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Notation
Undireted graphs
G = (V,E) An undireted graph G on node set V with edge set E.
H = (V (H), E(H)) A subgraph H of G with node set V (H) and edge set E(H).
G = (S, T ;E) A bipartite graph with olour lasses S and T and edge set E.
G[X] The subgraph of G indued by X ⊆ V .
G−X G[V \X] for X ⊆ V and G′ = (V,E \X) for X ⊆ E.
E[X] The set of edges indued by X ⊆ V .
E[X,Y ] The set of edges between X − Y and Y −X.
δG(X) The set of edges having exatly one end in X ⊆ V .
δ̇G(v) Family of edges inident to v ∈ V in whih loops are inluded twie.
ℓ(v) The set of loops at v ∈ V .
ℓ(X) The set of loops indued by X ⊆ V .
dG(v) = |δ̇G(v)| = |δG(v)|+ 2|ℓ(v)| for v ∈ V .
dG(X) = |δG(X)| for X ⊆ V, |X| ≥ 2.
dG(X,Y ) = |E[X,Y ]|.
dG(X,Y ) The number of edges between X ∩ Y and V − (X ∪ Y ).
iG(X) The number of edges with both endnodes in X.
IG(X) The set of edges with both endnodes in X.
eG(X) The number of edges with at least one endnode in X.
Ḡ The omplement of G.
Kn Complete graph on n nodes.
Ks,t Complete graph with olour lasses having sizes s and t, respetively.
hF (X) =

∑

v∈X dF (v).
ΓG(X) The set of nodes in V −X adjaent to X.
(G,w) A graph G with weight funtion w : E → R.Direted graphs
D = (V,A) A direted graph (shortly, digraph) on node set V with edge set A.
t(a), h(a) The tail and head of ar a, respetively.
̺D(X) The number of edges entering X ⊆ V .
∆in

D (X) The set of edges entering X ⊆ C.
δD(X) The number of edges leaving X ⊆ V .
∆out

D (X) The set of edges leaving X ⊆ V .
δD(X,Y ) The number of direted edges from X − Y to Y −X.
dD(X,Y ) = δD(X,Y ) + δD(Y,X).
λD(u, v) The maximum number of edge-disjoint direted paths from u to v.
κD(r, v) The maximum number of internally node-disjoint direted paths from u to v.vii



viii
Γ−(X) The entrane of X, that is, {v ∈ X : ∃uv ∈ A, u ∈ V −X}.Matroids
M = (S, rM) A matroid on ground set S with rank funtion rM.l(Z) The losure of Z ⊆ S.Bi-sets
X = (XO,XI) A bi-set XI ⊆ XO ⊆ V with outer member XO and inner member XI .
P2(V ) = P2 The set of all bi-sets on ground-set V .
X ∩ Y = (XO ∩ YO,XI ∩ YI) for X,Y ∈ P2.
X ∪ Y = (XO ∪ YO,XI ∪ YI) for X,Y ∈ P2.
X ⊆ Y This means XO ⊆ YO,XI ⊆ YI .
̺D(X) The number of edges entering bi-set X.
∆in

D (X) The set of edges entering bi-set X.
δD(X) The number of edges leaving bi-set X.
∆out

D (X) The set of edges leaving bi-set X.Restrited b-mathings
VK The node set of subgraph K.
EK The edge set of subgraph K.
VK The set of nodes ontained by subgraphs in K.
EK The set of edges ontained by subgraphs in K.
eu, ev End nodes of edge e ∈ E.
eTij Edge of triangle T between i and j (resp. ti and tj) if VT = {u, v, w} (resp.

VT = {t1, t2, t3}).
T 1
K The set of triangles in T 1-�tting K.
T 2
K The set of triangles in T 2-�tting K.
TK = T 1

K ∪ T 2
K.def(K,F,T) = ⌊12(b(K) + |F |+ 3|T|)⌋ −

(

x(E[K]) + x(F ) +
∑

T∈T x(ET )
).

Fu Set of non self-loop edges in F inident to u.Misellaneous
Z+,R+ The sets of non-negative integers and reals.
X − v = X \ {v} for a set X and single element v.
X + v = X ∪ {v} for a set X and single element v.
b(U) =

∑

v∈U b(v) for a funtion b : V → R and U ⊆ V .
x ≺ y x � y and x 6= y for a partial order �.Instead of `G' and `D' we sometimes use the above notations with subsripts denoting a subset ofedges. In suh a ase the quantity in question has to be omputed by onsidering only the subset showedby the subsript.
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Chapter 1Introdution
Two families of problems are onsidered in the thesis the �rst of whih is arboresene paking.An arboresene is a direted tree with a root in whih the edges are direted `away' from the rootnode (sometimes this is alled an out-arboresene in the literature; in an in-arboresene the edges aredireted `toward' the root node). The paking problem onsists of �nding disjoint opies of arboresenessatisfying ertain onditions. The motivation of these problems omes from real-life appliations suhas survivable network or evauation plan design. A ornerstone in graph theory is Edmonds' theoremharaterizing the existene of k edge-disjoint spanning arboresenes rooted at the same root nodein a direted graph [34℄. In fat, Edmonds proved a stronger version of his result in whih branhingsare onsidered instead of arboresenes. This result implied great many extensions, but the onditionrequiring the branhings to be spanning was not weakened for almost three deades. The reason for thatis that even a slight modi�ation of the spanning onstraint may result in di�ult problems, as wasshown in [10℄.In 2008, Kamiyama, Katoh and Takizawa gave a surprising extension of Edmonds' theorem in whiharboresenes spanning only nodes that are reahable from the given root nodes are onsidered [82℄.In [6℄, we showed that the abstrat theorem of Szeg® on overing interseting families an be extendedto bi-set systems and proved that the theorem of Kamiyama et al. is a speial ase of our result.Another approah to extend Edmonds result is due to Colussi, Conforti and Zambelli who introduedthe notion of strongly edge-disjoint arboresenes [18℄. They onjetured the existene of k spanningarboresenes under more strit restritions than that of Edmonds' theorem. For the very speial asewhen two arboresenes are needed the onjeture has been veri�ed. We extended the notion of stronglyedge-disjointness in [13℄ and showed that the onjeture is also true for two diyle-disjoint arboresenes,while gave a disproof of the onjeture in general.In some appliations not only out-arboresenes but also in-arboresenes are needed. Unfortunately,even the problem of �nding an in- and an out-arboresene with the same root node that are disjointis NP-omplete. However, for ayli digraphs the problem beomes tratable as in this speial aseboth the set of in- and out-arboresenes form a matroid on the edges. In [11℄, we gave a linear timealgorithm for �nding a pair of disjoint in- and out-arboresenes in an ayli digraph. Chapter 2 givesan overview of the above mentioned results.Chapter 3 reveals the onnetion between the problem of paking arboresenes and overing in-terseting bi-set families. The introdution of bi-sets made it possible to give a simpler proof for thetheorem of Kamiyama et al. and the very speial bi-set families appearing in the proof turned out to bereally useful. We extended Shrijver's strongly polynomial time algorithm [114℄ for paking branhingsunder apaity restritions [10℄. The usage of bi-sets here is essential; the running time ould not be1



2 1. Introdutionbounded without the deep understanding of the struture of bi-set families in question. We also gave apolyhedral desription of arboresene-pakable digraphs based on bi-sets.The seond part of the thesis deals with algorithmi and polyhedral aspets of restrited b-mathings.The motivation of the problem omes from node-onnetivity augmentation. It is an easy observation,that the problem of inreasing the node-onnetivity of an undireted graph on n nodes from n − 4 to
n− 3 is equivalent to �nding a maximum 2-mathing in the omplement of the graph not ontaining ayle of length 4. This latter problem is alled the square-free 2-mathing problem, and was the startingpoint of our investigations as disussed in Chapter 4.Muh is known about square-free 2-mathings, although the mentioned problem in general is stillunsolved. For a list K of forbidden subgraphs, a K-free b-mathing is a b-mathing ontaining no memberif K. Here K may ontain onrete subgraphs of a digraph D by de�ning their node and edge sets, or maybe given by desribing a lass of graphs in general. As the most important speial ases, the Ck-free or
C≤k-free 2-mathing problems ask for a 2-mathing with maximum size not ontaining yles of length
k or at most k, respetively. Clearly, these problems an be onsidered as relaxations of the Hamiltonianyle problem and so are well investigated. Unfortunately, we an not go to far with the values of k:the problems are NP-hard when k ≥ 5 as was shown by Papadimitriou (see eg. [22℄). From the positiveside of results, Hartvigsen [59℄ gave an augmenting path algorithm for the ase k = 3. Hene only the
C4-free and C≤4-free 2-mathing problems are left open.The weighted versions of these problems an be de�ned in a straightforward manner. However, thereis a �rm di�erene in omplexity between the unweighted and the weighted versions: the weighted square-free 2-mathing problem is NP-hard even in bipartite graphs and 0− 1 weights [87℄. This di�erene willbe important when we would like to give a polyhedral desription of the orresponding polytopes.The problems beomes signi�antly easier if the graph is sububi, that is, eah node has degreeat most three. Note that this is the ase in the node-onnetivity augmentation problem if an (n− 4)-onneted graph is given and one would like to inrease its node-onnetivity to n− 3. In [12℄, we gavea polynomial time algorithm for the square-free 2-mathing problem in sububi graphs and for thease of node-indued weight funtions as well. It is worth mentioning that the problem of inreasing thenode-onnetivity of a graph by one was solved in general by Végh [129℄. Algorithms for the weighted
C3-free 2-mathing (also alled triangle-free 2-mathing) problem in sububi graphs were given byHartvigsen and Li [62℄, and Kobayashi [88℄. However, the problem for k = 3 in general graphs witharbitrary weights is still open.As a triangle and a square an be onsidered as a K3 and a K2,2, respetively, the C≤4-free 2-mathing problem admits a natural generalization. The Kt,t- and Kt+1-free t-mathing problem asks fora subgraph with maximum size not ontaining a Kt,t or a Kt+1 as a subgraph. The problem was �rstonsidered in bipartite graphs [41,103℄. In [14℄, we extended the algorithm of [12℄ to Kt,t- and Kt+1-free
t-mathings in degree bounded graphs. The degree bound is essential here, the problem is still open forgeneral graphs.The polyhedral desriptions of the orresponding polytopes are also of interest, forming the topi ofChapter 6. By the NP-hardness result of Király [86℄, we may not expet a `nie' desription for the C≤k-free or Ck-free 2-mathing polytopes for k ≥ 4, where `nie' means that we an separate the inequalitiesappearing in the desription. Hartvigsen and Li gave a polyhedral desription of the triangle-free 2-fator



