by summing up inequalities of from (i) and (ii), then dividing by two and taking the�oor of the right hand side. But until the very last step the inequality remains valid, so the violation,that is, the de�
ien
y of the tri-
omb 
an be at most 1

2 . Hen
e setting b′(v) := min{b(v), ⌈x(δ̇(v))⌉+1}assures that no violating tri-
omb arises.The proposition follows by the 
hoi
e of the 
ounterexample.Sin
e G is 
onne
ted, |E| ≥ |V | − 1. If |E| = |V | − 1 or |E| = |V | and G does not 
ontain trianglesthen x is a 
onvex 
ombination of b-mat
hings by Theorem 1.4.3, a 
ontradi
tion. Assume that |E| = |V |and T 6= ∅. This is only possible if G is obtained from a tree by repla
ing a node with a triangle (wherethe degree of a node of the triangle should not ex
eed 3). If after deleting the edges of the triangle atleast one of the 
onne
ted 
omponents has size larger than 2 then the G 
an be divided into two smallergraphs as in the proof of Proposition 6.6.1, giving a 
ontradi
tion. So G is in fa
t a triangle with atmost one extra edge at ea
h of its nodes. These 
ases 
an be easily seen not to give a 
ounterexample(similarly to the proof of Proposition 6.6.1), hen
e we may assume that |E| > |V |.We 
all an even tri-
omb (K,F,T) tight if x(E[K]) + x(F ) +
∑

T∈T x(ET ) =
b(K)+|F |+3|T|

2 .Proposition 6.6.7. Let (K,F ) be a tight pair (odd or even), v ∈ K̄. If b(v) ≤ |Fv| then (K+ v, F \Fv)is also tight. Moreover, ℓ(v) = ∅ and E[v,K] \ F = ∅.Proof. By adding v to K, the left hand side of (iii) of (P8) may only in
rease while the right hand sidemay only de
rease. The se
ond part follows by Proposition 6.6.2.If there is an x-tight odd tri-
omb (K,F,T) su
h that T 6= ∅, then |T | de
reases when shrinkingeither (K,F,T) or (K̄, F,T), and we are done. So assume that this is not the 
ase. Re
all that a tighttri-
omb (K,F,T) with T = ∅ was 
alled a tight pair.We have already seen that there is no tight 
onstraint of form (i), (iv) or (v), and now we assumedthat neither of form (iii) with T 6= ∅. Let us 
all an x-tight 
onstraint bad if it is of form (ii) for some
v ∈ V , or it is of form (iii) for some odd pair (K,F ) and at least one of the followings holds.(I) ℓ(K) = ∅, b(K) ≤ |F |(II) ℓ(K) = ∅, b(K) = |F |+ 1, |K| = 1(III) ℓ(K) = ∅, b(K) = |F |+ 1, |K| = 2, |E[K]| ≤ 1(IV) ℓ(K̄) = ∅, b(K̄) ≤ |F |(V) ℓ(K̄) = ∅, b(K̄) = |F |+ 1, |K̄ | = 1(VI) ℓ(K̄) = ∅, b(K̄) = |F |+ 1, |K̄ | = 2, |E[K̄ ]| ≤ 1If the shrinking of (K,F ) or the shrinking of (K̄, F ) does not result in a lexi
ographi
ally smallerproblem then (K,F ) must be bad (however, it may happen that we get a smaller problem even in 
aseof a bad pair as TK 6= ∅ would also assure that).
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riptionsAs we may assume that |E| > |V |, the existen
e of a tight odd pair (K,F ) whose shrinking results in alexi
ographi
ally smaller problem and the same holds for (K̄, F ) is assured by the following fundamentallemma. The proof of the lemma is quite te
hni
al and is detailed in the end of the 
hapter.Lemma 6.6.8. Under the assumption that there is no tight 
onstraint of form (iii) with T 6= ∅, themaximum number of linearly independent bad 
onstraints is at most |V |.As |E| > |V |, Lemma 6.6.8 implies that there exists a tight odd tri-
omb (K,F,T) whose shrinkinglexi
ographi
ally de
reases the problem, and the same holds for (K̄, F,T). More pre
isely, there is atight tri-
omb (K,F,T) with either T 6= ∅ or being independent from L de�ned earlier. Take su
h atri-
omb with |K| being minimal and let G◦
1 = (V ◦

1 , E
◦
1), b

◦
1, x

◦
1,T ◦

1 and G◦
2 = (V ◦

2 , E
◦
2), b

◦
2, x

◦
2,T ◦

2 denotethe problems arising through shrinking (K,F,T) and (K̄, F,T), respe
tively. We refer to the new nodes
p, q in these graphs by p1, q1 and p2, q2, respe
tively. By the minimality of the 
ounterexample, x◦i isa 
onvex 
ombination of T ◦

i-free b◦i -mat
hings of G◦
i , say, x◦1 = 1

k

∑

χMi
and x◦2 = 1

2

∑

χNj
for some

k ∈ Z+ (note that x◦i is rational, being a vertex of a rational polytope). The following proposition is aneasy observation.Proposition 6.6.9. The tightness of (K,F,T) implies that exa
tly one of the followings holds for ea
h
Mi:
• (δ(p1)− p1q1) ⊆Mi, |(δ(q1)− p1q1) ∩Mi| ≤ 1, or
• |(δ(p1)− p1q1) \Mi| = 1, p1q1 ∈Mi, (δ(q1)− p1q1) ∩Mi = ∅.Similarly, for Nj's:
• (δ(p2)− p2q2) ⊆ Nj , |(δ(q2)− p2q2) ∩Nj | ≤ 1, or
• |(δ(p2)− p2q2) \Nj| = 1, p2q2 ∈ Nj , (δ(q2)− p2q2) ∩Nj = ∅.Ea
h edge e ∈ δ(K) \ (F ∪ET) is 
ontained in exa
tly kx(e) number of Mi's and Nj 's. By the aboveobservation, ea
h of these Mi's 
ontains the entire F and edges prT , rTw1 or prT , rTw2 for ea
h T ∈ T,while ea
h of the Nj 's 
ontains the entire F and edges prT , rT sT , tTw or prT , rT tT , sT v. However,it is easy to see that, as they are parallel, the role of edges rTw

1 and rTw
2 
an be `ex
hanged' insu
h a way that the total number of Mi's with prT , rTw

1 ∈ Mi is equal to the number of Nj 's with
prT , rT tT , sT v ∈ Nj . This makes possible to pair these b◦i -mat
hings and `glue' them together to get kx(e)
b-mat
hings of G 
ontaining the edge e. A b-mat
hing obtained by gluing an Mi with prT , rTw

1 ∈ Miand an Nj with prT , rT tT , sT v ∈ Nj 
ontains eTvw and eTuw from ET ; a b-mat
hing obtained by gluing an
Mi with prT , rTw

2 ∈ Mi and an Nj with prT , rT sT , tTw ∈ Nj 
ontains eTvw and eTuv from ET . This 
anbe done for ea
h edge e ∈ δ(K) \ (F ∪ ET).Similarly, for ea
h edge e ∈ F there are exa
tly k(1 − x(e)) Mi's and Nj 's that does not 
ontain e.Noti
e that these 
ontain all edges in δ(pi)− e and none in δ(K)− (F ∪ET). Again, pair and glue thesetogether to get b-mat
hings of G not 
ontaining e.The number of Mi's with lT ∈ Mi or rTw
1, rTw

2 ∈ Mi for some T ∈ T is equal to the numberof Nj 's with rT sT , rT tT ∈ Nj . The idea is that a b-mat
hing obtained by gluing an Mi with lT ∈ Miand an Nj with rT sT , rT tT ∈ Nj 
ontains eTvw from ET ; a b-mat
hing obtained by gluing an Mi with
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rTw

1, rTw
2 ∈ Mi and an Nj with rT sT , rT tT ∈ Nj 
ontains eTuv and eTuw from ET . However, we haveto pair these mat
hings together 
arefully. Note, that T ◦

2 
onsists of triangles disjoint from K. It mayhappen that there is a forbidden triangle T ′ ∈ T su
h that VT ′ ⊆ K for what a triangle T ∈ T has
|VT ∩ VT ′ | = 2. In this 
ase, we are not allowed to pair an Mi and an Nj together if lT ∈ Mi andthe two remaining edges of T ′ not 
ontained by T are in Nj . We 
an avoid this unless the sum of the
oe�
ients of these Nj 's is more than 1− x◦1(lT ) = x(ET )− 1. Consider a 
onvex 
ombination in whi
hthe sum of the 
oe�
ients of b◦2-mat
hings 
ontaining the edges of T ′ di�erent from eT is minimal. Ifthis value is positive then there is no Nj 
ontaining none of these two edges. But this implies that
x(ET ′) > 2(x(ET ) − 1) + (1 − (x(ET ) − 1)) + x(eT ) = x(ET ) + x(eT ) ≥ 2, a 
ontradi
tion. The lastinequality follows from Proposition 6.5.6.So the pairing 
an be done. However, it is left to prove that the b-mat
hings thus arising are also
T -free.Lemma 6.6.10. The b-mat
hings thus obtained are T -free.Proof. The only triangles possibly 
ontained in one of the b-mat
hings 
ould be those in T − (T ◦

1 ∪T ◦
2 ).Moreover, by the above, a bad triangle should have nodes both in K and K̄.Due to the 
onstru
tion, a triangle T ∈ T is not 
ontained in the b-mat
hings thus obtained. Also,a T with ET ∩ ET 6= ∅ is not 
ontained by (6.1), (6.2) and Proposition 6.6.9. Assume that T shares noedge with triangles in T.If |ET ∩ F | = 0 then ea
h Mi 
ontains at most one of T 's edges going between K and K̄ as

|Mi ∩ (δ(K) \ (F ∪ET))| ≤ 1, hen
e T is not 
ontained by the b-mat
hings.Let VT = {r, s, t}. Re
all that (K,F,T) is su
h that either T 6= ∅ or it is independent from L. Thefollowing proposition will be useful.Proposition 6.6.11. There is no tight even tri-
omb (Z,H,R) in G with Z 6= ∅.Proof. Assume to the 
ontrary that (Z,H,R) is a tight even pair, that is, x(E[Z])+x(H)+
∑

T∈R x(ET ) =
b(Z)+|H|+3|R|

2 . By 0 < x < 1, this immediately implies H = δ(Z) = ∅, whi
h is only possible if Z = V as
G is 
onne
ted. But x(E) = b(V )

2 means that x is a b-fa
tor, a 
ontradi
tion.We distinguish the following 
ases.Case 1: |ET ∩ F | = 1, |VT ∩K| = 1Assume that VT ∩ K = r and rt ∈ F . Let u be the third neighbour of r, if exists. If u ∈ K then
x(E[K− r])+x(F − rt+ ru)+

∑

T∈T x(ET ) > x(E[K])+x(F )+
∑

T∈T x(ET )−1 while b(K− r)+ |F −
rt+ ru|+3|T| = b(K)+ |F |+3|T|−2. Hen
e (K− r, F − rt+ ru,T) would violate (iii), a 
ontradi
tion.If u ∈ K̄ and ru ∈ F then x(E[K − r]) + x(F − rt − ru) +

∑

T∈T x(ET ) > x(E[K]) + x(F ) +
∑

T∈T x(ET )−2 while b(K− r)+ |F − rt− ru|+3|T| = b(K)+ |F |+3|T|−4. Hen
e (K− r, F \ δ(r),T)would violate (iii), a 
ontradi
tion.If u ∈ K̄ and ru 6∈ F or r has no third neighbour then x(E[K − r]) + x(F − rt) +
∑

T∈T x(ET ) >

x(E[K])+x(F )+
∑

T∈T x(ET )−1 while b(K−r)+ |F−rt|+3|T| = b(K)+ |F |+3|T|−3, a 
ontradi
tion
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riptionsas (K − r, F − rt,T) is an even tri-
omb that would violate (iii) whi
h is not possible.Case 2: |ET ∩ F | = 1, |VT ∩K| = 2Assume that K ∩ VT = {r, s} and rt ∈ F . Let u be the third neighbour of s, if exists. If u ∈ Kthen x(E[K − s]) + x(F + su+ rs) +
∑

T∈T x(ET ) = x(E[K]) + x(F ) +
∑

T∈T x(ET ) while b(K − s) +

|F + su+ rs|+3|T| = b(K) + |F |+3|T|. Hen
e (K − s, F + su+ rs,T) is also tight and its tightness isidenti
al to that of the original tri-
omb. However, |K| de
reased, 
ontradi
ting the minimality of K.If u ∈ K̄ and su ∈ F then x(E[K − s]) + x(F − su + rs) +
∑

T∈T x(ET ) > x(E[K]) + x(F ) +
∑

T∈T x(ET )−1 while b(K−s)+|F−su+rs|+3|T| = b(K)+|F |+3|T|−2. Hen
e (K−s, F−su+rs,T)would violate (iii), a 
ontradi
tion.If u ∈ K̄ and su 6∈ F or s has no third neighbour then x(E[K − s]) + x(F ) +
∑