3polytope for sububi simple graphs in [62℄. They also showed that, somewhat surprisingly, triangle-free
2-mathings in sububi graphs admit a more ompliated desription. This is a strange phenomenonas results on b-mathings and b-fators are typially an be derived from eah other. They also proposeda desription of the triangle-free 2-mathing polytope and gave a sketh of the proof, whih was �nallypublished in [63℄. The proof is quite di�ult and ompliated, but provides an algorithm for �ndinga maximum triangle-free 2-mathing in a sububi graph. In [7℄, based on the desription proposedin [62℄, we gave another proof of this result. Our motivation was to �nd a simpler, learer proof, but tobe honest it �nally grew into something rather ompliated.Considering the above, a natural question arises: what an we say about the maximum size orpolyhedral desription of a triangle-free subgraph, that is, if the upper bound b on the nodes is leftout. Yannakakis showed [136℄ that the problem in general is NP-omplete, hene we may not expet anie polyhedral desription again. Conforti et al. proved that the problem remains NP-omplete evenin hordal graphs, but given a �xed upper bound on the maximum size of a lique in the graph theproblem beomes polynomially solvable [19, 20℄.Determining the maximum size of a triangle-free subgraph is equivalent to determine the minimumsize of an edge-set overing eah triangle at least one. In 1981, Tuza proposed the following on-jeture [127℄: Given a simple undireted graph G, let ν(G) denote the maximum number of pairwiseedge-disjoint triangles, while τ(G) denote the minimum number of edges overing eah triangles in G.Then τ(G) ≤ 2ν(G). It is easy to see that the inequality holds with 3 instead of 2. The onjeture hasbeen veri�ed for various lasses of graphs, but is still unsolved in general. The �rst non-trivial boundwas given by Haxell [64℄, who proved that the inequality is true with fator (3− 3

23 ).The problem an be generalized in two sense: weights on the edges might be given, and -looking ata triangle as a lique again- a lique version of the onjeture an be formalized. In [8℄, we proposedan extension of Tuza's onjeture ombining these ideas, and proved a frational weakening of theonjeture whih an be onsidered as a generalization of Krivelevih's result. Our approah uses thenotion of Turán numbers, and basially builds on the so-alled splitting property of maximal antihains.The rest of the thesis is organized as follows. In the remaining part of this hapter, in Setions 1.1-1.5, we give a short overview of the de�nitions and results that form the bakground of our work.Chapters 2 and 3 an be onsidered as a ontinuation of the work started in [6℄; we present here theresults of [10, 11, 13℄ on paking arboresenes, and show its onnetion to overing interseting bi-setfamilies. Chapter 4 introdues the seond main topi of the thesis and presents the algorithm andthe min-max result of [12℄ for the square-free 2-mathing problem in sububi graphs. This result isthen further generalized to Kt,t- and Kt+1-free t-mathings in degree bounded graphs in Chapter 5,whih ontains the results of [14℄. Chapter 6 presents the most tehnial part of the thesis based on [7℄.Through the example of b-fators we introdue a new shrinking operation whih is then extended togive a omplete desription of the triangle-free 2-mathing polytope of sububi graphs. This part ofthe thesis ontains many tehnial omputations; the most of them is left to the end of the hapter.Finally, Chapter 7 ontains the result of [8℄. It introdues the notion of shadow systems and veri�esthat a speial lass of maximal antihains has the splitting property. This result is then used to givean upper bound on a weighted version of the Turán number and to prove a frational weakening of aweighted extension of Tuza's onjeture to lique paking.



4 1. Introdution1.1 Paking arboresenesLet D = (V,A) be a direted graph with designated root-node r. An arboresene is a diretedtree in whih every node is reahable from a given root node. We sometimes identify an arboresene
(U,F ) with its edge-set F and will say that the arboresene F spans U . An arboresene F with rootnode r is alled an r-arboresene. We all D rooted k-edge-onneted if for eah v ∈ V , thereexist k edge-disjoint direted paths from r to v. By Menger's theorem, this is equivalent to ̺(X) ≥ kwhenever ∅ ⊂ X ⊆ V − r. A fundamental theorem on paking arboresenes is due to Edmonds whogave a haraterization of the existene of k edge-disjoint spanning arboresenes rooted at the samenode [34℄.Theorem 1.1.1 (Edmonds' theorem, weak form). Let D = (V,A) be a digraph with root r. D has kedge-disjoint spanning r-arboresenes if and only if D is rooted k-edge-onneted.This result inspired great many extensions in the last three deades. Edmonds atually proved histheorem in a stronger form where the goal was paking k edge-disjoint branhings of given root-sets. Abranhing is a direted forest in whih the in-degree of eah node is at most one. The set of nodes ofin-degree 0 is alled the root-set of the branhing. Note that a branhing with root-set R is the unionof |R| node-disjoint arboresenes (where an arboresene may onsist of a single node and no edge butwe always assume that an arboresene has at least one node). For a digraph D = (V,A) and root-set
∅ ⊂ R ⊆ V a branhing (V,B) is alled a spanning R-branhing of D if its root-set is R. In partiular,if R is a singleton onsisting of an element r, then a spanning branhing is a spanning r-arboresene.Theorem 1.1.2 (Edmonds' theorem, strong form I.). In a digraph D = (V,A), let R = {R1, . . . , Rk}be a family of k non-empty (not neessarily disjoint or distint) subsets of V . There are k edge-disjointspanning branhings of D with root-sets R1, . . . , Rk, respetively, if and only if

̺D(X) ≥ p(X) for all ∅ ⊂ X ⊆ V (1.1)where p(X) denotes the number of root-sets Ri disjoint from X.Observe that in the speial ase of Theorem 1.1.2 when eah root-set Ri is a singleton onsisting ofthe same node r, we are bak at Theorem 1.1.1. Conversely, when the Ri's are singletons (whih may ormay not be distint), then Theorem 1.1.2 easily follows from Theorem 1.1.1. However, for general Ri'sno redution is known.Theorem 1.1.2 an be reformulated as follows.Theorem 1.1.3 (Edmonds' theorem, strong form II.). Let D = (V,A) be a digraph whose node set ispartitioned into a root-set R = {r1, . . . , rk} (of distint roots) and a terminal set T . Suppose that noedge of D enters any node of R. There are k disjoint arboresenes F1, . . . , Fk in D so that Fi is rootedat ri and spans T + ri for eah i = 1, . . . , k if and only if ̺D(X) ≥ |R−X| for every subset X ⊆ V forwhih X ∩ T 6= ∅.Indeed, this follows easily by applying Theorem 1.1.2 to the subgraph D′ of D indued by T withhoie Ri = {v : there is an edge riv ∈ A} (i = 1, . . . , k). The same onstrution shows the reverseimpliation, too.



1.1. Paking arboresenes 5The following proper extension of Theorem 1.1.3 was derived in [9℄ with the help of a theorem ofFrank and Tardos [46℄ on overing supermodular funtions by digraphs.Theorem 1.1.4 (Frank and Tardos). Let D = (V,A) be a digraph whose node set is partitioned intoa root-set R = {r1, . . . , rq} and a terminal set T . Suppose that no edge of D enters any node of R. Let
m : R → Z+ be a funtion and let k = m(R). There are k disjoint arboresenes in D so that m(r) ofthem are rooted at r and spanning T + r for eah r ∈ R if and only if

̺D(X) ≥ m(R−X) for every subset X ⊆ V for whih X ∩ T 6= ∅. (1.2)One way to extend Edmonds' theorems is to derease the size of the node sets spanned by thearboresenes in question. However, it is not easy to �nd suh a generalization as one an easily run intodi�ult questions. In Setion 2.1, we show that a variant of Theorem 1.1.4 and even an apparently slightweakening of the reahability onditions result in NP-omplete problems (Theorems 2.1.6 and 2.1.7).In 2009, Kamiyama, Katoh and Takizawa [82℄ were able to �nd a surprising new proper extensionof Edmonds' strong theorem whih implies Theorem 1.1.4 as well.Theorem 1.1.5 (Kamiyama, Katoh and Takizawa). Let D = (V,A) be a digraph and R = {r1, . . . , rk} ⊆
V a list of k (possibly not distint) root-nodes. Let Si denote the set of nodes reahable from ri. Thereare edge-disjoint ri-arboresenes Fi spanning Si for i = 1, . . . , k if and only if

̺D(Z) ≥ p1(Z) for every subset Z ⊆ V (1.3)where p1(Z) denotes the number of sets Si for whih Si ∩ Z 6= ∅ and ri 6∈ Z.The original proof of Theorem 1.1.5 is more ompliated than that of Theorem 1.1.2 due to the fatthat the orresponding set funtion p1 in the theorem is no more supermodular. Based on Theorem 1.1.5,Fujishige [48℄ found a further extension. For two disjoint subsets X and Y of V of a digraph D = (V,A),we say that Y is reahable from X if there is a direted path in D whose �rst node is in X and lastnode is in Y . We all a subset U of nodes onvex if there is no node v in V \ U so that U is reahablefrom v and v is reahable from U .Theorem 1.1.6 (Fujishige). Let D = (V,A) be a direted graph and let R = {r1, . . . , rk} ⊆ V be a listof k (possibly not distint) root-nodes. Let Ui ⊆ V be onvex sets with ri ∈ Ui. There are edge-disjoint
ri-arboresenes Fi spanning Ui for i = 1, . . . , k if and only if

̺D(Z) ≥ p1(Z) for every subset Z ⊆ V (1.4)where p1(Z) denotes the number of sets Ui's for whih Ui ∩ Z 6= ∅ and ri 6∈ Z.Note that the set of nodes reahable from an ri form a onvex set, hene Theorem 1.1.5 immediatelyfollows from Theorem 1.1.6. It has been showed reently in [84℄ that these results are in fat equivalent.In [32℄, Edmonds' theorems was extended in another diretion. Let D = (V,A) be a digraph,M =

(S, rM) a matroid on ground set S with rank funtion rM and π : S → V a (not neessarily injetive)map. For Z ⊆ S the losure of Z is denoted by l(Z), that is, l(Z) = {s ∈ S : rM(Z+s) = rM(Z)}.A triple (D,S, π) is alled a digraph with roots. The map π is alled M-independent if π−1(v) isindependent inM for eah v ∈ V . For X ⊆ V , SX denotes π−1(X).



6 1. IntrodutionA digraph with roots (D,S, π) is alledM-onneted, if
̺(X) ≥ rM(S)− rM(SX) (1.5)holds for eah ∅ 6= X ⊆ V .AnM-basi paking of arboresenes in (D,S, π) is a set {F1, . . . , F|S|} of pairwise edge-disjoint(not neessarily spanning) arboresenes in D suh that Fi has root at π(si) for i = 1, . . . , |S| and theset {sj ∈ S : v ∈ V (Fj)} forms a base ofM for eah v ∈ V . The result of [32℄ is the following.Theorem 1.1.7 (Gevigney, Nguyen and Szigeti). Let (D,S, π) be a digraph with roots and M be amatroid on S. There exists an M-basi paking of arboresenes in (D,S, π) if and only if π is M-independent and (D,S, π) isM-onneted.Theorem 1.1.2 an be easily derived from Theorem 1.1.7. Indeed, let R = {R1, . . . , Rk} be a familyof k non-empty (not neessarily disjoint or distint) subsets of V . De�ne S =

⋃

R∈R R to be a multisetin whih eah v ∈ V is inluded as many times as the number of Ri's ontaining v, and let π(v) = v. Ifwe take the partition matroidM on S in whih a set Z ⊆ S is independent if and only if |Z ∩Ri| ≤ 1for 1 ≤ i ≤ k, then an M-basi paking of arboresenes orresponds to a olletion of edge-disjointspanning Ri-arboresenes and vie versa. Note that π is learlyM-independent and (1.1) is equivalentto (1.5), hene Edmonds' result follows from that of Szigeti et al.It is a natural question that whether there is a ommon generalization of Theorems 1.1.5 and 1.1.7.In [84℄, Cs. Király gave a ommon extension of these theorems. Using the notation of [84℄, we all an
R-branhing maximal if it spans all the nodes that are reahable from R in D. For non-empty sets
X,Y ⊆ V , let Z 7→ X denote that X and Z are disjoint and X is reahable from Z. Let P (X) =

X ∪ {v ∈ V \ X : v 7→ X}. A set {F1, . . . , F|S|} of pairwise edge-disjoint arboresenes is alled amaximal M-independent paking of arboresenes if Fi has root π(si) for i = 1, . . . , |S|, the set
{sj ∈ S : v ∈ V (Fj)} is independent inM and |{sj ∈ S : v ∈ V (Fj)}| = rM(SP (v)).Theorem 1.1.8 (Cs. Király). Let (D,S, π) be a digraph with roots andM be a matroid on S with rankfuntion rM. There exists a maximal M-independent paking of arboresenes in (D,S, π) if and onlyif π isM-independent and

̺(X) ≥ rM(SP (X))− rM(SX) (1.6)holds for eah X ⊆ V .A natural idea is to reformulate Edmonds' theorem to the node-onneted ase. Let D and r denotea digraph and a root-node as previously, then D is alled rooted k-node-onneted (or rooted k-onneted, for short) if there exist k internally node-disjoint direted paths from r to v for eah v ∈ V, that is, any two of the paths have only r and v in ommon. The maximum number of node-disjoint
r− v paths is denoted by κ(r, v). For an r-arboresene F , a node u is an F -anestor of another node
v if there is a direted path from u to v in F . We denote this unique path by F (u, v). For example, theroot is the F -anestor of all other nodes. The maximum number of edge-disjoint r− v paths is denotedby λ(r, v). We say that a node w dominates a node v if every path from r to v inludes w. We denotethe set of nodes dominating v by dom(v). Clearly, r and v are in dom(v).Note that two r-arboresenes F1 and F2 are edge-disjoint if and only if for eah v ∈ V the twopaths F1(r, v) and F2(r, v) are edge-disjoint. That gives the idea of the following de�nition: we all two



1.1. Paking arboresenes 7spanning r-arboresenes F1 and F2 independent if F1(r, v) and F2(r, v) are internally node-disjointfor eah v ∈ V .As a node-disjoint ounterpart of Edmonds' theorem, Frank onjetured that in a rooted k-onnetedgraph there exist k independent arboresenes (see eg. [112℄). The ase k = 2 was veri�ed byWhitty [135℄,but for k ≥ 3 the statement does not hold as was shown by Huk [73℄. However, Huk also proved thatthe onjeture is true for simple ayli graphs [74℄ and veri�ed it for planar multigraphs exept for afew values of k [75℄.Theorem 1.1.9.(i) (Whitty) Let D = (V,A) be a digraph with root r. D has two independent spanning r-arboresenesif and only if D is rooted 2-onneted.(ii) (Huk) Let D = (V,A) be an ayli digraph with root r suh that D − r is simple. D has kindependent spanning r-arboresenes if and only if D is rooted k-onneted.(iii) (Huk) Let D = (V,A) be a direted multigraph with root r and k ∈ {1, 2} ∪ {6, 7, 8, . . .} suh that
D is planar if k ≥ 6. D has k independent spanning r-arboresenes if and only if D is rooted
k-onneted.In [18℄, Colussi, Conforti and Zambelli introdued another type of disjointness onerning arbores-enes, whih put slightly stronger restritions on the paths than edge-disjointness. In a digraph we alltwo ars symmetri if they share the same endnodes but have opposite orientations. Two edge-disjointarboresenes F1, F2 rooted at r are alled strongly edge-disjoint if the paths F1(r, v), F2(r, v) donot ontain a pair of symmetri ars. In [18℄, the following strengthening of Edmonds' theorem wasproposed.Conjeture 1.1.10 (Colussi, Conforti, Zambelli). Let D = (V,A) be a digraph with root r. D has kstrongly edge-disjoint spanning r-arboresenes if and only if D is rooted k-edge-onneted.For k = 2, the onjeture was veri�ed in [18℄. As Colussi et al. note, the motivation of the problemis the following. It is easy to see that a similar statement holds for strongly edge-disjoint direted s− tpaths. Hene the onjeture, if it were true, ould be onsidered as a ommon generalization of Edmonds'disjoint arboresenes theorem and Menger's theorem. Note that the arboresenes in the onjetureare allowed to ontain pairs of symmetri ars, only the paths in question are required not to do so. InSetion 2.2 we give a generalization of the ase k = 2 (Theorem 2.2.8) and show that the onjeturedoes not hold for k ≥ 3 (Setion 2.2.3). As a side result, we get a new proof of a theorem of Georgiadisand Tarjan [55℄.Let now D = (V,A) be a digraph without loops, but D may have parallel ars. We assume that

D is weakly onneted, i.e., |V | − 1 ≤ |A| holds. For eah a ∈ A, we denote by t(a) and h(a) thetail and the head of a, respetively. From now on we distinguish two types of arboresenes: in- andout-arboresenes. An r-out-arboresene is just the same as an r-arboresene de�ned earlier, thatis, it is a direted tree in whih the edges are direted away from the root node r. An r-in-arboreseneis a direted tree in whih the edges are direted toward the root node r, so the reversal of its edgesresults in an out-arboresene.



8 1. IntrodutionThe problem of �nding k ar-disjoint spanning r-out-arboresenes for a given root r ∈ V is veryimportant not only from the theoretial viewpoint but also from pratial viewpoints, and it has beenextensively studied. It is known [15, 52, 101, 122, 124℄ that this problem an be solved in polynomialtime, and several extensions have been onsidered in [9, 48, 82℄. However, in many situations, we haveto simultaneously onsider not only an in-arboresene but also an out-arboresene. For example, inevauation situations, an in-arboresene represents roads whih refugees use. On the other hand, anout-arboresene represents roads used by emergeny vehiles. Unfortunately, it is known [5℄ that theproblem of �nding a pair of ar-disjoint spanning r1-in-arboresene and r2-out-arboresene for givenroots r1, r2 ∈ V is NP-omplete even if r1 = r2. As a speial ase, it is only known [5℄ that this problemin a tournament an be solved in polynomial time. In Setion 2.3, we onsider this problem in a diretedayli graph and we give a linear time algorithm for solving it (Theorem 2.3.1).1.2 Covering interseting bi-set systemsSub- and supermodular set funtions are known to be useful tools in graph optimization but in thelast �fteen years it turned out that several results an be extended to funtions de�ned on pairs of setsor on bi-sets. Given a ground-set V , we all a pair X = (XO,XI) of subsets a bi-set if XI ⊆ XO ⊆ Vwhere XO is the outer member and XI is the inner member of X. By a bi-set funtion we meana funtion de�ned on the set of bi-sets of V . We will taitly identify a bi-set X = (XO,XI) for whih
XO = XI with the set XI and hene bi-set funtions may be onsidered as straight generalizations of setfuntions. The set of all bi-sets on ground-set V is denoted by P2(V ) = P2. The intersetion ∩ and theunion ∪ of bi-sets is de�ned in a straightforward manner: for X,Y ∈ P2 let X∩Y := (XO∩YO,XI∩YI),
X ∪ Y := (XO ∪ YO,XI ∪ YI). We write X ⊆ Y if XO ⊆ YO,XI ⊆ YI and this relation is a partialorder on P2. Aordingly, when X ⊆ Y or Y ⊆ X, we all X and Y omparable. A family ofpairwise omparable bi-sets is alled a hain. Two bi-sets X and Y are independent if XI ∩YI = ∅ or
V = XO ∪ YO. A set of bi-sets is independent if its members are pairwise independent. We all a set ofbi-sets a ring-family if it is losed under taking union and intersetion. Two bi-sets are interseting if
XI∩YI 6= ∅ and properly interseting if, in addition, they are not omparable. Note that XO∪YO = Vis allowed for two interseting bi-sets. In partiular, two sets X and Y are properly interseting if noneof X ∩ Y,X − Y, Y − X is empty. A family of bi-sets is alled laminar if it has no two properlyinterseting members. A family F of bi-sets is interseting if both the union and the intersetion ofany two interseting members of F belong to F . In partiular, a family L of subsets is intersetingif X ∩ Y,X ∪ Y ∈ L whenever X,Y ∈ L and X ∩ Y 6= ∅. A laminar family of bi-sets is obviouslyinterseting. Two bi-sets are rossing if XI ∩YI 6= ∅ and XO ∪YO 6= V and properly rossing if theyare not omparable. A bi-set (XO,XI) is trivial if XI = ∅ or XO = V . We will assume throughoutChapter 3 that the bi-set funtions in question are integer-valued and that their value on trivial bi-setsis always zero. In partiular, set funtions are also integer-valued and zero on the empty set and on theground-set.A direted edge enters or overs X if its head is in XI and its tail is outside XO. The set ofedges entering a bi-set X is denoted by ∆in

D (X) = ∆in(X). An edge set overs a family of bi-sets ifit overs eah member of the family. For a bi-set funtion p, a digraph D = (V,A) is said to over p



1.2. Covering interseting bi-set systems 9if ̺D(X) ≥ p(X) for every X ∈ P2(V ) where ̺D(X) denotes the number of edges of D overing X.For a vetor z : A → R, let ̺z(X) :=
∑

[z(a) : a ∈ A, a overs X]. A vetor z : A → R overs p if
̺z(X) ≥ p(X) for every X ∈ P2(V ).A bi-set funtion p is said to satisfy the supermodular inequality on X,Y ∈ P2 if

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (1.7)If the reverse inequality holds, we speak of the submodular inequality. p is said to be fully supermod-ular or supermodular if it satis�es the supermodular inequality for every pair of bi-sets X,Y . If (1.7)holds for interseting (resp. rossing) pairs, we speak of interseting (resp. rossing) supermodularfuntions. Analogous notions an be introdued for submodular funtions. Sometimes (1.7) is requiredonly for pairs with p(X) > 0 and p(Y ) > 0 in whih ase we speak of positively supermodular fun-tions. Positively interseting or rossing supermodular funtions are de�ned analogously. A typial wayto onstrut a positively supermodular funtion is replaing eah negative value of a fully supermodularfuntion by zero. An easy example for a submodular bi-set funtion is the in-degree funtion.Proposition 1.2.1. The in-degree funtion ̺D on P2 is submodular.There is another line of extending Theorem 1.1.1 in whih, rather than working diretly with ar-boresenes, one onsiders disjoint edge-overings of ertain families of sets or bi-sets. In [40℄, Frankproved the following.Theorem 1.2.2 (Frank). Let D = (V,A) be a digraph and F an interseting family of subsets of V . Itis possible to partition A into k overings of F if and only if the in-degree of every member of F is atleast k.Obviously, when F onsists of every non-empty subset of V −r, we obtain the weak form of Edmonds'theorem. A disadvantage of Theorem 1.2.2 is that it does not imply the strong version of Edmonds'theorem. The following result of Szeg® [120℄, however, overame this di�ulty.Theorem 1.2.3 (Szeg®). Let F1, . . . ,Fk be interseting families of subsets of nodes of a digraph D =

(V,A) with the following mixed intersetion property:
X ∈ Fi, Y ∈ Fj , X ∩ Y 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj.Then A an be partitioned into k subsets A1, . . . , Ak suh that Ai overs Fi for eah i = 1, . . . , k if andonly if ̺D(X) ≥ p1(X) for all non-empty X ⊆ V where p1(X) denotes the number of Fi's ontaining

X. However, Theorem 1.2.3 does not imply Theorem 1.1.5. In [9℄, we derived an extension of Szeg®'stheorem to bi-set families.The bi-set families F1, . . . ,Fk said to satisfy the mixed intersetion property if
X ∈ Fi, Y ∈ Fj , XI ∩ YI 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj.For a bi-set X, let p2(X) denote the number of indies i for whih Fi ontains X. For X ∈ Fi, Y ∈ Fj ,the inlusion X ⊆ Y implies X = X ∩ Y ∈ Fj and hene p2 is monotone non-inreasing in the sensethat X ⊆ Y , p2(X) > 0 and p2(Y ) > 0 imply p2(X) ≥ p2(Y ).