T∈T x(ET ) >

x(E[K])+x(F )+
∑

T∈T x(ET )−1 while b(K−s)+ |F |+3|T| = b(K)+ |F |+3|T|−2. Hen
e (K−s, F,T)would violate (iii), a 
ontradi
tion.Case 3: |ET ∩ F | = 2, |VT ∩K| = 1Assume that VT ∩ K = r and rs, rt ∈ F . Let u be the third neighbour of r, if exists. If u ∈
K then x(E[K − r]) + x(F − rs − rt) +

∑

T∈T x(ET ) ≥ x(E[K]) + x(F ) +
∑

T∈T x(ET ) − 2 while
b(K − r) + |F − rs − rt|+ 3|T| ≤ b(K) + |F | + 3|T| − 4. Hen
e we must have equality everywhere, so
x(δ(r)) = 2 and (K − r, F − rs− rt,T) is tight. The tightness of (K − r, F − rs− rt,T) is identi
al tothat of the original tri-
omb. However, |K| de
reased, 
ontradi
ting the minimality of K.If u ∈ K̄ and ru ∈ F then x(E[K − r]) + x(F − rs− rt− ru) +

∑

T∈T x(ET ) ≥ x(E[K]) + x(F ) +
∑

T∈T x(ET ) − 2 while b(K − r) + |F − rs − rt − ru| + 3|T| = b(K) + |F | + 3|T| − 5. We must haveequality everywhere as otherwise (K − s, F − rs− rt− ru,T) would be an even tri-
omb violating (iii).That is, x(δ(r)) = 2 and (K − s, F − rs − rt − ru,T) is tight. Note that |K| 6= 1 as otherwise T 6= ∅or the tri-
omb is not independent from L. Hen
e (K − s, F − rs− rt− ru,T) is a tight even tri-
ombwith K − s 6= ∅, 
ontradi
ting Proposition 6.6.11.If u ∈ K̄ and ru 6∈ F or r has no third neighbour then x(E[K−r])+x(F −rs−rt)+
∑

T∈T x(ET ) >

x(E[K]) +x(F )+
∑

T∈T x(ET )− 2 while b(K − r)+ |F − rs− rt|+3|T| = b(K)+ |F |+3|T| − 4. Hen
e
(K − r, F − rs− rt,T) would violate (iii), a 
ontradi
tion.Case 4: |ET ∩ F | = 2, |VT ∩K| = 2Assume that K ∩ VT = {r, s} and rt, st ∈ F . Let u be the third neighbour of r, if exists. If u ∈ K̄and ru ∈ F then x(E[K − r]) + x(F − ru− rt) +

∑

T∈T x(ET ) ≥ x(E[K]) + x(F ) +
∑

T∈T x(ET ) − 2while b(K − r)+ |F − ru− rt|+3|T| = b(K)+ |F |+3|T| − 4. Hen
e x(δ(r)) = 2, (K − r, F − ru− rt,T)is also tight and is independent from L if the original tri-
omb was so (note that K − r 6= ∅). However,
|K| de
reased, 
ontradi
ting the minimality of K.If u ∈ K̄ and ru 6∈ F or r has no third neighbour then x(E[K−r])+x(F −rt+rs)+

∑

T∈T x(ET ) >

x(E[K]) +x(F )+
∑

T∈T x(ET )− 1 while b(K − r)+ |F − rt+ rs|+3|T| = b(K)+ |F |+3|T| − 2. Hen
e
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(K − r, F − rt+ rs,T) would violate (iii), a 
ontradi
tion.The same 
an be told about the third neighbour of s denoted by v, if exists. So the only remaining
ase is when both u, v ∈ K. Then x(E[K − r − s]) + x(F − rs − rt + ru + sv) +

∑

T∈T x(ET ) >

x(E[K])+x(F )+
∑

T∈T x(ET )−2 while b(K−r−s)+|F−rs−rt+ru+sv|+3|T| = b(K)+|F |+3|T|−4.Hen
e (K − r − s, F − rs− rt+ ru+ sv,T) would violate (iii), a 
ontradi
tion.By Lemma 6.6.10, the b-mat
hings 
onstru
ted above altogether yield x as a 
onvex 
ombination of
T -free b-mat
hings of G, a 
ontradi
tion. Hen
e x is indeed 
ontained in the 
onvex 
ombination of thein
iden
e ve
tors of T -free b-mat
hings, �nishing the proof.6.7 Proof of Lemma 6.5.8The validity of (6.1) and (6.2) 
an be 
he
ked easily in both 
ases. We dis
uss the se
ond partseparately for K and K̄.(I) Shrinking (K̄, F,T), whi
h is of Type 1:We use the notation of De�nition 6.5.5. (i) 
learly holds for edges di�erent from pq and not 
ontainedin δ(K) ∩ ET. For the rest of the edges the required inequalities follow from Proposition 6.5.6. As anexample, we show this for pq. We have

x(F ) +
∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≤ |F |+ 2|T|+ |T| = |F |+ 3|T|,that is, x◦(pq) ≥ 0. On the other hand,
x(F ) +

∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≥ |F |+ 2|T|+ |T| − 1 = |F |+ 3|T| − 1by Proposition 6.5.6, so x◦(pq) ≤ 1.The validity of (ii) is straightforward for nodes di�erent from q. However, the tightness of thetri-
omb implies
x◦(δ̇(q)) = x◦(pq) + x(δ(K) \ (F ∪ET))

= |F |+ 3|T| − x(F )−
∑

T∈T

x(ET )−
∑

T∈T

x(eT ) + x(δ(K) \ (F ∪ ET))

= 2x(E[K]) + x(F ) +
∑

T∈T

x(ET ) + 1− b(K)

−
∑

T∈T

x(eT ) + x(δ(K) \ (F ∪ ET))

= 2x(E[K]) + x(δ(K)) + 1− b(K)

≤ 1

= b◦(q).

(iv) and (v) remain valid for triangles in T ◦ as the same inequalities were true in the original graph.So it remains to show that (iii) is indeed satis�ed in G◦. Choose an odd tri-
omb (Z,H,R) of G◦ with
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(def(Z,H,R), |Z̄ ∪ {p, q}|, |H|) lexi
ographi
ally maximal. Our aim is to show that def(Z,H,R) ≤ 0,whi
h would prove (iii) for all odd tri-
ombs.Clearly, an even tri-
omb has de�
ien
y at most 0 inG◦. Hen
e if we �nd an even tri-
omb (Z ′,H ′,R′)with def(Z,H,R) ≤ def(Z ′,H ′,R′) then we are done. So assume that there is no su
h even tri-
omb.Proposition 6.7.1. Let v ∈ Z be a node with ℓ(v) = ∅, b◦(v) = d◦(v)− 1 and v 6∈ V ◦

R.(a) If x◦(δ̇(v)) = b◦(v) and v 6= p, q, then δ(Z)v ⊆ H and |E◦[v, Z − v]| ≥ 2.(b) If v = p and δ(Z)p \H 6= ∅ then Hp = ∅.(
) If v 6= p, q and b◦(v) = d◦(v)− 1 = 1 then δ(Z)v = ∅.Proof. (a) The 
onditions on v imply that for any two edges e, f ∈ δ(v) we have x◦(e) + x◦(f) ≥ 1. If
|δ(Z)v \H| ≥ 2 then the addition of two of these edges to H would result in a lexi
ographi
ally largerodd tri-
omb, a 
ontradi
tion.Assume that |δ(Z)v \ H| = 1. De�ne Z ′ = Z − v, H ′ = (H \ Hv) ∪ E◦[v, Z − v]. The tri-
omb
(Z ′,H ′,R) thus arising is odd and with de�
ien
ydef(Z ′,H ′,R) = def(Z,H,R) − x◦(Hv) +

b◦(v)+|Hv |−|E◦[v,Z−v]|
2

= def(Z,H,R) − x◦(Hv) +
b◦(v)+|Hv |−d◦(v)+|Hv |+1

2

= def(Z,H,R) − x◦(Hv) + |Hv|.That is, the de�
ien
y is not de
reased and |Z \ {p, q}| de
reased by 1, a 
ontradi
tion.So |δ(Z)v \H| = 0. Assume that |E[v, Z − v]| = 1. Then (Z − v,H \Hv,R) is an odd tri-
omb withthe same de�
ien
y as (Z,H,R) but has larger |Z \ {p, q}| value, a 
ontradi
tion.(b) The 
omputation of part (a) shows that in 
ase of Hp 6= ∅ the de�
ien
y of the tri-
omb wouldstri
tly de
rease for the tri-
omb (Z − p, (H \Hp) ∪ E◦[p, Z − p],R) as x > 0.(
) The deletion of v from Z de
reases x◦(E◦[Z]) + x◦(H) +
∑

T∈R x◦(E◦
T ) by at most 1 while

⌊12(b◦(Z)+ |H|+3|R|)⌋ always de
reases by 1 unless |Hv| = 0. If |δ(Z)v | = 2 then the deletion of v from
Z gives an even tri-
omb with de�
ien
y not smaller than that of the original tri-
omb; if |δ(Z)v | = 1then the deletion of v from Z and the addition of the other edge in
ident to v to H would result in alexi
ographi
ally larger tri-
omb, a 
ontradi
tion.Proposition 6.7.1 indi
ate the following simple but useful observation.Corollary 6.7.2. Let T ∈ T be a triangle with VT = {u, v, w}, VT ∩K = {u, v}. Then exa
tly one ofthe followings hold.1. p, rT , sT , tT , u, v /∈ Z;2. p /∈ Z, rT , sT , tT , u, v ∈ Z, prT ∈ H and the third neighbours of u and v -if exist- are in Z;3. p ∈ Z, rT , sT , tT , u, v /∈ Z;4. p, rT , sT , tT , u, v ∈ Z and the third neighbours of u and v -if exist- are in Z;5. p, rT , sT , u ∈ Z, tT , v /∈ Z, rT tT ∈ H and the third neighbour of u -if exist- is in Z;



6.7. Proof of Lemma 6.5.8 976. p, rT , tT , v ∈ Z, sT , u /∈ Z, rT sT ∈ H and the third neighbour of v -if exist- is in Z.Proof. Assume �rst that p /∈ Z. If rT ∈ Z then (a) implies that both sT , tT ∈ Z and prT ∈ H. However,(
) further implies u, v ∈ Z, and so their third neighbours are in Z.If rT /∈ Z then neither sT , tT and so nor u, v are by (
).The proof of the 
ases when p ∈ Z goes in a similar way.Corollary 6.7.2 redu
es the number of 
ases to be 
he
ked. Let Ti = {T ∈ T : T satis�es i. ofCorollary 6.7.2}. From now on, let K ′ = V ◦ \ {p, q}.Case 1: p, q 6∈ ZBy Corollary 6.7.2, ea
h T ∈ T is of Type 1 or 2. Let Z ′ = Z,H ′ = H \{prT : T ∈ T2},R′ = R∪T2.It is easy to 
he
k that the tri-
omb (Z ′,H ′,R′) is odd, hen
e satisfy (iii) of (P8) in the original graph.However, both sides of (iii) remains un
hanged when 
onsidering (Z,H,R) instead in G◦, hen
e thevalidity of (iii) follows from the same inequality for (Z ′,H ′,R′) in the original graph.Case 2: p, q ∈ ZWe prove Case 2 with the help of Case 1. First of all note that |Hp| ≥ |δ(Z)p| − 1. To prove this,assume that |δ(Z)p \H| ≥ 2. We have x◦(δ̇(p)) = |F |+ |T|, and the degree of p is |F |+ |T|+ 1. Hen
eany two edges in
ident to p must have x◦ value together at least 1. The addition of two of these edgesto H would result in a lexi
ographi
ally larger tri-
omb, a 
ontradi
tion.We distinguish two sub
ases.Sub
ase 2.1: δ(Z)p = HpIf |Hq| ≥ 1 then let F1 = Hp, F2 = δ(p) \ (F1 + pq). Take Z ′ = Z ∩K ′, H ′ = (H \ (F1 ∪Hq)) ∪ F2.Then
x◦(E◦[Z]) + x◦(H) +

∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq)

+ x◦(E◦[q, Z ′]) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z)−1−|F |−|T|+|H|−|F1|+|F2|−1+3|R|
2 ⌋

+ x◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) + x◦(F1)

= ⌊ b◦(Z)+|H|+3|R|
2 ⌋ − |F1| − 1 + x◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋,as x◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) ≤ x◦(δ(q)) ≤ 1. This implies def(Z,H,R) ≤ 0.Now assume that |Hq| = 0. If Z = {p, q} then R = ∅ and H = δ(p)−pq. Hen
e x◦(E◦[Z])+x◦(H) =

x◦(δ(p)) = |F |+ |T| ≤ ⌊ |F |+|T|+1+|F |+|T|
2 ⌋ = ⌊ b◦(p)+b◦(q)+|H|

2 ⌋, so (iii) holds.So assume that Z 6= {p, q} and let Z ′ = Z ∩ K ′. De�ne F ′ = δ(p) − pq. It is easy to see that thetightness of (K,F,T) implies the tightness of (K ′, F ′). Using this and that (iii) holds if Z = {p, q}, we
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x◦(E◦[K ′]) + x◦(F ′) + x◦(E◦[Z]) + x◦(H) +