10 1. IntrodutionTheorem 1.2.4. Bérzi and Frank Let D = (V,A) be a digraph and F1, . . . ,Fk be interseting familiesof bi-sets on ground set V satisfying the mixed intersetion property. The edges of D an be partitionedinto k subsets A1, . . . , Ak suh that Ai overs Fi for eah i = 1, . . . , k if and only if
̺D(X) ≥ p2(X) for every bi-set X.The proof of Theorem 1.2.4 went along the same line as Lovász' original proof for Edmonds' theoremand was based on the following property.Lemma 1.2.5. If p2(X) > 0, p2(Y ) > 0 and XI∩YI 6= ∅, then p2(X)+p2(Y ) ≤ p2(X∩Y )+p2(X∪Y ).Moreover, if there is an Fi for whih X ∩ Y ∈ Fi and X,Y 6∈ Fi, then strit inequality holds.Using Theorem 1.2.4, we give a new proof of Theorem 1.1.6 in Setion 3.1. The appliation of bi-setsgives a new insight into the struture of onvex sets. By using the speial bi-set families appearing in theproof, we are able to give a strongly polynomial time algorithm for �nding rooted branhings spanninggiven onvex sets under edge apaity onstraints (Theorem 3.2.2). We also give a polyhedral desriptionof arboresene pakable subgraphs based on a onnetion with bi-set families (Lemma 3.3.5), and provethat the orresponding system of inequalities is TDI (Theorem 3.3.7).1.3 Restrited b-mathingsLet G = (V,E) be an undireted graph and let b : V → Z+ be an upper bound on the nodes. Anedge set F ⊆ E is alled a b-mathing if dF (v), the number of edges in F inident to v, is at most b(v)for eah node v. This is often alled simple b-mathing in the literature, sine multiple opies of thesame edge are not allowed. If not stated otherwise, all b-mathings onsidered will be simple throughoutSetions 1.3-1.4 and Chapters 4-6. For some integer t ≥ 2, by a t-mathing we mean a b-mathing with

b(v) = t for every v ∈ V . A losely related onept is b-fator, where instead of dF (v) ≤ b(v) stritly
dF (v) = b(v) is required.Let K be a list of forbidden subgraphs. The node-set and the edge-set of a subgraph K ∈ K aredenoted by VK and EK , respetively. By a K-free b-mathing we mean a b-mathing not ontainingany member of K. The maximum K-free b-mathing problem asks for a K-free b-mathing in G withmaximum size (that is, a K-free b-mathing F ⊆ E with maximum ardinality).The most important speial ases of K-free b-mathings are the so-alled C≤k-free and Ck-free 2-mathing problems. A 2-mathing M is Ck-free if it ontains no yle of length k, and it is C≤k-free-freeif it ontains no yle of length k or less. The motivation of these problems is twofold. On the one hand,they have been studied as relaxations of the Hamiltonian yle problem. The ase k ≤ 2 is exatly thelassial simple 2-mathing problem, whih an be solved e�iently. Papadimitriou showed that theproblems are NP-hard when k ≥ 5 [22℄, and Hartvigsen [59℄ gave an augmenting path algorithm for thease k = 3. The C4-free and C≤4-free 2-mathing problems are left open.The other motivation omes from undireted node-onnetivity augmentation. For an integer k,a graph (resp. digraph) is k-onneted if it ontains more than k nodes and it remains onneted(resp. strongly onneted) when we delete at most k − 1 nodes from the graph (resp. digraph). The
k-onnetivity augmentation problem is the following: make a given graph or digraph k-onneted by



1.3. Restrited b-mathings 11adding a minimum number of new edges. Conerning the direted ase, Frank and Jordán gave a min-max formula and also an algorithm relying on the ellipsoid method for �nding the minimum [43℄. In [44℄,they also provided a ombinatorial algorithm to make a (k−1)-onneted digraph k-onneted. However,their algorithm is polynomial only for �xed k's, that is, the running time is polynomial in the size of thedigraph but exponential in k. Végh and Benzúr gave a ombinatorial algorithm for the general asewhose running time is polynomial also in k [130℄.There are only partial results for the undireted ase. The solution is trivial when k = 1. Eswaranand Tarjan solved the problem for k = 2 in [38℄, while Watanabe and Nakamura found a haraterizationfor the ase of k = 3 [132℄. Later, Hsu and Ramahandran [71,72℄ gave linear time algorithms for both ofthese problems. For k = 4, a polynomial algorithm was developed by Hsu [70℄. It is also known that near-optimal solutions an be found in polynomial time for every k, see [76,77℄. In [78℄, Jakson and Jordángave an algorithm whih provides an optimal solution in polynomial time for every �xed k. If the size ofan optimal solution is large ompared to k, their algorithm is polynomial for all k. They also obtaineda min-max formula for this speial ase, and ompletely solved the problem for a new family of graphsalled k-independene free graphs. However, the omplexity of the node-onnetivity augmentationproblem is still open, and it is ertainly one of the most interesting unsolved questions in this area.An interesting speial ase onsists of inreasing the onnetivity by one, that is, when the startinggraph is already (k − 1)-onneted. We all this problem the k-onnetivity augmentation by oneproblem. Hsu gave an almost linear time algorithm to inrease the onnetivity from three to fourin [115℄. Hene a linear time algorithm for k = 1, 2, 3, an almost linear time algorithm for k = 4 anda polynomial time algorithm provided by [78℄ for �xed k are at hand. A polynomial time algorithmwas given when the graph has a ertain ondition [100℄, and approximation algorithms are proposedin [80, 81℄. The general ase was solved by Végh [129℄, see later.On the other hand, values of k lose to n are also of interest. If k = n − 1, then the graph shouldbe simply extended to a omplete graph and the answer is trivial sine every augmenting set onsistsof the edges of Ḡ where Ḡ denotes the omplement of G. An easy argument shows that a graph G is
(n−2)-onneted if and only if eah node has degree at most one in Ḡ. This implies that for k = n−2 the
k-onnetivity augmentation problem is equivalent to �nding a maximum mathing in the omplementof the graph. It an be veri�ed that a graph G is (n − 3)-onneted if and only if the edge set of Ḡis a C4-free 2-mathing, also alled a square-free 2-mathing. Moreover, an obvious but importantobservation is that if G is (n− 4)-onneted then its omplement Ḡ is a sububi graph (i.e. eah nodehas degree at most three). Therefore, the (n − 3)-onnetivity augmentation by one problem an beredued to the problem of �nding a square-free 2-mathing of maximum size in a sububi graph.The main result of Chapter 4 is a polynomial time algorithm for the square-free 2-mathing problemin simple sububi graphs (Theorem 4.3.1), whih leads to a polynomial time algorithm for the (n −
3)-onnetivity augmentation problem (Theorem 4.3.2). Our algorithm is based on the theorem thatsquare-free 2-mathings in a simple sububi graph have a matroid-like struture alled a jump system(Theorem 4.3.3). With the aid of known results on jump systems, we show that some optimizationproblems are also solvable in polynomial time. We also give a faster algorithm for the square-free 2-mathing problem in simple sububi graphs, whih runs in O(n

3
2 ) time (Theorem 4.3.9).We also disuss the weighted versions of the problems. Given a (k − 1)-onneted graph G = (V,E)



12 1. Introdutionand a weight funtion w : Ē → R+, where Ē is the omplement of E, the weighted k-onnetivityaugmentation by one problem is the problem of �nding a set of edges of minimum total weightthat should be added to the original graph to obtain a simple k-onneted graph. This problem isknown to be NP-hard for �xed k ≥ 2 [38℄. A 2-approximation algorithm is given for k = 3 [4℄, andalso a 3-approximation algorithm exists for k = 4, 5 [27℄. For an arbitrary k, an algorithm with theapproximation ratio 2(1 + 1
2 + · · · + 1

k
) is given in [111℄, and further improvement is given in [109℄.See [97℄ for an overview of the known results.Of ourse the weighted (n − 3)-onnetivity augmentation by one problem an be redued to theproblem of �nding a square-free 2-mathing maximizing the total weight of its edges, whih we allthe weighted square-free 2-mathing problem. Z. Király proved that the weighted square-free 2-mathing problem in bipartite graphs is NP-hard even for 0− 1 weights [87℄. This problem is, however,polynomially solvable in bipartite graphs if the weight funtion is node-indued on every square [103,121℄.For a subgraph H = (V (H), E(H)) of G, we say that w is node-indued on H if there exists a funtion

πH : V (H) → R suh that w(e) = πH(u) + πH(v) for every edge e = uv ∈ E(H). We show that theweighted square-free 2-mathing problem in simple sububi graphs an be solved in polynomial time ifthe weight funtion is node-indued on every square (Theorem 4.6.1), whereas the problem is NP-hardfor general weights (Theorem 4.5.1). In our algorithm for the weighted problem, we use the theory of M-onave (M-onvex) funtions on onstant-parity jump systems introdued by Murota [107℄. Hartvigsenand Li [62℄, and Kobayashi [88℄ gave polynomial time algorithms for the weighted C3-free 2-mathingproblem in sububi graphs with an arbitrary weight funtion. However, the problem for k = 3 in generalgraphs with arbitrary weights is still open.Let us now onsider the speial ase of C4-free 2-mathings in bipartite graphs. This problem wassolved by Hartvigsen [60, 61℄ and Király [86℄. A generalization of the problem to maximum Kt,t-free t-mathings in bipartite graphs was given by Frank [41℄ who observed that this is a speial ase of overingpositively rossing supermodular funtions on set pairs, solved by Frank and Jordán in [43℄. Makai [103℄generalized Frank's theorem for the ase when a list K of forbidden Kt,t's is given (that is, a t-mathingmay ontain Kt,t's not in K.) He gave a min-max formula based on a polyhedral desription for theminimum ost version for node-indued ost funtions. Pap [110℄ gave a further generalization of themaximum ardinality version for exluded omplete bipartite subgraphs and developed a simple, purelyombinatorial algorithm. For node indued ost funtions, suh an algorithm was given by Takazawa [121℄for Kt,t-free t-mathing.The C4-free 2-mathing problem admits two natural generalizations. The �rst one is Kt,t-free t-mathings onsidered in Chapter 5, while the seond is t-mathings ontaining no omplete bipartitegraph Ka,b with a + b = t + 2. This latter problem is equivalent to onnetivity augmentation for
k = n− t−1. The omplexity of onnetivity augmentation for general k is yet open, while onnetivityaugmentation by one, that is, when the input graph is already (k−1)-onneted was solved in [129℄ (thisorresponds to the ase when the graph ontains no Ka,b with a+ b = t+3, in partiular, d(v) ≤ t+1).Let K be a set onsisting of Kt,t's, omplete bipartite subgraphs of G on two olour lasses of size
t, and Kt+1's, omplete subgraphs of G on t + 1 nodes. We give a min-max formula (Theorem 5.1.4)on the size of K-free b-mathings and a polynomial time algorithm (Setion 5.4) for �nding one withmaximum size under the assumptions that for any K ∈ K and any node v of K,
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VK spans no parallel edges (1.8)

b(v) = t (1.9)
dG(v) ≤ t+ 1. (1.10)Note that this is a generalization of the maximum C3-free, C4-free and C≤4-free 2-mathing prob-lems in sububi graphs. Among our assumptions, (1.8) and (1.9) may be onsidered as natural onesas they hold for the maximum Kt,t-free t-mathing problem in a simple graph. We exlude paralleledges on the node sets of members of K in order to avoid having two di�erent Kt,t's on the same twoolour lasses or two Kt+1's on the same ground set. However, the degree bound (1.10) is a restritiveassumption and dissipates essential di�ulties. Our proof strongly relies on this and the theorem annotbe straightforwardly generalized as it an be shown by using the example in Chapter 6 of [129℄. Theproof and algorithm use the ontration tehnique of [87℄, [110℄ and [12℄. The ontribution of Chapter 5on the one hand is the extension of this tehnique for t ≥ 2 and forbidding Kt+1's as well, while on theother hand the argument is signi�antly simpler than the argument in Chapter 4.Kobayashi and Yin onsidered the problem of �nding a maximum t-mathing not ontaining H as asubgraph for a �xed graph H, alled the H-free t-mathing problem [95℄. They generalized the resultsof [14℄ by solving the ase when H is a t-regular omplete partite graph. They also showed that theproblem is NP-omplete when H is a onneted t-regular graph that is not omplete partite.It is worth mentioning that the polynomial solvability of the above problems seems to show a strongonnetion with jump systems. In [119℄, Szabó proved that for a list K of forbidden Kt,t and Kt+1subgraphs the degree sequenes of K-free t-mathings form a jump system in any graph. Conerningbipartite graphs, Kobayashi and Takazawa showed [92℄ that the degree sequenes of C≤k-free 2-mathingsdo not always form a jump system for k ≥ 6. These results are onsistent with the polynomial solvabilityof the C≤k-free 2-mathing problem, even when restriting it to bipartite graphs. Similar results areknown about even fators due to [91℄. Although Szabó's result suggests that �nding a maximum K-free

t-mathing should be solvable in polynomial time for a list K of forbidden Kt,t and Kt+1 subgraphs,the problem is still open. Conluding the above, jump systems and M-onave (M-onvex) funtions areunderstood as a natural framework of e�iently solvable problems. Besides studies of these struturesthemselves [89, 102, 107, 116℄, their relation to e�iently solvable ombinatorial optimization problemshas been revealed (see [2, 29, 88, 90, 93, 94, 107, 119℄). The results of Chapters 4 and 5 present suhexamples and enfores the importane of these strutures.
1.4 Polyhedral desriptionsA ornerstone of mathing theory is Edmonds' [33℄ desription of the perfet mathing polytope,the onvex hull of inidene vetors of perfet mathings of a graph G = (V,E).



14 1. IntrodutionTheorem 1.4.1 (Edmonds). The perfet mathing polytope is determined by
(i) xe ≥ 0 (e ∈ E),

(ii) x(δ(v)) = 1 (v ∈ V ), (P1)
(iii) x(δ(K)) ≥ 1 (K ⊆ V, |K| odd).Observe that the inidene vetor of a perfet mathing satis�es all these onditions. The theoremyields that the set of verties of the above polytope is idential to the set of inidene vetors of perfetmathings.A natural generalization of perfet mathings are b-fators, with 1-fators being perfet mathings.Reall that b(K) =

∑

v∈K b(v), while δ̇(v) denotes the family of edges inident to v ∈ V , that is, anyloop at v ours twie in δ̇(v). The set of loops at v ∈ V is denoted by l(v). We all K ⊆ V, F ⊆ δ(K)a pair if F does not ontain loops (by notation, this only means restrition in ase of |K| = 1). Thepair is odd if b(K) + |F | is odd. The b-fator polytope is the onvex hull of the inidene vetorsof b-fators of G. In the same paper [33℄, Edmonds gave the following haraterization of the b-fatorpolytope.Theorem 1.4.2 (Edmonds). The b-fator polytope is determined by
(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) = b(v) (v ∈ V ), (P2)
(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | ((K,F ) odd).A polyhedral desription of b-mathings an easily be derived from Theorem 1.4.2.Theorem 1.4.3. The b-mathing polytope is determined by
(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) ≤ b(v) (v ∈ V ), (P3)
(iii) x(E[K]) + x(F ) ≤ ⌊ b(K)+|F |

2 ⌋ ((K,F ) odd).We refer the reader to Part III, in partiular, Chapters 30-33 of Shrijver [114℄ for a detailed disussionof b-mathings and b-fators.Results on b-fators an be redued to perfet mathings via a simple onstrution. Given a graph
G = (V,E), onstrut a new graph G′ = (V ′, E′) as follows. Introdue b(v) nodes for eah node v ∈ V .For eah edge e = uv ∈ E, introdue two nodes pe,u and pe,v, an edge pe,upe,v, and edges onneting pe,uto all b(u) opies of u and onneting pe,v to all b(v) opies of v. It is not di�ult to see that G′ ontainsa perfet mathing if and only if G ontains a b-fator. Using this orrespondene, results on mathingsan be extended to b-fators, inluding Theorem 1.4.2, whih thus dedues from Theorem 1.4.1. To theextent of our knowledge, all previous proofs of Theorem 1.4.3 used this orrespondene.An important sublass of b-fators are 2-fators, deompositions of a graph to disjoint union of yles.Hamiltonian yles being 2-fators, it is a natural question looking at speial 2-fators not ontainingshort yles whih led to the notion of C≤k-free or Ck-free 2-mathings or fators. We have alreadymentioned that determining the maximum size of suh a subgraph is NP-omplete for k ≥ 5.



1.4. Polyhedral desriptions 15Considering the maximum weight version of the Ck-free 2-fator problem, there is a �rm di�erenebetween triangle- and square-free 2-fators. Z. Király showed [87℄ that �nding a maximum weight square-free 2-fator is NP-hard even in bipartite graphs with 0 − 1 weights. For sububi graphs, polynomialtime algorithms were given by Hartvigsen and Li [62℄, and by Kobayashi [88℄ for the weighted C3-free 2-fator problem with an arbitrary weight funtion. The former result implies that we should not expet anie polyhedral desription of the square-free 2-fator polytope. However, solvability of the triangle-freease was a main motivation of our investigation.Deiding the existene of a triangle-free 2-fator beomes signi�antly harder without assuming thegraph is sububi. Yet if instead of (simple) 2-fators, we look at the problem of unapaitated 2-fators, when we are allowed to use two opies of the same edge, there exists a polyhedral desriptionfor arbitrary graphs, given by Cornuéjols and Pulleyblank [23℄. Let T be a set onsisting of trianglesof G. The node-set and the edge-set of a triangle T ∈ T are denoted by VT and ET , respetively. An(unapaitated) 2-fator is alled T -free if it ontain at most two edges (ounted by multipliity) ofany member of T . Cornuéjols and Pulleyblank proved the following.Theorem 1.4.4 (Cornuéjols and Pulleyblank). The onvex hull of harateristi vetors of T -freeunapaitated 2-fators is determined by
(i) 0 ≤ xe (e ∈ E),

(ii) x(δ̇(v)) = 2 (v ∈ V ), (P4)
(iii) x(ET ) ≤ 2 (T ∈ T ).Moreover, desription (P4) is totally dual integral.Returning to our subjet, Hartvigsen and Li gave a polyhedral desription of the triangle-free 2-fatorpolytope for sububi simple graphs [62℄.Theorem 1.4.5 (Hartvigsen and Li). The T -free 2-fator polytope of a simple sububi graph is deter-mined by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ(v)) = 2 (v ∈ V ), (P5)
(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | (K ⊆ V, F ⊆ δ(K), |F | odd),
(iv) x(ET ) = 2 (T ∈ T ).Their proof is based on shrinking triangles and on a variation of the Basi Polyhedral Theoremof [21℄. In the same paper, they gave a desription of the T -free 2-mathing polytope as well and gavea sketh of the proof, whih was published in its full version in [63℄.As we have seen, the b-mathing and b-fator polytopes have a similar desription. Unexpetedly,the same does not hold in the triangle-free ase. We say that a triangle T 1-�ts (resp. 2-�ts) a set

K ⊆ V if |VT ∩K| = 1 (resp. 2). The speial edge of a triangle T 1-�tting (resp. 2-�tting) the set Kis the edge e ∈ ET having exatly 0 (resp. 2) endnodes in K, and is denoted by eT . Given a set T offorbidden triangles, the set of triangles 1-�tting (resp. 2-�tting) K is denoted by T 1
K (resp. T 2

K) while
TK stands for T 1

K ∪ T 2
K .