∑

T∈R

x◦(E◦
T )

= x◦(E◦[K ′ \ Z]) + x◦(E◦[Z \K ′]) + x◦(H) +
∑

T∈R

x◦(E◦
T ) + x◦(F ′)

+ 2x◦(E◦[Z ′]) + x◦(E◦[K ′ \ Z ′, Z ′]) + x◦(E◦[{p, q}, Z ′])

≤ ⌊ b◦(K ′\Z)+|H|+3|R|
2 ⌋+ ⌊ b◦(Z\K ′)+|F ′|

2 ⌋+ 2x◦(E◦[Z ′]) + x◦(δ(Z ′))

= b◦(K ′)+|F ′|−1
2 + b◦(Z)+|H|+3|R|−1

2 − b◦(Z ′) + 2x◦(E◦[Z ′]) + x◦(δ(Z ′))

≤ b◦(K ′)+|F ′|−1
2 + b◦(Z)+|H|+3|R|−1

2 .The tightness of (K ′, F ′) implies def(Z,H,R) ≤ 0. In the proof we used that (K ′ \ Z,H,R) and
(Z\K ′, F ′) are also odd. This 
an be seen by b◦(K ′\Z)+|H|+3|R| = b◦(K ′)−b◦(Z)+1+|F ′|+|H|+|R|whi
h is odd as (K ′, F ′) and (Z,H,R) are odd, and b◦(Z \K ′) + |F ′| = 1 + 2|F ′|.Sub
ase 2.2: |δ(Z)p| = |Hp|+ 1By Proposition 6.7.1, Hp = ∅. Let δ(Z)p = f and F2 = δ(p) − f . Take Z ′ = Z ∩ K ′, H ′ =

(H \ δ(q)) ∪ F2. Then
x◦(E◦[Z]) + x◦(H) +

∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

= ⌊ b◦(Z)−1−|F |−|T|+|H|+|F2|+3|R|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

= ⌊ b◦(Z)+|H|+3|R|
2 ⌋ − 1 + x◦(pq) + x◦(E◦[q, Z ′])) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋,as x◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) ≤ x◦(δ̇(q)) ≤ 1. This implies def(Z,H,R) ≤ 0.Case 3: p ∈ Z, q 6∈ ZIf pq ∈ H, then add q to Z and delete Hq - in
luding pq - from H. We have previously seen that thetri-
omb (Z ′,H ′,R) thus obtained satis�es (iii), so

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T )− x◦(E◦[q, Z]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋

≤ ⌊ b◦(Z)+1+|H|−1+3|R|
2 ⌋

= ⌊ b◦(Z)+|H|+3|R|
2 ⌋.This implies def(Z,H,R) ≤ 0.If pq 6∈ H, then �rst 
onsider the 
ase when δ(Z)p \ (Hp + pq) 6= ∅. Let f be an edge in this set.
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omb (Z ′,H ′,R), we have
x◦(E◦[Z]) + x◦(H) +

∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(Hq)− x◦(E◦[q, Z])− x◦(f)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋ − x◦(pq)− x◦(f)

≤ ⌊ b◦(Z)+1+|H|+3|R|
2 ⌋ − 1

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋.For the se
ond last inequality, we used Corollary 6.5.7 (x◦(δ̇(p)) = |F | + |T|, and the degree of p is

|F | + |T| + 1, hen
e pq and f , two edges in
ident to p must have x◦ value together at least 1). Thisimplies def(Z,H,R) ≤ 0.If δ(Z)p \ (Hp + pq) = ∅, then let F1 = Hp − pq, F2 = δ(p) \ (H + pq). De�ne Z ′ = Z − p,
H ′ = (H \ F1) ∪ F2. Note that (Z ′,H ′,R) is odd sin
e b◦(Z ′) + |H ′|+ |R| = b◦(Z) + |H| − |F | − |T| −
|F1|+ |F2|+ |R| = b◦(Z) + |H|+ |R| − 2|F1|. Hen
e

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(F1)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(F1)

≤ ⌊ b◦(Z)−|F |−|T|+|H|−|F1|+|F2|+3|R|
2 ⌋+ x◦(F1)

≤ ⌊ b◦(Z)+|H|−2|F1|+3|R|
2 ⌋+ x◦(F1)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋.This implies def(Z,H,R) ≤ 0.Case 4: p 6∈ Z, q ∈ ZIf Hq 6= ∅, then delete q from Z and Hq from H. Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(E◦[q, Z − q]) + x◦(H ′) + x◦(Hq) +
∑

T∈R

x◦(E◦
T )

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(δ(q))

≤ ⌊ b◦(Z)−1+|H|−1+3|R|
2 ⌋+ 1

= ⌊ b◦(Z)+|H|+3|R|
2 ⌋.This implies def(Z,H,R) ≤ 0.If Hq = ∅, then �rst 
onsider the 
ase when E◦[p, Z− q]\H 6= ∅. Let f be an edge in this set. Delete
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q from Z and take H ′ = H + f . Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(E◦[q, Z − q])− x◦(f)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(E◦[q, Z − q])− x◦(f)

≤ ⌊ b◦(Z)−1+|H|+1+3|R|
2 ⌋+ x◦(δ̇(q))− x◦(pq)− x◦(f)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋by Corollary 6.5.7. This implies def(Z,H,R) ≤ 0.If E◦[p, Z − q] \ H = ∅ then let F1 = Hp − pq and F2 = δ(p) \ (H + pq). De�ne Z ′ = Z + p and

H ′ = (H \ F1) ∪ F2. For the tri-
omb (Z ′,H ′,R)

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦
1 [Z

′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T )− x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋ − x◦(pq)− x◦(F2)

= ⌊ b◦(Z)+|F |+|H|−|F1|+|F2|+3|R|
2 ⌋ − x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋+ |F2| − x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋by Proposition 6.5.7. This implies def(Z,H,R) ≤ 0.(II) Shrinking (K,F,T), whi
h is of Type 2:The veri�
ation of (i), (ii), (iv) and (v) goes in the same way as in the previous 
ase. Choose anodd tri-
omb (Z,H,R) of G◦ with (def(Z,H,R), |Z̄ ∪ {p, q}|, |H|) lexi
ographi
ally maximal. We startagain with some te
hni
al propositions. These are only easy observations but they greatly help us toredu
e the number of 
ases to be 
he
ked.Again, an even tri-
omb has de�
ien
y at most 0 in G◦. Hen
e if we �nd an even tri-
omb (Z ′,H ′,R′)with def(Z,H,R) ≤ def(Z ′,H ′,R′) then we are done. So assume that there is no su
h even tri-
omb.Proposition 6.7.3. Let T ∈ T with VT = {u, v, w}, VT ∩K = {u, v}. Then x(eTuv) + x(eTuw) ≥ 1 and

x(eTuv) + x(eTvw) ≥ 1.Proof. Assume that one of the mentioned sums, say x(eTuv) + x(eTuw), is stri
tly less than 1. Then
(K,F + eTvw,T− T ) violates (iii), a 
ontradi
tion.Proposition 6.7.4. Let T ∈ T with VT = {u, v, w}, VT ∩K = {u, v}. If both p,w 6∈ Z then rT 6∈ Z.Proof. If |HrT | ≥ 2 then for the tri-
omb (Z − rT ,H \HrT ,R) the left side of (iii) (P8) de
reases byat most 2 while the right de
reases by 2, whi
h means that the new tri-
omb has no smaller de�
ien
yand is either lexi
ographi
ally larger or it is even, both leading to a 
ontradi
tion.If |HrT | = 0 then the left side of (iii) de
reases by x◦(lT ) < 1 while the right de
reases by 1, a
ontradi
tion.
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1 then the left side of (iii) de
reases by x◦(lT ) + x◦(rTw

1) = 2 − x(eTuv) − x(eTuw) −
x(eTvw) + x(eTuw) = 2 − x(eTuv) − x(eTvw) ≤ 1 by Proposition6.7.3 while the right side de
reases by 1, so
(Z−rT ,H\HrT ,R) is an even tri-
omb with de�
ien
y no smaller than that of (Z,H,R), a 
ontradi
tion.The other 
ase when HrT = rTw

2 leads to a 
ontradi
tion similarly.If HrT = prT then the left side of (iii) de
reases by x◦(lT ) + x◦(prT ) = 2 − x(eTuv) − x(eTuw) −
x(eTvw) + 2x(eTuv) + x(eTuw) + x(eTvw) − 2 = x(eTuv) ≤ 1, hen
e (Z − rT ,H \HrT ,R) is an even tri-
ombwith de�
ien
y no smaller than that of (Z,H,R), a 
ontradi
tion.Proposition 6.7.5. Let T ∈ T with VT = {u, v, w}, VT ∩K = {u, v}. If p,w ∈ Z then rT ∈ Z.Proof. If |HrT | ≥ 2 then for the tri-
omb (Z + rT ,H \HrT ,R) the left side of (iii) stri
tly in
reases by
x > 0 while the right does not 
hange, whi
h means that the new tri-
omb has larger de�
ien
y. So itis either a lexi
ographi
ally larger odd tri-
omb or it is even, both leading to a 
ontradi
tion.If |HrT | = 0 then the left side of (iii) in
reases by x◦(δ(rT )) = x(ET ) ≥ 1 while the right in
reaseby 1, a 
ontradi
tion again.IfHrT = rTw

1 then the left side of (iii) in
reases by x◦(lT )+x◦(rTw
2)+x◦(prT ) = x(eTuv)+x(eTvw) ≥

1 by Proposition6.7.3 while the right side in
reases by 1, so (Z + rT ,H \HrT ,R) is an even tri-
ombwith de�
ien
y no smaller than that of (Z,H,R), a 
ontradi
tion. The other 
ase when HrT = rTw
2leads to a 
ontradi
tion similarly.If HrT = prT then the left side of (iii) in
reases by x◦(lT )+x◦(rTw

1)+x◦(rTw
2) = 2−x(eTuv) > 1 as

x < 1, hen
e (Z+ rT ,H \HrT ,R) is an even tri-
omb with de�
ien
y no smaller than that of (Z,H,R),a 
ontradi
tion.Proposition 6.7.6. Let T ∈ T with VT = {u, v, w}, VT ∩ K = {u, v}. If p 6∈ Z but w, rT ∈ Z then
prT /∈ H.Proof. Let wz = δ(w) \ET , if exists. If prT ∈ H and z ∈ Z then (Z − rT −w,H − prT +wz,R), whileif prT ∈ H and z 6∈ Z then (Z − rT − w,H \ {prT , wz},R) has de�
ien
y at most def(Z,H,R) andsmaller |Z|, a 
ontradi
tion.Propositions 6.7.4, 6.7.5 and 6.7.6 imply the following.Corollary 6.7.7. Let T ∈ T be a triangle with VT = {u, v, w}, VT ∩K = {w}. Then exa
tly one of thefollowings hold.1. p, rT , w /∈ Z;2. p, rT /∈ Z, w ∈ Z;3. p /∈ Z, rT , w ∈ Z and prT ∈ H;4. p, rT , wT ∈ Z;

5. p, rT ∈ Z, w /∈ Z;6. p ∈ Z, rT , w /∈ Z and prT ∈ H;7. p ∈ Z, rT , w /∈ Z and prT /∈ H.Let Ti = {T ∈ T : T satis�es i. of Corollary 6.7.7}. From now on, for a forbidden triangle T ∈ Tlet VT = {uT , vT , wT } with uT , vT ∈ K.Case 1: p, q 6∈ Z



102 6. Polyhedral des
riptionsBy Propositions 6.7.4 and 6.7.6, if rT ∈ Z for some triangle T ∈ T then T ∈ T3. Let Z ′ = Z \ {rT :

T ∈ T3}, H ′ = H \ {prT : T ∈ T3} ∪ {uTwT , vTwT : T ∈ T3}. It is easy to 
he
k that the tri-
omb
(Z ′,H ′,R) is odd, hen
e satisfy (iii) of (P8) in the original graph. However, both sides of (iii) remainsun
hanged when 
onsidering (Z,H,R) instead in G◦, hen
e the validity of (iii) follows from the sameinequality for (Z ′,H ′,R′) in the original graph.Case 2: p, q ∈ ZProposition 6.7.5 implies T = T4 ∪ T5 ∪ T6 ∪ T7. However, |T7| ≤ 1. Indeed, x◦(δ̇(p)) = |F | + |T|,and the degree of p is |F |+ |T|+1, so any two edges in
ident to p must have x◦ value together at least 1.If |δ(Z)p \Hp| ≥ 2, then the addition of two edges from this set to H would not de
rease the de�
ien
yof the tri-
omb, not in
rease |Z| but in
rease |H|, a 
ontradi
tion.If T7 = ∅ then let S = K ∪ (Z ∩ K̄), I = {uTwT : rTw

1
T ∈ H} ∪ {vTwT : rTw

2
T ∈ H} ∪ (H ∩ E)and P = R ∪ T6. Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x(E[S]) + x(I) +
∑

T∈P

x(ET )− x(E[K]) + x◦(pq) +
∑

T∈T1∪T2∪T3

x(eT ))− 2|T6|

= x(E[S]) + x(I) +
∑

T∈P

x(ET )− x(E[K]) + |F |+ 3|T|

− x(F )−
∑

T∈T

x(ET )− 2|T6|

≤ ⌊ b(S)+|I|+3|P|
2 ⌋ − b(K)−|F |−3|T|−1

2 − 2|T6|
= b(K)+b◦(Z)−1−|F |−|T|−2|T4∪T5|+|H|−|T6|+3|R|+3|T6|−1

2 − b(K)−|F |−3|T|−1
2 − 2|T6|

= b◦(Z)+|H|+3|R|−1
2 − |T4 ∪ T5 ∪ T6|+ |T|

= b◦(Z)+|H|+3|R|−1
2 .This implies def(Z,H,R) ≤ 0.If |T7| = 1 then take Z ′ = Z ∩ (K̄ ∪ {rT : T ∈ T}), F2 = {prT : T ∈ T5} and H ′ = (H \Hq) ∪ F2.Thus

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|−|F ◦|−1+|F2|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋ − 1 + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋.This implies def(Z,H,R) ≤ 0.Case 3: p 6∈ Z, q ∈ Z The proof of this 
ase, by using the above propositions, goes exa
tly the sameway as in 
ase (I)/3.