16 1. IntrodutionDe�nition 1.4.6. (K,F,T) is alled a tri-omb of Type i if1. K ⊆ V , F ⊆ δ(K), T ⊆ T i
K .2. F ∩ ET = ∅.3. The triangles in T are edge-disjoint.A tri-omb is alled odd if b(K) + |F | + |T| is odd. The de�ieny of a tri-omb is de�ned asdef(K,F,T) = x(E[K]) + x(F ) +
∑

T∈T x(ET )− ⌊12(b(K) + |F |+ 3|T|)⌋.
K

: edges in E[K] \ ET and in δ(K) \ (F ∪ ET): edges in F: triangles in T

K

2

2 2

2

2

2

1
1

1

1

2 : a node and its b-valueFigure 1.1: Odd tri-ombs of Type 1 and 2The fundamental result of Hartvigsen and Li is the following (see [62, 63℄).Theorem 1.4.7 (Hartvigsen and Li). The T -free 2-mathing polytope of a simple sububi graph isdetermined by
(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ(v)) ≤ 2 (v ∈ V ),

(iii) x(E[K]) + x(F ) +
∑

T∈T x(ET ) ≤ |K|+ ⌊ |F |+3|T|
2 ⌋ ((K,F,T) odd (P6)tri-omb of Type 2),

(iv) x(ET ) ≤ 2 (T ∈ T ).Their proof is algorithmi and uses, in some sense, an Edmonds-style mathing algorithm onsistingof lever triangle alteration and alternating forest growing. The algorithm alternates between a primaland a dual phase, and a quite omplex dual hange is performed whenever no improvement is foundduring the forest growing. The algorithm stops when the primal and dual solutions (that are feasiblethroughout) satisfy omplementary slakness.We give new proofs of Theorems 1.4.5 and 1.4.7 in a slightly more general form (Theorems 6.1.1and 6.1.2). Our proof is a natural extension of the proof of Theorem 1.4.1 given by Aráoz, Cunningham,Edmonds, and Green-Krótki [3℄ and Shrijver [113℄. It is based on a new shrinking operation thathopefully ould be extended to the non-sububi ase as well whih is the sole remaining open problemonerning triangle-free 2-mathings.



1.5. Splitting property 171.5 Splitting propertyLet P = (P,≺) be a �nite partially ordered set. For a subset H ⊆ P , sets U(H) = {x ∈ P : ∃h ∈
H : x � h} and L(H) = {x ∈ P : ∃h ∈ H : x � h} are alled the upper and lower shadows of H,respetively. An antihain A ⊆ P is maximal if and only if U(A) ∪ L(A) = P . We say that a maximalantihain A has the splitting property if it an be partitioned into two disjoint parts A1 ∪ A2 = Asuh that U(A1) ∪ L(A2) = P . This property was introdued and �rst studied by Ahlswede et al. [1℄.They gave the following su�ient ondition for the splitting property. A maximal antihain A ⊆ P isalled dense if it satis�es the following: whenever x ≺ a ≺ y for some a ∈ A and x, y ∈ P , there existsan a′ ∈ A \ {a} also satisfying x ≺ a′ ≺ y. They proved the following theorem.Theorem 1.5.1 (Ahlswede, Erd®s and Graham). Every dense maximal antihain in a �nite posetsatis�es the splitting property.The poset P itself has the splitting property if every maximal antihain in P satis�es the splittingproperty. The following negative result in [1℄ shows that this property is NP-hard to deide.Theorem 1.5.2 (Ahlswede, Erd®s and Graham). It is NP-hard to deide whether a given poset P =

(P,≺) has the splitting property.On the other hand, Du�us and Sands [31℄ gave a omplete haraterization of �nite distributivelatties with the splitting property.Theorem 1.5.3 (Du�us and Sands). If P is a �nite distributive lattie with the splitting property, thenit is either a Boolean lattie, or one of three other latties.We onsider the poset of multisets of k olours. Formally, let us use the elements of the group Zk asolours, denoted by {1, . . . , k}. We all the vetors Zk → Z k-olour vetors, and denote their set by
Mk. We an de�ne a natural partial ordering on Mk: for a, c ∈Mk, a ≺ c if ai ≤ ci for every i ∈ Zk and
a 6= c. If a ≺ c, we also say that a is a shadow of c. (Mk,≺) is a distributive lattie, however, it is not�nite and therefore Theorem 1.5.3 is not appliable. Let

M r
k = {x ∈Mk :

∑

i∈Zk

xi = r}denote the set of k-olour vetors whose oordinates sum up to r. The main result of Chapter 7 showsthe splitting property of this antihain for r = k (Theorem 7.1.1). It is easy to verify that Mk
k is notdense and therefore Theorem 1.5.1 does not imply our result. Indeed, take an arbitrary x ∈ Mk−1
k andlet y1 = x1 + 2 and yi = xi if i 6= 1. Then Mk

k ontains exatly one element a with x ≺ a ≺ y.For r ≤ t ≤ n, a Turán (n, t, r)-system is an r-uniform hypergraph on n nodes suh that every
t-element subset of the nodes spans at least one edge of the hypergraph. The Turán number T (n, t, r)asks for the minimum size of suh a family; determining the exat values is a problem posed by PálTurán [125℄. The simplest ase t = 3, r = 2 asks for the minimum number of edges of a graph suhthat every subset of 3 nodes ontains at least one edge. This is equivalent to determining the maximumnumber of edges in a triangle free graph on n nodes, a problem solved by Mantel in 1907. The optimal
(n, 3, 2)-Turán system is the disjoint union of two liques on node sets of size ⌊n2 ⌋ and ⌈n2 ⌉.



18 1. IntrodutionThe limit
t(t, r) = lim

n→∞

T (n, t, r)
(

n
r

)expresses the fration of all r-element subsets needed for a Turán (n, t, r)-system. No exat value isknown for any t > r > 2 - in 1981, Pál Erd®s o�ered a bounty of $500 for even a single speial ase and$1000 for resolving the general ase [36℄. For surveys on Turán numbers, see [49, 83, 118℄. De Caen [26℄gave the lower bound t(t, r) ≥ 1

(t−1
r−1)

. The best urrently known upper bound is due to Sidorenko [117℄.Theorem 1.5.4 (Sidorenko). For any integers t > r,
t(t, r) ≤

(

r−1
t−1

)r−1
. (1.11)We give a new interpretation of Sidorenko's onstrution in terms of shadow systems, and reprovethe theorem using a ombinatorial olouring result (Theorem 7.1.2).We also introdue the natural weighted extension of Turán numbers: we are given a nonnegativeweight funtion w on the r-element subsets of V , and let w∗ denote the total weight of all subsets. TheTurán weight Tw(n, t, r) is the minimum weight of a Turán (n, t, r)-system. Analogously to t(t, r) wemay de�ne

tw(t, r) = lim
n→∞

sup
w

Tw(n, t, r)

w∗
.Somewhat surprisingly, we show that tw(t, r) = t(t, r), that is, the bound is not a�eted by the weight,and the bound on tw(t, r) an be derived from Theorem 7.1.2 the same way as the bound on t(t, r)(Theorem 7.2.1).The notion of weighted Turán numbers enables us to establish a onnetion between Turán systemsand Tuza's [127℄ famous onjeture asserting that in every graph the minimum number of edges overingevery triangle is at most twie the maximum number of pairwise edge-disjoint triangles. Finding aminimum number of edges in a graph G = (V,E) overing every triangle is equivalent to omputing theweighted Turán number Tw(n, 3, 2) with n = |V |, and w(e) = 1 if e ∈ E and w(e) = 0 otherwise. Wepropose a weighted hypergraphi version of Tuza's onjeture (Conjeture 7.3.2), and prove its frationalrelaxation (Theorem 7.3.3). This extends the result of Krivelevih [99℄ on the frational version of Tuza'soriginal onjeture and also makes use of our onstrution on shadow systems.



Chapter 2Paking arboresenes
2.1 Extending Edmonds' theoremLet D = (V,A) be a digraph. We all a vetor z : V → {0, 1, . . . , k} a root-vetor if there are kedge-disjoint spanning arboresenes in D so that eah node v is the root of z(v) arboresenes. FromEdmonds' theorem one easily gets the following haraterization of root-vetors.Theorem 2.1.1. Given a digraph D′ = (V ′, A′), a vetor z is a root-vetor if and only if z(V ′) = k and
z(X) ≥ k − ̺D′(X) for every non-empty subset X ⊆ V ′.Proof. The neessity of both onditions is evident. For the su�ieny, extend D′ with a node r and
z(v) parallel edges from r to v for eah v ∈ V . In the resulting digraph D the out-degree of r is exatly
k and ̺D(X) = z(X) + ̺D′(X) ≥ k holds for every non-empty X ⊆ V ′. By Edmonds' theorem, Dontains k edge-disjoint spanning arboresenes of root r. Sine δD(r) = k, eah of these arboresenesmust have exatly one edge leaving r and therefore their restritions to A′ form k arboresenes of D′of root-vetor z.For an interseting supermodular funtion p with �nite p(S), let

B′(p) = {x ∈ RS : x(S) = p(S), x(A) ≥ p(A) for every A ⊆ S}.This is alled a base polyhedron. The following result appeared in an equivalent form in [45℄.Theorem 2.1.2 (Frank and Tardos). Let p be an interseting supermodular funtion for whih p(S)�nite and let f : S → R ∪ {−∞}, g : S → R ∪ {∞} be two funtions for whih f ≤ g.(i) The polyhedron {x ∈ B′(p) : f ≤ x} is non-empty if and only if
f(S) ≤ p(S) (2.1)and

f(X0) +

t
∑

i=1

p(Xi) ≤ p(S) (2.2)for every partition {X0,X1, . . . ,Xt}, (t ≥ 1) of S in whih only X0 may be empty.(ii) The polyhedron {x ∈ B′(p) : x ≤ g} is non-empty if and only if
g(X) ≥ p(X) for every X ⊆ S. (2.3)19



20 2. Paking arboresenes(iii) The base-polyhedron {x ∈ B′(p) : f ≤ x ≤ g} is non-empty if and only if neither {x ∈ B′(p) : f ≤
x} nor {x ∈ B′(p) : x ≤ g} is empty.If, in addition, eah of p, f and g is integer-valued, then the orresponding polyhedra are integral.Let D = (V,A) be a digraph. De�ne the set funtion p by p(X) = k− ̺D(X) for non-empty subsets

X. Then p is interseting supermodular and Theorem 2.1.1 implies that the root vetors of D are exatlythe integral elements of the bases polyhedron B′(p). By ombining this with Theorem 2.1.2, one arrivesat the following result appeared in [39, 104℄.Theorem 2.1.3 (Cai, Frank). In a digraph D = (V,A) there exist k edge-disjoint spanning arboresenesso that(i) eah node v is the root of at most g(v) of them if and only if
t
∑

i=1

̺D(Xi) ≥ k(t− 1) (2.4)holds for every subpartition {X1, . . . ,Xt} of V , and
g(X) ≥ k − ̺D(X) (2.5)for every ∅ ⊂ X ⊆ V ;(ii) eah node v is the root of at least f(v) of them if and only if f(V ) ≤ k and

t
∑

i=1

̺D(Xi) ≥ k(t− 1) + f(X0) (2.6)holds for every partition {X0,X1, . . . ,Xt} of V for whih t ≥ 1 and only X0 may be empty;(iii) eah node v is the root of at least f(v) and at most g(v) of them if and only if the lower boundproblem and the upper bound problem have separately solutions.Two interesting speial ases are as follows.Corollary 2.1.4. A digraph D = (V,A) inludes k edge-disjoint spanning arboresenes (with no re-strition on their roots) if and only if t
∑

i=1

̺D(Xi) ≥ k(t − 1) for every subpartition {X1, . . . ,Xt} of
V .Corollary 2.1.5. A digraph D = (V,A) inludes k edge-disjoint spanning arboresenes whose roots aredistint if and only if |X| ≥ k − ̺D(X) holds for every non-empty subset X ⊆ V set and t

∑

i=1

̺D(Xi) ≥

k(t− 1) for every subpartition {X1, . . . ,Xt} of V .Theorem 2.1.3 haraterized root-vetors satisfying upper and lower bounds. One may be interestedin a possible generalization for the framework desribed in Theorem 1.1.4. We show that this problemis NP-omplete. Indeed, let D = (V,A) be a digraph whose node set is partitioned into a root-set
R = {r1, . . . , rq} and a terminal set T . Suppose that no edge of D enters any node of R.