6.8. Proof of Lemma 6.6.8 103Case 4: p ∈ Z, q 6∈ Z The proof of this 
ase, by using the above propositions, goes exa
tly the sameway as in 
ase (I)/4.6.8 Proof of Lemma 6.6.8Take a maximal independent set of tight equalities of form (ii), and extend this to a maximalindependent set with bad equalities of type (IV) with |K| = 1, and then with equalities of type (V). Let
L denote the set of equalities thus obtained.Claim 6.8.1. There is no bad pair (K,F ) independent from L.Proof. In the proof we will use Proposition 6.5.6 several times without mentioning it.Assume that (K,F ) is of type (I) independent from L. First of all, b(K) ≥ |F | − 1 as otherwise
x(E[K])+x(F ) = ⌊12(b(K)+ |F |)⌋ ≤ |F |− 2, 
ontradi
ting x(F ) ≥ |F |− 1. If b(K) = |F |− 1 then from
x(E[K]) + x(F ) = |F | − 1 we get x(E[K]) = 0 and x(F ) = b(K) whi
h in turn implies E[K] = ∅ and
F = δ(K), so x(δ(v)) = b(v) for ea
h v ∈ K. But this is a 
ontradi
tion as (K,F ) is supposed to beindependent from equalities of form (ii). Observe that b(K) = |F | is not possible as (K,F ) is an oddpair.Assume that (K,F ) is a bad pair of type (II), so K = {v}, F ⊆ δ(v), ℓ(v) = ∅ and b(v) = |F | + 1.Then the tightness of (v, F ) means x(F ) = |F |, whi
h is only possible if F = ∅ by x < 1, 
ontradi
tingindependen
e.Assume that (K,F ) is a bad pair of type (III) independent from L and let K = {u, v}. Let C be theset of parallel edges between u and v. As b(u) + b(v) = |Fu|+ |Fv|+1, either b(u) ≤ |Fu| or b(v) ≤ |Fv|,say the �rst one. In this 
ase x(C) + x(Fu) ≤ b(u) ≤ |Fu|, so x(C) + x(Fu) + x(Fv) ≤ |Fu|+ |Fv|. Here
Fv = ∅, otherwise even stri
t inequality holds by x(Fv) < |Fv |, 
ontradi
ting the tightness of (K,F ). Bythe tightness of the pair, x(C)+x(Fu) = |Fu|. We assumed that b(u) ≤ |Fu|, so b(u) = |Fu| and b(v) = 1implying δ(u) \ (C ∪ Fu) = ∅. But then the tightness of the pair (K,F ) is equivalent to x(δ̇(u)) = b(u),
ontradi
ting linear independen
e.Assume now that (K,F ) is of type (IV) independent from L with |K| ≥ 2. It 
an be seen similarly tothe earlier 
ases that b(K̄) ≥ |F |−1 must hold. If b(K̄) = |F |−1 then x(E[K̄ ])+x(δ(K)\F ) = 0, hen
e
E[K̄] = ∅ and δ(K) = F . So we have x(E) = x(E[K])+x(δ(K)) = x(E[K])+x(F ) = 1

2(b(K)+|F |−1) =
1
2b(V ). That is, x is in fa
t a b-fa
tor, a 
ontradi
tion.If b(K̄) = |F | then x(E) ≥ x(E[K]) + x(F ) + x(E[K̄]) = 1

2(b(K) + |F | − 1) + x(E[K̄ ]) = ⌊12b(V )⌋+
x(E[K̄]). But x(E) ≤ ⌊12b(V )⌋ so E[K̄] = ∅ and also δ(K) = F . That means that K̄ 
onsists of isolatednodes v1, ..., vk and δ(K) = F = δ(v1) ∪ ... ∪ δ(vk). Let Fi = δ(vi). We 
laim that b(vi) = |Fi| forea
h i. Indeed, otherwise there is an i with b(vi) ≥ |Fi|+ 1 > d(vi), 
ontradi
ting Proposition 6.6.6. So
b(vi) = |Fi| for ea
h i. Then (K ∪{v1, ..., vk−1}, Fk) is also tight, and the tightness of (K,F ) is identi
alto the tightness of this pair, a 
ontradi
tion.Now assume that (K,F ) is a bad pair of type ((VI) independent from L and let K̄ = {u, v}. As
b(u) + b(v) = |Fu| + |Fv| + 1, either b(u) ≤ |Fu| or b(v) ≤ |Fv |, say the �rst one. By Proposition 6.6.7,
(K + v, Fu) is also tight and δ̇(v) \ F = ∅, hen
e the tightness of (K,F ) is equivalent to the tightnessof (K + v, Fu), 
ontradi
ting linear independen
e.



104 6. Polyhedral des
riptionsClaim 6.8.1 implies that an upper bound for |L| is also an upper bound for the maximum numberof independent bad 
onstraints. Hen
e it su�
es to bound |L|. We say that a bad 
onstraint in L
orresponds to a node v ∈ V if it is either of type x(δ̇(v)) = b(v), or of type (IV) or (V) with K̄ = {v}.We give a bound on the number of bad 
onstraints in L 
orresponding to a node v ∈ V .Proposition 6.8.2. If (K,F ) is in L then (K,F ′) 6∈ L for F ′ ⊂ F .Proof. Assume indire
tly that (K,F ′) is in L for some F ′ ⊂ F . Then x(F \ F ′) = |F\F ′|
2 from what

F ′ = ∅, |F | = 2, x(F ) = 1 follow by Propositions 6.5.6 and 6.6.2. But then ea
h node is saturated in Kand (K,F ′) = (K, ∅) is not independent from equalities of form (ii).Claim 6.8.3. If x(δ̇(v)) = b(v) then there is no bad 
onstraint of type (IV) or (V) in L 
orrespondingto v.Proof. Let v be su
h that x(δ̇(v)) = b(v) and x(E[K])) + x(F ) = b(K)+|F |−1
2 for some F ⊆ δ(K) where

K = V − v. Re
all that ℓ(v) = ∅.Assume �rst that b(v) ≤ |F |. By Proposition 6.6.7, δ̇(v) \ F = ∅. Hen
e x(δ̇(v)) = b(v) is identi
alto x(F ) = |F |, a 
ontradi
tion.Assume now that b(v) = |F | + 1. As x(δ(v)) = b(v) = |F | + 1 and x(F ) ≤ |F |, x(δ(v) \ F ) ≥ 1must hold. Hen
e we have x(E) = x(E[K]) + x(F ) + x(δ(v) \F ) ≥ b(K)+|F |−1
2 +1 = b(V )

2 , whi
h is onlypossible if x is a b-fa
tor, a 
ontradi
tion.Observe that if there is a bad 
onstraint of type (IV) 
orresponding to v then this 
onstraint isunique, namely (V − v, δ(v)). Moreover, there is no bad 
onstraint of type (V) 
orresponding to v byProposition 6.8.2.Claim 6.8.4. For ea
h v ∈ V , there is at most one bad 
onstraint of type (V) in L 
orresponding to v.Proof. Assume that v is su
h that x(E[K])) + x(F1) =
b(K)+|F1|−1

2 and x(E[K])) + x(F2) =
b(K)+|F2|−1

2for di�erent F1, F2 ⊆ δ(K) where K = V − v.Proposition 6.8.5. |F1| = |F2|.Proof. Assume to the 
ontrary that |F1| > |F2|. (F1 \ F2) ⊆ F1 hen
e x(F1 \ F2) ≥ |F1 \ F2| − 1. Onthe other hand, (F1 \ F2) ⊆ (δ(K) \ F2), hen
e x(F1 \ F2) ≤ 1. These imply |F1 \ F2| ≤ 2. By parityarguments, F2 ⊆ F1, 
ontradi
ting Proposition 6.8.2.Proposition 6.8.6. |F1 ∩ F2| = 0.Proof. Assume that F1 ∩ F2 = F 6= ∅. From the tightness of (K,F1) and (K,F2) we get 2x(E[K]) +

2x(F ) + x(F1△F2) = b(K) + |F | + |F1△F2|
2 − 1 ≥ b(K) + |F |. On the other hand, we know that

2x(E[K]) + x(δ(K)) ≤ b(K) and x(F ) < |F | implying 2x(E[K]) + 2x(F ) + x(δ(K) \ F ) < b(K) + |F |,a 
ontradi
tion.Proposition 6.8.7. |F1| = |F2| = 1



6.8. Proof of Lemma 6.6.8 105Proof. By Proposition 6.5.6, x(F1) ≤ 1 as F1 ⊆ δ(K) \ F2, hen
e |F1| ≤ 2 by the same proposition.Assume that |F1| = 2. From the tightness of (K,F1) and (K,F2) we get
2x(E[K]) + x(F1) + x(F2) = b(K) + 1.On the other hand, we know that 2x(E[K]) + x(δ(K)) ≤ b(K), a 
ontradi
tion.Let F1 = f1, F2 = f2. Clearly, x(f1) = x(f2).Proposition 6.8.8. δ(v) = {f1, f2}Proof. We have x(E[K])+x(f1) =

1
2b(K) and x(E[K])+x(f2) =

1
2b(K), so 2x(E[K])+x(f1)+x(f2) =

b(K). That means that ea
h node is saturated in K by the x-values on E[K] and {f1, f2}, hen
e thereis no edge f ∈ δ(K) \ {f1, f2} by Proposition 6.6.2.Proposition 6.8.8 implies that there are at most two bad 
onstraints of type (V) in L 
orrespondingto a node. Assume that v is a node with two su
h 
onstraints. The proof of Proposition 6.8.8 impliesthat all the other nodes are saturated by x, hen
e v is unique with this property by Claim 6.8.3.We 
laim that T = ∅. Indeed, assume �rst that there is a forbidden triangle T ∈ T 
ontaining v. Let
f1 = vu and f2 = vw be the two edges in
ident to v. Both u and w have degree 3 as they are saturatedand x < 1. Let e1 = δ(u) \ET and e2 = δ(w) \ET . It is easy to see that x(e1) = x(e2) > x(f1) = x(f2).Also, x(ei) > 1

2 by x < 1, the previous observation and x(ei) + x(fi) + x(uw) = 2.Edges e1, e2, uw do not form the edge-set of a forbidden triangle T ′ as otherwise x(ET ) + x(ET ′) =

x(δ(u)) + x(δ(w)) = 4, hen
e both T and T ′ are tight, a 
ontradi
tion.Delete the edges uv, uw from G, shrink u and w in a single node z with b(z) = 2 and add a new edge
vz to the graph with x(vz) = 2 − x(e1) − x(e2). Let G′, b′,T ′, x′ denote the lexi
ographi
ally smallerproblem thus arising. An easy 
ase-
he
king shows that x′ satis�es (P8) in G′ with b′ and T ′ hen
e itis a 
onvex 
ombination of T ′-free b′-mat
hings of G′. This 
onvex 
ombination 
an be extended to theoriginal problem in a straightforward manner thus giving x, a 
ontradi
tion.Proposition 6.8.9. There is no triangle T ∈ T whose nodes are all saturated.Proof. Assume that x(δ(v)) = 2 for ea
h v ∈ VT for some T ∈ T . Re
all that VT does not span paralleledges by Proposition 6.6.1. Then 2x(ET ) + x(δ(VT )) = 6, and so x(ET ) + x(δ(VT )) ≥ 5 − 2 = 4. Onthe other hand, (VT , δ(VT )) is an odd pair, so x(ET ) + x(δ(VT )) ≤ ⌊6+3

2 ⌋) = 4. Hen
e we have equalityeverywhere, implying x(ET ) = 2, a 
ontradi
tion.By Claim 6.8.9, there is no T ∈ T with VT ⊆ V −v either. Let f1 = vu and f2 = vw be the two edgesin
ident to v. Delete v from G and add a new edge between u and w with x-value x(f1) = x(f2) = C.Let G′, x′ denote the graph and ve
tor thus arising.Proposition 6.8.10. x′ satis�es (P8) in G′.Proof. It only su�
es to verify (iii). Assume that there is an odd pair (Z,H) with Z ⊆ V − v,H ⊆
δ(Z) \ {f1, f2} violating (iii) in G′. It is easy to see that u,w ∈ Z must hold otherwise there would bea violating pair in the original problem, too. That means that x(E[Z]) + x(H) > b(Z)+|H|−1

2 − C. Inother words, as ea
h node di�erent from v is saturated, b(Z)−x(E[Z])−x(δ(Z) \H) > b(Z)+|H|−1
2 −C,
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riptionsso x(E[Z]) + x(δ(Z) \ H) < b(Z)−|H|+1
2 + C. If (Z,H) is odd then (V \ (Z + v),H) is also odd and

x(E[V \ (Z + v)]) + x(H) ≤ (V \(Z+v))+|H|−1
2 . Summing up these we get x(E) < b(V −v)

2 + C.As both (V − v, f1) and (Vv , f2) are tight, 2x(E[V − v]) + x({f1, f2}) = b(V − v), that is, 2x(E) =

b(V − v) + 2C, a 
ontradi
tion.As G′, x′ provides a lexi
ographi
ally smaller problem, x′ is a 
onvex 
ombination of b-mat
hings (infa
t fa
tors) of G′. These b-mat
hings easily extends to G giving x, a 
ontradi
tion.Claims 6.8.1, 6.8.3 and 6.8.4 imply that |L| ≤ |V |, and we are done.6.9 Further remarksThe problem of giving a 
omplete des
ription of the triangle-free 2-mat
hing polytope of arbitrarygraphs is still open. As mentioned in Se
tion 1.4, assumption (6.1) is essential: Theorem 6.1.2 is falseif we remove the degree bound dG(v) ≤ 3 on nodes of forbidden triangles, as shown by the followingexample.
1 1

1221

2

1/2

1/21/2

1/2 1/21/21/2

1/2 1/2Figure 6.9: A 
ounterexample for the non-sub
ubi
 
aseThe values on the nodes and on the edges represent b and x, respe
tively, and T 
ontains the trianglein the 
enter. One may 
he
k that x satis�es (P8) with total value 9
2 , but the maximum size of a T -free

b-mat
hings is 4, hen
e x is de�nitely not 
ontained in the T -free b-mat
hing polytope.In [58℄, Gröts
hel and Pulleyblank introdu
ed a new 
lass of inequalities valid for the travelling sales-man polytope. This new 
lass, whi
h is 
alled 
lique tree inequalities, properly 
ontains various 
lassesof well known inequalities su
h as blossom inequalities, subtour elimination 
onstraints, 2-mat
hing
onstraints, Chvátal 
ombs or 
omb inequalities.An arti
ulation set of a graph G = (V,E) is minimal set of nodes whose deletion results in graphwith more 
onne
ted 
omponents that of G. A 
lique tree, a

ording to [58℄, is de�ned as follows.De�nition 6.9.1. A 
lique tree is a 
onne
ted graph C for whi
h the maximal 
liques satisfy thefollowing properties:1. The 
liques are partitioned into the sets of handles and teeth.2. No two teeth interse
t.3. No two handles interse
t.4. Ea
h tooth 
ontains at least two, at most n − 2 nodes, and at least one node belonging to nohandle.



6.9. Further remarks 1075. For ea
h handel, the number of teeth interse
ting it is odd and at least three.6. If a tooth T and a handle H have nonempty interse
tion, then H ∩ T is an arti
ulation set of the
lique tree.It follows from the de�nition that a 
lique tree indeed has a `tree-like stru
ture', see Figure 6.10.

: handles: teeth
Figure 6.10: A 
lique treeGröts
hel and Pulleyblank showed the following.Theorem 6.9.2 (Gröts
hel and Pulleyblank). Let C be a 
lique tree in Kn with handles H1, . . . ,Hrand teeth T1, . . . , Ts. Then the 
lique tree inequality

r
∑

i=1

x(E[Hi]) +
s
∑

j=1

x(E[Tj ]) ≤
r
∑

i=1

|Hi|+
s
∑

j=1

(|Tj | − tj)− s+1
2 (6.4)is valid with respe
t to the travelling salesman polytope, where tj denotes the number of handles inter-se
ting tooth Tj .In 
ase of triangle-free 2-mat
hings, those 
lique trees are interesting in whi
h the teeth are eithertriangles or single edges, see Figure 6.11.De�nition 6.9.3. A tri-
lique tree is a 
onne
ted graph C satisfying the following properties:1. C is the union of subgraphs partitioned into two sets, handles and teeth.2. No two teeth interse
t.3. No two handles interse
t.4. Ea
h tooth is an edge or a triangle and 
ontains at least one node belonging to no handle.5. For ea
h handel, the number of teeth interse
ting it is odd and at least three.6. If a tooth T and a handle H have nonempty interse
tion, then H ∩ T is an arti
ulation set of the
lique tree.Using the same idea as in [58℄ the following 
an be proved.
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riptions

: handles : teethFigure 6.11: A 
lique tree for the C3-free 2-mat
hing 
aseTheorem 6.9.4. Let C be a tri-
lique tree in a simple graph G with handles H1, . . . ,Hr and teeth
T1, . . . , Ts. Then the tri-
lique tree inequality

r
∑

i=1

x(E[Hi]) +
s
∑

j=1

x(E[Tj ]) ≤
r
∑

i=1

|Hi|+
s
∑

j=1

(|Tj | − tj)− s+1
2 (6.5)is valid with respe
t to the triangle-free 2-mat
hing polytope, where tj denotes the number of handlesinterse
ting tooth Tj .It was also showed in [58℄ that the 
lique tree inequalities are fa
et-indu
ing for the travellingsalesman polytope and almost always indu
e distin
t fa
ets. Moreover, these inequalities -in some sense-
an not be further generalized in a fa
et-indu
ing manner. Hen
e it would be interesting to see whetherthe addition of these inequalities to the des
ription of the triangle-free 2-mat
hings in sub
ubi
 graphswould give a 
omplete des
ription of the polytope in question for arbitrary graphs.



Chapter 7Splitting property via shadow systems
7.1 Shadow systemsThe main result of the 
hapter is the following theorem.Theorem 7.1.1. In the poset (Mk,≺), the maximal anti
hain Mk

k has the splitting property, that is,
Mk

k 
an be partitioned into disjoint sets A1 and A2 su
h that U(A1) ∪ L(A2) = Mk.In Theorem 7.1.1, the required property of A1 ⊂ Mk
k is that for every ve
tor c ∈ Mk+1

k , A1 must
ontain at least one shadow of A1. Generalizing this notion, for r < t we 
all A ⊆M r
k a (t, r; k)-shadowsystem, if for every 
olour ve
tor c ∈M t

k, A 
ontains at least one shadow of c. With this terminology,
A1 in Theorem 7.1.1 is a (k + 1, k; k)-shadow system.Consider a ve
tor s ∈ Zr

k. The 
olour pro�le a = M(s) ∈ M r
k 
an be naturally de�ned so that aiequals the number of i's in s for 1 ≤ i ≤ k. First of all we give a proof of Theorem 1.5.4 by using thefollowing.Theorem 7.1.2. For integers t > r, there exists a (t, r; t− 1)-shadow system At

r ⊆M r
t−1 so that if wepi
k a ve
tor s ∈ Zr

t−1 uniformly at random, then the probability of M(s) ∈ At
r equals ( r−1

t−1

)r−1.Proof of Theorem 1.5.4. Let us take a uniform random 
olouring with t− 1 
olours of a ground set Vwith |V | = n nodes. Consider a (t, r; t− 1)-shadow system At
r ⊆M r

t−1 as in Theorem 7.1.2, and let the
r-uniform hypergraph (V, E) 
ontain those r-element subsets X whose 
olour pro�le is 
ontained in At

r.(An r-element set 
oloured by t− 1 
olours naturally 
orresponds to a ve
tor in Zr
t−1.) The (t, r; t− 1)-shadow system property implies that every ve
tor c ∈ M t

t−1 has a shadow in At
r. Consequently, every

t-element subset of V has a subset in E , that is, E is a Turán (n, t, r)-system. Theorem 1.5.4 followssin
e the expe
ted size of E is ( r−1
t−1

)r−1(n
r

) by Theorem 7.1.2.In what follows, we give a proof of Theorem 7.1.2.Let x = (x1, . . . , xk) ∈Mk be a k-
olour ve
tor. If xj = 0 and xj+1 6= 0 then x′ = (x1, . . . , xj−1, xj+1−
1, xj+2, . . . , xk) ∈Mk−1 is 
alled the redu
tion of x at the jth position and is denoted by red[j](x)(indi
es are in a 
y
li
 order, i.e. xk+1 refers to x1). A ve
tor with no zero entries is 
alled irredu
ible.Assume that a series of redu
tion steps at positions j1, . . . , jt is applied on ve
tor x ∈Mk whi
h resultsin another ve
tor x′ ∈Mm where t = k −m. We de�ne the an
estor anc(i) of a position 1 ≤ i ≤ m asthe original position of that entry in the starting ve
tor. Formally, these 
an be obtained by Pro
edure 2.The following proposition unravels an important property of the redu
tion operation.109



110 7. Splitting property via shadow systemsPro
edure 2 Computing anc(i)1: Set anc(i) := i.2: Set q := t.3: while q > 0 do4: if jq > anc(i) then5: anc(i) := anc(i)6: else7: anc(i) := anc(i) + 18: end if9: q := q − 110: end while11: return anc(i)Proposition 7.1.3. Let x ∈Mk be a k-
olour ve
tor. Assume that after some redu
tion steps we obtainan irredu
ible ve
tor x′. Then x′ and the an
estors of its positions are independent from the 
hoi
e ofthe redu
tion steps.Proof. For a 
ontradi
tion, assume there exists a k-
olour ve
tor x ∈ Mk that 
an be redu
ed to twove
tors x′ and x′′ that are either di�erent or are identi
al but one of the positions has di�erent an
estorsin them. Choose k as the minimum value where this may o

ur; 
learly k > 2. By this minimal 
hoi
e,the two redu
tion sequen
es must di�er in the very �rst step. Assume the �rst sequen
e redu
es atposition j′ and the se
ond at position j′′, resulting in y′ = red[j′](x) and y′′ = red[j′′](x). W.l.o.g.assume j′ < j′′; then j′′ > j′ + 1 follows as we 
annot redu
e at position j′ if xj′+1 = 0. Considernow the redu
tions red[j′](y′′) and red[j′′ − 1](y′). These must be identi
al. Moreover, the an
estorsof the positions in red[j′](y′′) and red[j′′ − 1](y′) also 
oin
ide. However, by the minimal 
hoi
e of
k, any redu
tion sequen
e of y′ and y′′ must result in the same ve
tor z with the same an
estors, a
ontradi
tion.As an alternative proof, we 
an de�ne the following quantity. Let sum(j, k) =

∑k−1
i=j (xi − 1) whereindi
es are in 
y
li
 order and sum(k, k) is de�ned as 0. Let xredi = max{0, xi+minj sum(j, i)}. Observethat the redu
tion stops with an x′ whi
h is obtained from xred by deleting its zero entries. Moreover,the an
estor of position i is just the position of the 
orresponding nonzero entry in xred.The irredu
ible ve
tor arising by applying a sequen
e of redu
tions on x is hen
e uniquely de�ned;it is 
alled the 
omplete redu
tion of x and is denoted by red(x). The an
estor of position i in a
omplete redu
tion is denoted by anc(i). Let us de�ne the rank of x, denoted by rk(x), as the lengthof the ve
tor red(x), and let

Ak := {x ∈Mk
k : rk(x) = 1}. (7.1)Note that redu
ing a ve
tor in Mk

k gives a ve
tor in Mk−1
k−1 and the only irredu
ible ve
tor in Mk

k is anall-one ve
tor (that is, all its entries are 1). Consequently, the 
omplete redu
tion of any ve
tor in Mk
kis an all-one ve
tor of dimension m ≤ k, and x ∈ Ak if and only if m = 1. Theorem 7.1.1 follows by thenext lemma, showing that partitioning Mk

k to Ak and Mk
k \ Ak satis�es the splitting property.Lemma 7.1.4. Let Bk = Mk

k \ Ak. Then Mk = U(Ak) ∪ L(Bk).