2.2. Diyle-disjoint arboresenes 21Theorem 2.1.6. The problem of deiding whether there are k disjoint arboresenes so that they arerooted at distint nodes in R and eah of them spans T is NP-omplete.Proof. Let T be a set with even ardinality and let R = {R1, . . . , Rq} be subsets of T so that |Ri| ≥ 2for i = 1, . . . , q. It is well-known that the problem of deiding whether T an be overed with k membersof R is NP-omplete. Let DT be a direted graph on T with ̺DT
(Z) = k − 1 for eah Z ⊆ T, |Z| = 1or |Z| = |T | − 1 and ̺DT

(Z) ≥ k otherwise. Suh a graph an be onstruted easily as follows. Take thesame direted Hamilton yle on the nodes k− 2 times, then add the ars vivi+ |T |
2

to the graph for eah
i = 0, . . . , |T | − 1 where v0, . . . , v|T |−1 denote the nodes aording to their order around the yle (theindies are meant modulo |T |). The arising digraph satis�es the in-degree onditions.Extend the graph with R = {r1, . . . , rq} and with a new ar riv for eah v ∈ Ri. Let ri1 , . . . , rik ∈ Rbe a set of distint root-nodes. Edmonds' disjoint branhings theorem implies that there are edge-disjoint
ri-arboresenes Fi spanning ri + T for i = i1, . . . , ik if and only if ̺DT

(Z) ≥ p(Z) for eah ∅ ⊂ Z ⊆ Twhere p(Z) denotes the number of Ri's (with i ∈ {i1, . . . , ik}) disjoint from Z. For a subset Z with
|Z| ≥ 2 the inequality holds automatially beause of the struture of DT and |Ri| ≥ 2. Hene one onlyhas to are about sets ontaining a single node and so the existene of the arboresenes is equivalentto over T with Ri1 , . . . , Rik .The observation above means that T an be overed with k members of R if and only if the digraphinludes k arboresenes rooted at di�erent nodes in R.A natural idea to extend Edmonds' results would be to somehow derease the set of nodes to bespanned by the arboresenes. However, as the following theorem shows, one may easily fae di�ultquestions if doing so.Theorem 2.1.7. Let D = (V,A) be a digraph with u1, u2, v1, v2 ∈ V and let U1 = V, U2 = V − v1. Theproblem of �nding two edge-disjoint arboresenes rooted at u1, u2 and spanning U1, U2, respetively, isNP-omplete.Proof. Let D′ be a digraph with u1, u2, v1, v2 ∈ V . It is well-known that the problem of �nding edge-disjoint u1v1 and u2v2 paths is NP-omplete. We may suppose that the in-degree of v1 and v2 is one.Let D denote the graph arising from D′ by adding ars v1v and v2v to A for eah v ∈ V exept for thear v2v1. Clearly, there are edge-disjoint direted u1v1 and u2v2 paths in D′ if and only if there are twoarboresenes F1, F2 in D suh that Fi is rooted at ui and spans Ui.2.2 Diyle-disjoint arboresenes2.2.1 Disjoint Steiner-arboresenesFor a digraph D = (V + r,A) with root r and terminal set T ⊆ V , an r-arboresene spanning T isalled a Steiner-arboresene. Two Steiner-arboresenes F1 and F2 are alled edge-independent ifthe paths F1(r, t), F2(r, t) are edge-disjoint for every terminal t ∈ T . Independent Steiner-arboresenesan be de�ned in a straightforward manner. Note that paths orresponding to non-terminal nodes areallowed to violate the disjointness ondition hene the arboresenes are not neessarily edge-disjoint.



22 2. Paking arboresenesZ. Király asked [85℄ whether the existene of k edge-independent Steiner-arboresenes is ensured by
λ(r, t) ≥ k for eah t ∈ T . As Frank's onjeture on independent arboresenes would follow from suha result, Huk's ounterexample shows that k = 2 is the only ase when this statement may hold. Thefollowing example shows that even ayliity is not satisfatory for the existene of edge-independentSteiner-arboresenes [98℄.Theorem 2.2.1 (Kovás). There is an ayli graph for whih there are three internally node-disjointpaths to all of the terminals but there are no three edge-independent Steiner-arboresenes.Proof. The terminal set of the example onsists of two nodes t1, t2 (see Figure 2.1). It an be easilyheked that three edge-disjoint paths an be hosen only one way for both terminals but these annotbe partitioned into three arboresenes.

t1 t2 t2t1

Figure 2.1: An example without three edge-independent Steiner-arboresenesConerning the ase when k = 2, the following theorem appeared in [98℄.Theorem 2.2.2 (Kovás). Let D = (V + r,A) be a digraph with root r, terminal set T ⊆ V and
λ(r, t) ≥ 2 for eah t ∈ T . Then there exist two edge-independent Steiner-arboresenes.The node-independent version of the theorem is also of interest. However, the result of Georgiadisand Tarjan in [55℄ is a generalization of Theorem 1.1.9 (i).Theorem 2.2.3 (Georgiadis and Tarjan). Let D = (V + r,A) be a digraph with root r, terminal set
T ⊆ V and κ(r, t) ≥ 2 for eah t ∈ T . Then there exists two independent Steiner-arboresenes.In fat, it an be showed that Theorems 2.2.2 and 2.2.3 are equivalent. The proof of Theorem 2.2.3in [55℄ uses the properties of depth-�rst searh (DFS) to �nd the two arboresenes in question. Whitty'sproof of Theorem 1.1.9 (i) is based on the following speial ordering of the nodes.Lemma 2.2.4. Let D = (V + r,A) be a digraph with root r and κ(r, v) ≥ 2 for eah v ∈ V . There isan ordering r = v0, v1, . . . , vn, vn+1 = r of the nodes so that, for eah vi ∈ V , there is an edge vhvi with
h < i and an edge vivj with i < j.



2.2. Diyle-disjoint arboresenes 23This very speial ordering proved to be useful. Huk's proof for Theorem 1.1.9 (ii) is based on thefollowing lemma whih is a variant of Lemma 2.2.4 for ayli graphs.Lemma 2.2.5. Let D = (V +r,A) be a simple ayli graph with ̺(r) = 0 and ̺(v) ≥ 1 for eah v ∈ V .There is an ordering o : V + r → Z of the nodes and an r-arboresene F suh that for eah uv ∈ A, wehave uv ∈ F if and only if o(u) < o(v), that is, the set of edges going forward is exatly F .With the help of Lemma 2.2.4 and using the idea of the proof of Theorem 2.2.2, the followingordering of the nodes immediately shows the existene of proper Steiner-arboresenes [98℄.Theorem 2.2.6 (Kovás). Let D = (V +r,A) be a digraph with root r, ̺(v) = λ(r, v) ≤ 2 for eah v ∈ Vand assume that the set of nodes with in-degree 1 is stable. Then there exists an ordering v0, v1, . . . , vn+1of the nodes for whih(i) v0 = vn+1 = r(ii) Cutting nodes appear twie, other nodes appear one.(iii) Entering edges of nodes with in-degree 1 appear twie, other edges appear one.(iv) For a utting node p, if vi = vj = p and i < j then there is an edge entering vi from the left andthere is an edge entering vj from the right, and all the opies of nodes ut by p from r lie betweenthem.(v) For every non-utting node v, there is an edge entering v from the left and one from the right.(vi) If F1 and F2 denote the sets of edges going forward and bakward, respetively, then F1 and F2 areindependent Steiner-arboresenes with terminal set T = {v ∈ V : λ(r, v) = 2}.The most important onsequene of the existene of the above ordering is the following. Note, thateah non-utting node appears only one in the ordering. This observation immediately implies thefollowing theorem, whih was also proved in [55℄.Theorem 2.2.7 (Georgiadis and Tarjan, Kovás). Let D = (V,A) be a digraph with root r. There existtwo arboresenes F1 and F2 suh that for eah v ∈ V − r, the paths F1(r, v) and F2(r, v) interset onlyat the nodes of dom(v).This theorem is the base of our proof for a slight generalization of Conjeture 1.1.10 when k = 2.2.2.2 A generalizationNote that a pair of symmetri ars an be onsidered as a direted yle. This gives the idea of thefollowing de�nition. Let D = (V + r,A) be a digraph with root r and terminal set T ⊆ V . We alltwo edge-independent Steiner-arboresenes F1 and F2 diyle-disjoint if for eah t ∈ T the union
F1(r, t) ∪ F2(r, t) does not ontain a direted yle. The motivation of this de�nition is the following: if
T = V and the arboresenes are diyle-disjoint then they are also strongly edge-disjoint.The following theorem generalizes the theorem of Colussi, Conforti and Zambelli for k = 2.



24 2. Paking arboresenesTheorem 2.2.8. Let D = (V,A) be a direted graph with root r and terminal set T . There exist twodiyle-disjoint Steiner-arboresenes if and only if λ(r, t) ≥ 2 for eah t ∈ T .Proof. The neessity is lear, we prove su�ieny. Consider the arboresenes provided by Theorem 2.2.7.We laim that these arboresenes are diyle-disjoint.Assume indiretly that there is a node t ∈ T suh that the union of the paths F1(r, t) and F2(r, t)ontains a direted yle. Let r = x1, x2, . . . , xp = t and r = y1, y2, . . . , yq = t denote the nodes alongthese paths. As the union of the paths ontains a yle, there are indies i1, i2, j1, j2 suh that xi1 = yj2 ,
xi2 = yj1 and i1 < i2, j1 < j2. Let xi1 = yj2 = w and xi2 = yj1 = z. The hoie of F1 and F2 implies
w, z ∈ dom(t). Now onsider the graph G− z. Then the union F1(r, w) ∪ F2(w, t) ontains a path from
r to t, whih ontradits to z ∈ dom(t).2.2.3 Disproof of Conjeture 1.1.10 for k ≥ 3We give a ounterexample for k = 3 based on a graph given by Huk [73℄, for other values a similaronstrution works. Let D be the graph of Figure 2.2. It is easy to hek that D is rooted 3-edge-onneted. The set of nodes in V − r is partitioned into three bloks B1, B2 and B3. There is one arfrom r to Bi, and there are two ars from Bi to Bi+1 for eah i (the indies are meant modulo 3 plus
1) suh that together they form two direted yles of length three. The edges of these triangles aredenoted by e12, e23, e31 and f12, f23, f31, respetively (see Figure 2.2).Assume that there exist three strongly edge-disjoint arboresenes F1, F2 and F3. Clearly, eah Fiontains an edge from r to one of the bloks, say Fi ontains the one that goes to Bi, and it uses exatlyone of eii+1 and fii+1 and the same holds for ei+1i+2 and fi+1i+2. Also, at least one of the arboreseneshas to use the pair eii+1, fi+1i+2 or fii+1, ei+1i+2. Assume that F1 does so. But that implies that F1 and
F2 an not be strongly edge-disjoint as they have to share a symmetri pair in B2 that they use whengoing to B3, so for any node v ∈ B3 the paths F1(r, v) and F2(r, v) ontain a pair of symmetri ars.