7.1. Shadow systems 111The proof needs one more operation. For x = (x1, . . . , xk) ∈Mk we 
all x′ = (x1, x2, . . . , xj−1, 0, xj+

1, xj+1, . . . , xk) ∈ Mk+1 the extension of x at the jth position and denote it by ext[j](x). Theextension 
an be 
onsidered as a reverse 
ounterpart of the redu
tion. However, there are no restri
tionson the elements of x in this 
ase and applying ext does not modify the result of red, namely red(x) =red(ext[j](x)).Proof of Lemma 7.1.4. We have to show that (a) for every c ∈ Mk+1
k , Ak 
ontains a shadow of c, thatis, Ak is a (k + 1, k; k)-shadow system; and (b) for every d ∈Mk−1

k , there exists a b ∈ Bk su
h that d isa shadow of b.Both statements are proved by indu
tion on k. For k = 2, A2 = {(2, 0), (0, 2)} and B2 = {(1, 1)},and both statements 
learly hold. Assume both (a) and (b) hold for all values stri
tly less than k.For (a), 
onsider an arbitrary ve
tor c ∈Mk+1
k . We distinguish two 
ases.Case 1. c is irredu
ible, that is, every entry is stri
tly positive.Sin
e the sum of the elements of c is k + 1, this is only possible if for some 1 ≤ p ≤ k, cp = 2 and

ci = 1 for 1 ≤ i ≤ k, i 6= p. Consider the ve
tor a ∈ Mk
k with ap = 2, ap+1 = 0, ai = 1 for every otherindex i. Then a is a shadow of c and it is easy to verify that rk(a) = 1, that is, a ∈ Ak as required.Case 2. There exists an index i with ci = 0, ci+1 6= 0.Let c′ = red[i](c) ∈ Mk

k−1. By indu
tion, there exists an a′ ∈ Ak−1
k−1 that is a shadow of c′. Let

a = ext[i](a′) ∈ Mk
k . Then rk(a) = rk(a′) = 1, and therefore a ∈ Ak. Now a is a shadow of c,
ompleting the proof.Let us now turn to statement (b). Consider an arbitrary 
olour ve
tor d ∈Mk−1

k . Sin
e the sum of theelements of d is k−1, there is an index 1 ≤ i ≤ k su
h that di = 0 and di+1 6= 0. Let d′ = red[i](d) whi
his in Mk−2
k−1 . By indu
tion, there exists a b′ ∈ Bk−1 su
h that d′ is a shadow of b′. Let b = ext[i](b′) ∈Mk

k .Sin
e red(b) = red(b′), it follows that b ∈ Bk, as required.The 
onstru
tion of the (t, r; t − 1)-shadow system in Theorem 7.1.2 is also based on Ak. We �rstneed to de�ne some further operations. For a ve
tor x ∈ Zr
k, we obtain the ve
tor x′ = δx ∈ Zr

k byin
reasing every 
oordinate by 1: x′i = xi + 1. We 
all δ the k-shifting operator; the j'th power isdenoted by δj . Clearly δk is the identity but δjx 6= x for 0 < j < k. The set {x, δx, δ2x, . . . , δk−1x} is
alled the k-orbit of x. Being in the same k-orbit de�nes an equivalen
e relation on Zr
k.The k-shifting operation indu
es a natural operation on the 
olour ve
tors in M r

k . For a ∈ M r
k , let

a′ = ∆a ∈M r
k be the ve
tor with a′i = ai−1 (with indi
es modulo k, i.e. a′1 = ak). We 
all ∆ the 
y
li
shifting operator. Clearly, M(δx) = ∆M(x) for every x ∈ Zr

k (re
all that M(x) denotes the 
olourpro�le of x). Again, {a,∆a,∆2a, . . . ,∆k−1a} de�nes the 
y
li
 orbits of M r
k , and being in the sameorbit is again an equivalen
e relation. However, note that ∆ja = a may o

ur even for j < k. (Forexample, let k = 4, r = 4, j = 2, a = (2020).) If a and b are on the same 
y
li
 orbits, then so are red(a)and red(b). We denote the 
y
li
 orbit of an a ∈ M r

k by CO(a). The above notions are illustrated onFigure 7.1.Remark 7.1.5. It is worth mentioning that in Lemma 7.1.4, both sets Ak and Bk are 
losed under theoperation ∆.



112 7. Splitting property via shadow systems
Z2
3 M2

3 3-orbits of Z2
3 
y
li
 orbits of M2

3

(1, 1) (2, 0, 0) {(1, 1), (2, 2), (3, 3)} {(2, 0, 0), (0, 2, 0), (0, 0, 2)}
(1, 2) (0, 2, 0) {(1, 2), (2, 3), (3, 1)} {(1, 1, 0), (0, 1, 1), (1, 0, 1)}
(1, 3) (0, 0, 2) {(1, 3), (2, 1), (3, 2)}
(2, 1) (1, 1, 0)

(2, 2) (1, 0, 1)

(2, 3) (0, 1, 1)

(3, 1)

(3, 2)

(3, 3) Figure 7.1: The members and orbits of Z2
3 and M2

3 .We are ready to de�ne At
r as in Theorem 7.1.2. Consider Ar as in (7.1), and let a ∈ Ar. By de�nition,red(a) = (1). Let us 
all the an
estor of this single element the tip of the ve
tor a. Let blow(a) ∈M r

t−1denote the ve
tor arising from a by inserting t− 1− r zeros just after the tip of a. De�ne
At

r :=
⋃

a∈Ar

CO(blow(a)). (SHA)For example, let r = 3, t = 5, and a = (2, 0, 1) ∈ A3. The tip of a is the �rst element, and blow(a) =
(2, 0, 0, 0, 1). Finally, CO(blow(a)) = {(2, 0, 0, 0, 1), (1, 2, 0, 0, 0), (0, 1, 2, 0, 0), (0, 0, 1, 2, 0), (0, 0, 0, 1, 2)}.Also, note that if a′ ∈ CO(a), then CO(blow(a)) = CO(blow(a′)). Further, ∪a′∈CO(a)blow(a′) (

CO(blow(a)): in the above example, (0, 0, 0, 1, 2) is 
ontained in the latter set but not in the �rst.We show that At
r is a (t, r; t − 1)-shadow system satisfying the requirement of Theorem 7.1.2. Theshadow system property 
an be veri�ed using an argument almost identi
al to that in the proof ofLemma 7.1.4.Lemma 7.1.6. For integers t > r, At

r ⊆M r
t−1 de�ned by (SHA) is a (t, r; t− 1)-shadow system.Proof. The proof is by indu
tion on r. For r = 2, A2 = {(2, 0), (0, 2)}, and for any t > r, At

2 
ontainsthe ve
tors with one entry being 2 and all other entries 0. Every c ∈ M t
t−1 must 
ontain at least oneentry ≥ 2, and therefore it has a shadow in At

2. Assume we have proved the statement for all valuesstri
tly less than r and 
onsider an arbitrary 
olour ve
tor c ∈M t
t−1.Case 1. c is irredu
ible, that is, every entry is stri
tly positive.Sin
e the sum of the elements of c is t, this is only possible if for some 1 ≤ p ≤ t − 1, cp = 2 and

ci = 1 for 1 ≤ i ≤ t− 1, i 6= p. Consider the ve
tor a ∈M r
t−1 with

ai =



















2 if i = p,

0 if i = p+ 1, . . . , p + t− r,

1 otherwise,where we use the indexing 
y
li
ally, i.e. t means 1. Clearly, a is a shadow of c, and a ∈ At
r sin
eremoving t− 1− r 0's after the 2, we obtain a′ = (1, . . . , 1, 2, 0, 1, . . . , 1) ∈ M r

r , and it is easy to verify
a′ ∈ Ar.



7.1. Shadow systems 113Case 2. There exists an index i with ci = 0, ci+1 6= 0.Let c′ = red[i](c) ∈ M t−1
t−2 . By indu
tion, there exists an a′ ∈ Ar−1

t−2 that is a shadow of c′. Let
a = ext[i](a′) ∈M r

t−1. It is easy to verify a ∈ At
r. Now a is a shadow of c, 
ompleting the proof.The following lemma 
onsiders elements of Zr
t−1 instead of 
olour ve
tors, and gives the exa
t numberof those having their 
olour pro�le in At

r.Lemma 7.1.7. Let S ⊆ Zr
t−1 denote the set of ve
tors whose 
olour pro�le is in At

r. Then |S| =
(r − 1)r−1(t− 1).Before proving the lemma, let us derive Theorem 7.1.2 as a 
onsequen
e.Proof of Theorem 7.1.2. We show that At

r as de�ned by (SHA) satis�es the 
onditions. Lemma 7.1.6shows that it is a (t, r; t − 1)-shadow system. The total number of ve
tors in Zr
t−1 is (t − 1)r. Theprobability that a randomly pi
ked s ∈ Zr

t−1 has its 
olour pro�le in At
r is |S|/(t − 1)r =

(

r−1
t−1

)r−1 byLemma 7.1.7 as required.By de�nition, At
r is 
losed under the operation ∆. While 
ertain 
y
li
 orbits may be shorter than

t− 1, the next 
laim shows this 
annot be the 
ase for orbits 
ontained in At
r.Claim 7.1.8. If a ∈ At

r, then ∆ja 6= a for 0 < j < t− 1. Consequently, all 
y
li
 orbits 
ontained in
At

r have size exa
tly t− 1.Proof. Every 
y
li
 orbit in At
r 
an be obtained as CO(blow(a)) for some a ∈ Ar. It su�
es to showthat for any 0 < j < t − 1, ∆jblow(a) 6= blow(a). For a 
ontradi
tion, assume there exists su
h a jand a for whi
h ∆jblow(a) = blow(a); let b = blow(a) and b′ = ∆jblow(a). Without loss of generality,assume the tip of a is its �rst element.As a ∈ Ar, it 
an be redu
ed to (1), whi
h means that b 
an be redu
ed to (0, . . . , 0) 
onsisting of

t − r − 1 zeros and the an
estor of the ith zero is i. Re
all that the 
omplete redu
tion of b and thean
estors of the elements of red(b) are uniquely de�ned by Proposition 7.1.3. By b′ = b, b′ also has
omplete redu
tion (0, . . . , 0) 
onsisting of t− r− 1 zeros where the an
estor of the ith zero is i. On theother hand, by b′ = ∆jb, the an
estors of the elements of red(b′) are just the an
estors of the elementsof red(b) shifted by j, a 
ontradi
tion as 0 < j < t− 1.Proof of Lemma 7.1.7. The 
ardinality of Zr
r−1 is (r−1)r and the number of (r−1)-orbits is (r−1)r−1.Sin
e At

r is 
losed under ∆, it follows that S is 
losed under δ and is hen
e a union of (t − 1)-orbits.In what follows, we de�ne a bije
tion ϕ between the (r − 1)-orbits of Zr
r−1 and the (t − 1)-orbits of S.Sin
e every (t− 1)-orbit has 
ardinality t− 1 by Lemma 7.1.7, this proves the lemma.Consider a 
olour ve
tor a ∈ M r

r−1. It is easy to verify that its 
omplete redu
tion has one entrythat is 2 and all other entries are 1, that is red(a) = (1, . . . , 1, 2, 1, . . . , 1). Analogously as for elementsof Ar, we 
all the an
estor of the entry 2 the tip of a. Clearly, the tip of ∆a is the tip of a plus one (ina 
y
li
 sense).Take an arbitrary (r − 1)-orbit X in Zr
r−1. The 
olour pro�les of the ve
tors in X map to a 
y
li
-orbit T of M r

r−1. T must have an element a whose tip is the last ((r − 1)'st) 
oordinate; pi
k an s ∈ Xsu
h that M(s) = a. Let us inje
t Zr−1 into Zt−1 by mapping i ∈ Zr−1 to i ∈ Zt−1 for 1 ≤ i ≤ r − 1,and let s̄ ∈ Zr
t−1 be the image of s under this mapping. Let us de�ne ϕ(X) as the (t− 1)-orbit of s̄ in
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Zr
t−1. In what follows, we verify that ϕ is a good bije
tion.Well-de�ned.We �rst have to show that s̄ ∈ S, that is,M(s̄) ∈ At

r. Observe that ā = M(s̄) ∈M r
t−1
an be obtained from a = M(s) ∈ M r

r−1 by adding t − r zero 
oordinates at the (r − 1)'st position.The ve
tor a 
an be redu
ed to (1, 1, . . . , 1, 2); apply the same redu
tion steps to s̄. This gives a ve
tor
b = (1, 1, . . . , 1, 2, 0, . . . , 0) (with t − r zeros at the end), whi
h 
an be further redu
ed to (1) afterdeleting the last t− r − 1 zeros.Inje
tive. Assume indire
tly that X1 and X2 are di�erent (r−1)-orbits of Zr

r−1, su
h that ϕ(X1) =

ϕ(X2). For i = 1, 2, let Ti be the 
orresponding 
y
li
 orbit, ai ∈ Ti the element with tip (r − 1) and
si ∈ Xi with M(si) = ai. De�ne si ∈ S by mapping Zr−1 to Zt−1 and ai ∈ M r

t−1 as the 
olour pro�leof si. Now s1 6= s2 are on di�erent (r− 1)-orbits but s1 6= s2 are on the same (t− 1)-orbit. That meansthat there is a j su
h that s2 = δjs1, and so a2 = ∆ja1.We know that both a1 and a2 
an be redu
ed to (1, . . . , 1, 2, 0, . . . , 0) (with t− r zeros at the end)by applying the same redu
tions steps as for a1 and a2, and this ve
tor 
an be further redu
ed to theall-zero (0, . . . , 0) ve
tor 
onsisting of t − r − 1 zeros where the an
estor of the ith element is t − r.Again, the 
omplete redu
tion of a ve
tor and the an
estors of the elements of the redu
tion are uniquelyde�ned by Proposition 7.1.3. We have seen that a1 and a2 has the same 
omplete redu
tion. On theother hand, by a2 = ∆ja1, the an
estors of the elements of red(a2) are just the an
estors of the elementsof red(a1) shifted by j, a 
ontradi
tion as 0 < j < t− 1.Surje
tive. Consider any orbit Y of S, and let a ∈ At
r be the 
olour pro�le of an element s ∈ Y .We may 
hoose s su
h that ar = . . . = at−1 = 0. This is sin
e a is a ve
tor in CO(blow(a0)) for some

a0 ∈ Ar, that is, we insert t− 1− r zeros after the tip of a0 and apply ∆j for some j. It is easy to verifythat the element of a0 following the tip must be 0 be
ause of rk(a0) = 1.Let us apply redu
tion steps on a avoiding the last t− r zeros but redu
ing all others. It is easy toverify that this redu
es a to (1, . . . , 1, 2, 0, . . . , 0) (with t− r zeros at the end). Now let us map s ∈ Zr
t−1to s∗ ∈ Zr

r−1 by mapping i ∈ Zt−1 to i ∈ Zr−1 for 1 ≤ i ≤ r − 1 (this is well-de�ned as s does not
ontain 
olors r, . . . , t − 1 by ar = . . . = at−1 = 0). Observe that ϕ maps the orbit of s∗ to Y , provingthe 
laim.
7.1.1 Relation to Sidorenko's 
onstru
tionSidorenko's 
onstru
tion is based on the following observation.Lemma 7.1.9. Let b1, . . . , bk be 
y
li
ally ordered reals, and b = b1+...+bk

k
. Then there exists an index

m su
h that
bm + . . .+ bm−s+1 ≥ sb ∀s = 1, . . . , k.The 
onstru
tion is as follows: Divide the n elements into t − 1 groups A1, A1, . . . , At−1. Let B bean r-element subset and bi = |B ∩Ai|. Then set B is in
luded into the set system T if and only if there
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h that
s
∑

i=1

bm−i+1 ≥ s+ 1 ∀s = 1, . . . , r − 1, (7.2)where indi
es are meant in 
y
li
 order, that is, bt = b1. It follows from Lemma 7.1.9 that T thusobtained is a Turán (n, t, r)-system.The following lemma shows the 
onne
tion between Sidorenko's 
onstru
tion and that of At
r.Lemma 7.1.10. Assume that the n elements are divided into t−1 groups A1, A1, . . . , At−1. An r-elementsubset B is in
luded into T if and only if (b1, . . . , bt−1) ∈ At

r.Proof. Consider a set B with b = (b1, . . . , bt−1) ∈ At
r. Then b ∈ CO(blow(a)) for some a ∈ Ar where Aris de�ned by (7.1), say b = ∆jblow(a). Let p be the tip of a and de�ne m = p+j. We 
laim that m and bsatis�es (7.2). Indire
tly, assume that there is an 1 ≤ s ≤ r−1 violating (7.2), that is,∑s

i=1 bm−i+1 ≤ s.From s ≤ r − 1 and the de�nitions of b and m, ∑s
i=1 bm−i+1 =

∑s
i=1 ap−i+1. Choose s to be maximal.Then s < r− 1 as∑r−1

i=1 ap−i+1 = r. Indeed, a ∈ Ar so∑r
i=1 ap−i+1 = r, and a 6= (1, . . . , 1) as it 
an beredu
ed to (1).Re
all that a′ = red(a) is obtained from ared by deleting its zero entries, where aredi = max{0, ai +

minj sum(j, i)} and sum(j, k) =
∑k−1

i=j (ai − 1) (we de�ned sum(k, k) as 0). However, ∑s
i=1 ap−i+1 ≤ smeans that in fa
t ∑s

i=1 ap−i+1 = s, otherwise aredp = 0 
ontradi
ting p being a tip. The maximal
hoi
e of s implies ∑q
i=1 ap−s−i+1 ≥ q for 1 ≤ q ≤ r and ∑r−s

i=1 ap−s−i+1 = r − s > 0. Hen
e aredr−s > 0,
ontradi
ting a ∈ Ar.Now take a B ∈ T and an index m satisfying (7.2). W.l.o.g. assume that m = r. That is,
∑s

i=1 br−i+1 ≥ s + 1 for 1 ≤ s ≤ r − 1. As ∑t−1
i=1 br−i+1 = r, we immediately have br+1 = . . . =

bt−1 = b1 = 0. Let a = (a1, . . . , ar) = (b1, . . . , br). Then ∑r
i=1 ar−i+1 = r and ∑s

i=1 ar−i+1 ≥ s + 1 for
1 ≤ s ≤ r − 1. We 
laim that a ∈ Ar. To see this, it su�
es to show that aredp = 0 for p = 1, . . . , r − 1.Assume indire
tly that aredp > 0 for some p. This implies ∑q

i=1 ap−i+1 ≥ q for 1 ≤ q ≤ r. We have
r =

∑r
i=1 ai =

∑p
i=1 ap−i+1 +

∑r−p
i=1 ar−i+1 ≥ p+ r − p+ 1 = r + 1, a 
ontradi
tion.In the proof of Theorem 1.5.4, we took a uniform random 
olouring of the ground set with t − 1
olours and showed that the expe
ted number of r-element subsets whose 
olour pro�le is 
ontained in

At
r is `small enough'. Sidorenko's 
onstru
tion takes a deterministi
 
olouring instead with almost equalgroups, that is, ∣∣|Ai| − |Aj |

∣

∣ ≤ 1 for 1 ≤ i < j ≤ t− 1, and shows that for su
h a 
olouring the numberof r-element subsets with 
olour pro�le in At
r does not ex
eeds the bound, thus proving (1.11).7.2 Weighted Turán numberRe
all the de�nition of the weighted Turán number tw(t, r) from the Introdu
tion. The followingeasy observation shows that the presen
e of weights does not a�e
t the upper bound for tw(t, r).Theorem 7.2.1. For any integers t > r, we have tw(t, r) = t(t, r), and therefore tw(t, r) ≤

(

r−1
t−1

)r−1.Proof. Clearly, tw(t, r) ≥ t(t, r) as the unweighted Turán number 
orresponds to the spe
ial 
ase w ≡ 1.To see the other dire
tion, take an arbitrary Turán (n, t, r)-system (without taking weights into a

ount).If we 
onsider the weight of this system in a random permutation of the elements, then the expe
ted
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tly T (n,t,r)

(nr)
· w∗, whi
h means that there exists a Turán (n, t, r)-system withweight at most that, 
ompleting the proof. The se
ond half follows by Theorem 1.5.4.Theorem 7.2.1 ensures the existen
e of a Turán (n, t, r)-system with `small' weight. However, it isstill not 
lear how to �nd and represent su
h a system. For t = 3 and k = 2, Theorems 1.5.4 and 7.2.1imply that in a weighted graph, we 
an 
hoose a set of edges whose weight is at most the half of thetotal weight w∗ 
overing every triangle. Indeed, the most simple maximum 
ut algorithm delivers su
han edge set. Let us 
olour the nodes of the graph by two 
olours uniformly at random, and 
hoose theset of edges whose two endpoints re
eive the same 
olour. Clearly, these edges must 
over every triangle.Sin
e every individual edge gets 
hosen by probability 1

2 , the expe
ted 
ost of the 
hosen edge set willbe w∗

2 .The proof of Theorem 1.5.4 using Theorem 7.1.2 presented in the Introdu
tion also yields a simplerandomized algorithm for �nding an (n, t, r)-Turán system in question. We 
olour the nodes uniformlyat random by (t− 1)-
olours, and 
hoose r-element subsets a

ording to their 
olour pro�les. Note thatwe must obtain a Turán system of 
ost at most ( r−1
t−1

)r−1
w∗ with probability at least (r−1

t−1

)r−1. The
onstru
tion of the (t, r; t− 1)-shadow system At
r in Theorem 7.1.2 will give a simple and e�
ient wayto de
ide whether a 
olour ve
tor is 
ontained in At
r. Consequently, although the size of the 
onstru
tionis O(nr), the 
olouring provides a simple linear representation.7.3 Tuza's 
onje
tureAs outlined earlier, the minimum number of edges 
overing all of the triangles in an arbitrary graphis the weighted Turán number Tw(n, 3, 2) for we = 1 on the edges of the graph and we = 0 otherwise.Given an undire
ted graph G = (V,E), a set of pairwise edge-disjoint triangles is 
alled a trianglepa
king, while a set of edges sharing an edge with all triangles is 
alled a triangle 
over. Let

ν(G) = maximum 
ardinality of a triangle pa
king in G,

τ(G) = minimum 
ardinality of a triangle 
over in G.Hen
e the unweighted Turán number T (n, 3, 2) is the same as τ(Kn). The problem of determiningthe exa
t values of ν(G) and τ(G) is showed to be NP-
omplete by Holyer [68℄ and Yannakakis [136℄,respe
tively. Still, it would be interesting to give a 
onne
tion between these parameters. Clearly, ν(G) ≤
τ(G) holds so a natural approa
h would be to give an upper bound for τ(G) as a fun
tion of ν(G).In [127℄, Tuza proposed the following 
onje
ture.Conje
ture 7.3.1 (Tuza). τ(G) ≤ 2ν(G) for any simple undire
ted graph G.It is worth mentioning that equality holds for in�nitely many graphs. Indeed, take any graph withall maximal two-
onne
ted subgraphs isomorphi
 to either K2,K4 or K5. That is, if Conje
ture 7.3.1 istrue then it is sharp.The 
onje
ture has been proved for various 
lasses of graphs (see [24, 56, 65, 66, 67, 99, 128℄). The�rst nontrivial bound for general graphs was given by Haxell by proving that for any graph G, wehave τ(G) ≤ (3 − ε)ν(G), where ε > 3

23 [64℄. A fra
tional weakening of the 
onje
ture was given by
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ture 117Krivelevi
h [99℄ who showed that τ(G) ≤ 2τ∗(G) and ν∗(G) ≤ 2ν(G) where τ∗(G) and ν∗(G) stand forthe optimal fra
tional solutions of the 
orresponding 
overing and pa
king problems, respe
tively.The problem of determining ν(G) and τ(G) 
an be generalized in two ways. In [37℄, Erd®s and Tuzaproposed a `
lique version' of the original problem by 
onsidering the 
overing of 
omplete subgraphswith 
omplete subgraphs, while in [17℄ Chapuy et al. studied an edge-weighted version of the 
onje
ture,and weighted analogues of results of Tuza, Krivelevi
h and Haxell were proved. Putting together thesetwo ideas, we formalize a more general version of the problem.For an (r − 1)-uniform simple hypergraph H = (V, E), an r-blo
k is a subset of r nodes spanning a
omplete subhypergraph. The set of r-blo
ks is denoted by Br. A r-pa
king is a set of disjoint r-blo
ks,while an r-
over is a set of hyperedges su
h that ea
h r-blo
k spans at least one of them. Assume nowthat a weight fun
tion w : E → R+ is also given. A weighted r-pa
king is a family of - not ne
essarilydisjoint - r-blo
ks su
h that ea
h hyperedge e is 
ontained in at most w(e) of them. For the weighted
ase, let
νw(H) = maximum 
ardinality of a weighted r-pa
king in H,

τw(H) = minimum weight of a r-
over in H.Here νw(H) and τw(H) are 
alled weighted r-pa
king and weighted r-
overing numbers, respe
-tively. These parameters 
an be interpreted as optimal solutions to the following integer programs. Let
A be the hyperedge - r-blo
k in
iden
e matrix of H, that is, Ae,R = 1 if e ∈ E is spanned by r-blo
k R,and 0 otherwise. Then

νw(H) = max{1 · x| Ax ≤ w, x ∈ ZBr
+ },

τw(H) = min{w · y| AT y ≥ 1, y ∈ ZE
+}.By relaxing the integrality 
onstraints we get the following primal-dual pair of linear programs.

ν∗w(H) = max{1 · x| Ax ≤ w, x ∈ RBr
+ },

τ∗w(H) = min{w · y| AT y ≥ 1, y ∈ RE
+},where ν∗w(H) and τ∗w(H) are 
alled the weighted fra
tional r-pa
king and weighted fra
tional

r-
overing numbers, respe
tively. The linear programming duality theorem gives
νw(H) ≤ ν∗w(H) = τ∗w(H) ≤ τw(H).As a generalization of Tuza's, we propose the following 
onje
ture.Conje
ture 7.3.2. Let H = (V, E) be a simple (r − 1)-uniform hypergraph and w : E → R+ a weightfun
tion. Then τw(H) ≤ ⌈ r+1

2 ⌉νw(H).Tuza's 
onje
ture 
orresponds to the 
ase when r = 3, w ≡ 1 and H is a simple graph. Similarlyto the original 
onje
ture, if Conje
ture 7.3.2 is true then it is sharp. Indeed, let w ≡ 1 and takean (r − 1)-uniform 
omplete hypergraph H = (V, E) on r + 1 nodes. We 
laim that νw(H) = 1 and
τw(H) = ⌈ r+1

2 ⌉.It is easy to see that νw(H) = 1 as the graph has only r + 1 nodes, so any two r-blo
ks share r − 1nodes in 
ommon. As the graph is 
omplete, there is a hyperedge spanned by these nodes, so w ≡ 1implies that at most one r-blo
k is 
ontained in any weighted r-pa
king.
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2 ⌉ it su�
es to show that for any set C of r-blo
ks with 
ardinality at most

⌈ r+1
2 ⌉ − 1 there exists a node v whi
h is 
ontained in all members of C. That would 
learly prove thelower bound as C does not 
over the r-blo
k H − v. Assume indire
tly that there is no su
h node, thatis, ea
h node is 
ontained in at most |C| − 1 of them. We have

∑

v∈V

|{e ∈ C : v ∈ e}| ≤ (r + 1)(|C| − 1).On the other hand,
∑

v∈V

|{e ∈ C : v ∈ e}| =
∑

e∈C

|e| = (r − 1)|C|.These together gives (r + 1)(|C| − 1) ≥ (r − 1)|C|, hen
e |C| ≥ ⌈ r+1
2 ⌉, a 
ontradi
tion.It remains to show an r-
over with 
ardinality ⌈ r+1

2 ⌉. Let V = {v1, . . . , vr+1} and C = {V \
{v2i−1, v2i}| i = 1, . . . , ⌈ r+1

2 ⌉} where indi
es are meant in 
y
li
 order, so vr+2 = v1. Then for any
v ∈ V there is at least one e ∈ C not 
ontaining v. Hen
e C is an r-
over as for any r-blo
k B there isan e ∈ C not 
ontaining V \B, thus e ⊆ B.Conje
ture 7.3.2 is widely open. With the help of the shadow system appearing in Theorem 7.1.2,we prove a fra
tional weakening of the 
onje
ture whi
h 
an be 
onsidered as a weighted 
ounterpart ofKrivelevi
h's result.Theorem 7.3.3. Let H = (V, E) be a simple (r − 1)-uniform hypergraph and w : E → R+ a weightfun
tion. Then τw(H) ≤ (r − 1)τ∗w(H).Proof. Suppose that the theorem does not hold and letH be a minimal 
ounterexample, that is, τw(H) >

(r − 1)τ∗w(H) but τw(H ′) ≤ (r − 1)τ∗w(H
′) for every proper subhypergraph H ′ of H. This implies thatea
h hyperedge e ∈ E is 
ontained in an r-blo
k as otherwise it 
ould be left out from H thus givinga smaller 
ounterexample. Take a pair of optimal solutions of the weighted fra
tional r-pa
king and

r-
over problems denoted by x∗ and y∗, respe
tively.Case 1. y∗e ≥ 1
r−1 for some e ∈ E .Let H ′ be the graph obtained by deleting the hyperedge e from H. Clearly, τw(H ′) ≥ τw(H)−w(e).On the other hand, z∗ is a fra
tional r-
over in H ′ where z∗(e′) = y∗(e′) for e′ 6= e. Hen
e τ∗w(H

′) ≤
τ∗w(H)− w(e)

r−1 . By the minimal 
hoi
e of H we get
τw(H) ≤ τw(H

′) + w(e) ≤ (r − 1)τ∗w(H
′) + w(e) ≤ (r − 1)τ∗w(H),a 
ontradi
tion.Case 2. y∗e < 1

r−1 for ea
h e ∈ E .We 
laim that y∗e > 0 for ea
h e ∈ E . Indeed, an r-blo
k spans r di�erent hyperedges. If one of thesehyperedges had y∗ value 0 then the total y∗ sum on them would be stri
tly smaller than 1, 
ontradi
tingthe assumption that y∗ is a fra
tional r-
over. As mentioned earlier, ea
h hyperedge is spanned by oneof the r-blo
ks, hen
e the statement follows. By 
omplementary sla
kness, we have
∑

B∈Br
Bspans e

x∗(B) = w(e) for ea
h e ∈ E .
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ture 119That also implies that the exa
t value of the optimum for the fra
tional problem 
an be 
omputed as
τ∗w(H) = ν∗w(H) =

∑

B∈Br

x∗(B) = 1
r

∑

e∈E

∑

B∈Br
B spans e

x∗(B) = 1
r

∑

e∈E

w(e) = 1
r
w∗.So it su�
es to show that τw(H) ≤ r−1

r
w∗. We do the same as in the proof of Theorem 7.2.1: 
olour thenodes uniformly at random with the 
olours 1, . . . , r− 1 and de�ne the r-
over as the set of hyperedges

e with 
olour pro�le in Ar
r−1 de�ned in (SHA). We have already seen that there exist a 
olouring of thenodes su
h that the total weight of the 
overing is at most ( r−1

r

)r−1
w∗ ≤ r−1

r
w∗, and we are done.
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Abstra
tThe thesis has two main topi
s, the �rst of them is arbores
en
e pa
king. We 
onsider extensions ofEdmonds' fundamental result on pa
king disjoint spanning arbores
en
es. The problem 
an be naturallygeneralized in two dire
tions: the edge-disjointness 
ondition may be strengthened, and the set of nodesspanned by the arbores
en
es may be de
reased.
• We give a disproof of the 
onje
ture of Colussi, Conforti and Zambelli on strongly edge-disjointarbores
en
es. For k = 2 the 
onje
ture is true; we give its generalization for di
y
le-disjoint Steinerarbores
en
es.
• We present a linear time algorithm for �nding a pair of disjoint in- and out-arbores
en
es inan a
y
li
 digraph. De
iding the existen
e of su
h arbores
en
es is NP-
omplete in general. Ouralgorithm is based on a redu
tion to bipartite mat
hing in an asso
iated bipartite graph.
• We present a strongly polynomial time algorithm for �nding disjoint arbores
en
es spanning 
onvexsets under 
apa
ity 
onstraints. Our solution is based on the deep understanding of the 
onne
tionbetween pa
king arbores
en
es and 
overing interse
ting bi-set families.
• We give a polyhedral des
ription of arbores
en
e pa
kable subgraphs and prove that the system isTDI. The proof strongly relies on the spe
ial interse
ting bi-set families appearing in the proof ofFujishige's theorem.The se
ond part of the thesis deals with restri
ted b-mat
hings, mainly with Ck-free k-mat
hings.It has been known that the Ck-free 2-mat
hing problem is NP-
omplete for k ≥ 5. We 
onsider the

C3-free and the C4-free 2-mat
hing, and the Kt,t- and Kt+1-free t-mat
hing problems in graphs thatsatisfy 
ertain degree bounds.
• We give a min-max theorem and an algorithm for the square-free 2-mat
hing problem in sub
ubi
graphs.We show that the weighted version of the problem is NP-hard even in planar bipartite 
ubi
graphs, but is polynomially solvable when the weight fun
tion is node-indu
ed on ea
h square.
• We give a min-max theorem and an algorithm for the Kt,t- and Kt+1-free t-mat
hing problemin degree bounded graphs. Note that this problem is a generalization of the C3-free, C4-free and

C≤4-free 2-mat
hing problems.
• We give a des
ription of the triangle-free 2-mat
hing polytope of sub
ubi
 graphs. The des
rip-tion was 
onje
tured by Hartvigsen and Li; the 
omplete proof appeared re
ently. We give anindependent proof of the result whi
h relies on a shrinking method.The last 
hapter examines arbitrary triangle-free subgraphs, that is, when the degree bound onthe nodes in the subgraph is omitted. The problem is approa
hed through shadow systems and Turánnumbers.
• We prove that the set of multisets with size k over a ground set with size also k has the so-
alledsplitting property. From this, we show that a weighted extension of the Turán number admits thesame upper bounds as the unweighted one. We also prove a 
ombinatorial 
olouring theorem anda fra
tional version of an extension of Tuza's 
onje
ture to hypergraphs.The results are based on the papers [7℄, [8℄, [10℄, [11℄, [12℄, [13℄ and [14℄.
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ÖsszefoglalásAz értekezés két f® témával foglalkozik, melyek közül az els® a feny®k pakolásának kérdésköre. Aprobléma két irányban is általánosítható: egyrészt szigorítható a feny®kre vonatkozó éldiszjunktságimegkötés, másrészt a feny®k által feszített pontok halmaza is sz¶kíthet®.
• Meg
áfoljuk Colussi, Conforti és Zambelli er®sen éldiszjunkt feny®kre vonatkozó sejtését. A sejtésa k = 2 esetben igaz; ezt a zeredményt általánosítjuk irányított kördiszjunkt Steiner feny®kre.
• Lineáris idej¶ algoritmust adunk egy pár éldiszjunkt ki- és be-feny® megtalálására a
iklikus grá-fokban. A kérdéses feny®k létezésének eldöntése általában NP-teljes probléma. Az általunk adottalgoritmus visszavezeti a problémát egy páros gráfban való maximális párosítás megkeresésére.
• Er®sen polinomiális algoritmust adunk adott konvex halmazokat feszít® éldiszjunkt feny®k meg-keresésére egy élkapa
itásokkal rendelkez® gráfban. Megoldásunk a feny®-pakolások és a metsz®párhalmazrendszerek fedése közti szoros kap
solaton alapul.
• Megadjuk a feny®-pakolható részgráfok poliéderes leírását� és igazoljuk, hogy a kapott rendszerTDI. A bizonyítás a Fujishige tételének bizonyításában megjelen® spe
iális párhalmaz 
saládokszerkezetére épül.A dolgozat második része tiltott részgráfokat nem tartalmazó b-mat
hingekkel foglalkoznak, különöstekintettel a Ck-mentes 2-mat
hingekre. Ismert volt korábban, hogy a Ck-mentes 2-mat
hing problémaNP-teljes k ≥ 5 esetén. Mi a C3-mentes és C4-mentes 2-mat
hingek, illetve a Kt,t- és Kt+1-mentes

t-mat
hingek problémáját vizsgáljuk fokszámkorlátozott gráfokban.
• Min-max tételt és algoritmust adunk a négyszög-mentes 2-mat
hing feladatra szubkubikus gráfok-ban.Megmutatjuk, hogy a probléma súlyozott változata már síkbarajzolható páros kubikus gráfok-ban is NP-nehéz, ugyanakkor pont-indukált költségfüggvény esetén polinomiális algoritmus adható.
• Min-max tételt és algoritmust adunk a Kt,t- és Kt+1-mentes t-mat
hing feladatra fokszámkorláto-zott gráfokban. Ez a probléma könnyen láthatóan általánosítja a C3-mentes, a C4-mentes, illetvea C≤4-mentes 2-mat
hing problémákat.
• Megadjuk a szubkubikus gráfok háromszög-mentes 2-mat
hing poliéderének leírását. A leíró rend-szert Hartvigsen és Li sejtette meg; teljes bizonyítása nemrégiben jelent meg. Egy független bi-zonyítást adunk az említett leírás helyességére, mely egy új összehúzási m¶veleten alapul.Az utolsó fejezetben tetsz®leges háromszög-mentes részgráfokkal foglalkozik, azaz mikor a vizsgáltrészgráfokban a pontokra vonatkozó fokszámkorlátot elhagyjuk. A problémát más ismert területeketérintve közelítjük meg, mint például az árnyék-rendszerek, avagy a Turán-szám.
• Igazoljuk, hogy eg k méret¶ alaphalmazon értelmezett k elem¶ multihalmazok rendszere rendelkezikaz úgynevezett splitting tulajdonsággal. Ennek segítségével bizonyítunk egy kombinatorikus színezésitételt, melyb®l aztán a Tuza-sejtés egy hipergráfokra való általánosításának törtirányú gyengítésekövetkezik.A bemutatott eredmények a [7℄, [8℄, [10℄, [11℄, [12℄, [13℄ és [14℄ 
ikkekben jelentek meg.
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