r

B1

B2B3

e12

f12

e23

f23

e31
f31

Figure 2.2: Counterexample for Conjeture 1.1.10



2.3. In- and out arboresenes 252.2.4 Further remarksEdmonds' theorem gives a haraterization of the existene of k edge-disjoint arboresenes. On theother hand, we have seen that the analogue statement about independent arboresenes does not hold.The notion of strongly edge-disjointness somehow lies between these two types of disjointness, but, aswe showed, the onditions of Edmonds' theorem do not ensure the existene of suh arboresenes. So anatural idea is to turn to the other `extremity' onerning the neessary onditions, and formulate thefollowing onjeture.Conjeture 2.2.9. Let D = (V + r,A) be a digraph with root r and assume that κ(r, v) ≥ k for eah
v ∈ V . Then there exist k diyle-disjoint arboresenes.2.3 In- and out arboresenesThe aim of this setion is to prove the following theorem.Theorem 2.3.1. Given a direted ayli graph D = (V,A) with roots r1, r2 ∈ V , we an disern theexistene of a pair of ar-disjoint spanning r1-in-arboresene and r2-out-arboresene, and �nd suharboresenes if they exist, in O(|A|) time.2.3.1 An assoiated bipartite graphWe de�ne a bipartite graph GD = (X,Y ;E) assoiated with our problem for a direted ayli graph
D = (V,A), and we show that our problem in D is equivalent to the problem of �nding a mathing thatovers all nodes of Y in GD. In the sequel, we assume without loss of generality that δD(r1) = 0 and
̺D(r2) = 0 holds. Note that if δD(r1) 6= 0 or ̺D(r2) 6= 0 holds, there exists no feasible solution sine Dis ayli.De�ne a bipartite graph GD = (X,Y ;E) with two node sets X and Y and an edge set E between
X and Y as follows.(i) Node set X is given by X = {x(a) | a ∈ A}, where |X| = |A|.(ii) Node set Y onsists of two disjoint sets Y + and Y − given by Y + = {y+(v) | v ∈ V \ {r1}} and

Y − = {y−(v) | v ∈ V \ {r2}}.(iii) For eah a ∈ A, we have two edges in E: one onnets x(a) and y+(t(a)) and the other onnets
x(a) and y−(h(a)). That is, E = {(x(a), y+(t(a))) | a ∈ A} ∪ {(x(a), y−(h(a))) | a ∈ A}.For example, for a direted graph D in Figure 2.3 (a) the bipartite graph GD beomes the one asillustrated in Figure 2.3 (b).Here we introdue notations to be used in the subsequent arguments (see Figure 2.4). For eah

e ∈ E, let ∂X(e) (resp. ∂Y (e)) be the endpoint of e belonging to X (resp. Y ). For eah e ∈ E, we denoteby p(e) the edge e′ ∈ E with e 6= e′ and ∂X(e) = ∂X(e′). Notie that sine dGD
(x) = 2 holds for eah

x ∈ X by the de�nition of GD, p(e) is uniquely determined for eah e ∈ E.Now we are ready to show the equivalene between our problem for D and the problem of �nding amathing in GD whih overs all nodes of Y .



26 2. Paking arboresenes
r1 r2r

e1

e2 e4

e3 e5(a)
y−(r1) y+(r2)y+(v)y−(v)

x(e1) x(e2) x(e4)x(e3) x(e5)(b)Figure 2.3: (a) An input direted graph D. (b) The bipartite graph GD assoiated with D.
∂X(e)

∂Y (e)

e p(e)

Figure 2.4: An illustration of notations.Lemma 2.3.2. Given a direted ayli graph D = (V,A) with roots r1, r2 ∈ V , there exists a pairof ar-disjoint spanning r1-in-arboresene F1 and r2-out-arboresene F2 if and only if there exists amathing M in GD = (X,Y ;E) whih overs all nodes of Y . Furthermore, we an onstrut a pair ofsuh F1 and F2 from a mathing M in O(|A|) time.Proof. Sine it is not di�ult to see the `only if' part of the lemma, we show the `if' part. Let M bea mathing in GD whih overs all nodes of Y . Let A+ (resp. A−) be the set of ars a ∈ A suh that
x(a) is onneted with some node of Y + (resp. Y −) by an edge of M . Let T1 (resp. T2) be the subgraph
(V,A+) (resp. (V,A−)) of D. Sine M overs all nodes of Y , |δT1(v)| = 1 (resp. |̺T2(v)| = 1) holds foreah v ∈ V \{r1} (resp. V \{r2}). Thus, sine D is ayli, T1 and T2 are a spanning r1-in-arboreseneand a spanning r2-out-arboresene, respetively. Furthermore, sine M is a mathing, A+ and A− aredisjoint, whih implies T1 and T2 are ar-disjoint. This ompletes the proof of the `if' part.The latter half of the lemma immediately follows from the proof of the `if' part.By Lemma 2.3.2, we an disern the existene of a pair of ar-disjoint spanning r1-in-arboreseneand r2-out-arboresene, and �nd suh arboresenes if they exist, by omputing a maximum mathingof GD. Hene, we an solve our problem in polynomial time by using bipartite-mathing algorithms suhas in [69℄. However, we show in the subsequent setion that we an disern the existene of a mathingof GD whih overs all nodes of Y and �nd suh a mathing if one exists, in O(|A|) time.2.3.2 A linear time algorithmOur goal is to show the following theorem, whih implies Theorem 2.3.1 by Lemma 2.3.2.Theorem 2.3.3. Given a direted ayli graph D = (V,A) with roots r1, r2 ∈ V , we an disern theexistene of a mathing in GD = (X,Y ;E) whih overs all nodes of Y and �nd suh a mathing if oneexists, in O(|A|) time.



2.3. In- and out arboresenes 27In the subsequent arguments, we assume without loss of generality that dGD
(y) ≥ 1 holds for every

y ∈ Y sine if there exists a node y ∈ Y with dGD
(y) = 0, there exists no solution. We divide the proofinto two parts orresponding to the following two ases.Case 1 : For every y ∈ Y , dGD

(y) ≥ 2 holds.Case 2 : There exists y ∈ Y with dGD
(y) = 1.We �rst show that in Case 1, there always exists a mathing in GD whih overs all nodes of Y ,and we an �nd suh a mathing in O(|A|) time. Then, we show that in Case 2, we an disern theexistene of a mathing in GD whih overs all nodes of Y , and redue the problem to Case 1 if anysuh mathing exists, in O(|A|) time.Case 1We prove the following lemma for Case 1.Lemma 2.3.4. Given a direted ayli graph D = (V,A) with roots r1, r2 ∈ V , if dGD

(y) ≥ 2 holdsfor every y ∈ Y , there always exists a mathing in GD = (X,Y ;E) whih overs all nodes of Y , and wean �nd one suh mathing in O(|A|) time.Proof. Let ĜD = (X ∪ {s}, Y ; Ê) be the bipartite graph obtained from GD by adding a new node sand onneting edges between s and eah odd-degree node y ∈ Y (see Figure 2.5 (a)). It is easy to seethat |Ê| ≤ |E|+ |Y | = |E|+ 2(|V | − 1). Furthermore, sine dGD
(x) = 2 holds for every x ∈ X, we have

|E| = 2|X| = 2|A|. Hene, |Ê| = O(|A|) holds, and our goal is to �nd a desired mathing in O(|Ê|)time.Sine the sum of the degrees of all nodes x ∈ X is even, the degree of s in ĜD is even. This impliesthat ĜD is an Eulerian graph. Hene, ĜD onsists of several edge-disjoint yles (see Figure 2.5 (b)),whih an be omputed in O(|Ê|) time by using an algorithm for �nding Eulerian walk (for a standardalgorithm, see [96℄). Let M̂ be the set of edges of ĜD obtained from all the yles by hoosing everyother edges along the yles (see Figure 2.5 (b)). Then every node v of ĜD has 1
2dĜD

(v) edges in M̂that are inident to v. It should be noted that for eah odd degree node v in GD we have d
ĜD

(v) ≥ 4,so that suh a node v is inident to at least two edges in M̂ . Hene, letting M = M̂ ∩E, M satis�es thefollowing onditions. (Note that M is obtained by removing from M̂ the edges inident to s in ĜD.)A1. M overs all nodes of Y .A2. Eah x ∈ X is overed by exatly one edge in M .By Conditions A1. and A2., we an obtain a mathing in GD whih overs all nodes of Y by appropriatelyremoving edges from M . This ompletes the proof.Case 2We show that in Case 2 we an disern the existene of a feasible solution of our problem and reduethe problem to Case 1 if one exists, in O(|A|) time. This will omplete the proof of Theorem 2.3.3.The following lemma asserts that we an redue Case 2 to Case 1 by greedily removing nodes withdegree one.



28 2. Paking arboresenes
y−(r1) y+(r2)y+(v)y−(v)

x(e1) x(e2) x(e4)x(e3) x(e5)s (a) y−(r1)y+(r2) y+(v)y−(v)

x(e1)

x(e2)x(e4)

x(e3)x(e5)

s

(b)Figure 2.5: (a) A bipartite graph ĜD obtained from GD in Figure 2.3 (b). (b) Cyles C1, C2 and C3 in
ĜD. The set of dotted lines represents M̂ .

∂X(ē)

ȳ

ē p(ē)

Figure 2.6: Blak nodes and dotted edges are removed from GD.Lemma 2.3.5. Suppose that we are given a direted ayli graph D = (V,A) with roots r1, r2 ∈ V , anda node ȳ ∈ Y with dGD
(ȳ) = 1, denoting by ē ∈ E the single edge inident to ȳ. Let ḠD = (X̄, Ȳ ; Ē)be the bipartite graph obtained from GD = (X,Y ;E) by removing nodes ȳ and ∂X(ē) and edges ē and

p(ē) (see Figure 2.6). Then, there exists a mathing M in GD whih overs all nodes of Y if and onlyif there exists a mathing M̄ in ḠD whih overs all nodes of Ȳ .Proof. We �rst prove the `if' part. Assume that there exists a mathing M̄ in ḠD whih overs all nodesof Ȳ . Then, we an onstrut a mathing M in GD whih overs all nodes of Y by adding ē to M̄ .Next we prove the `only if' part. Assume that there exists a mathing M in GD whih overs allnodes of Y . Sine dGD
(ȳ) = 1, ē must be inluded in M , and p(ē) is not inluded in M . Hene, we anonstrut a mathing M̄ in ḠD whih overs all nodes of Ȳ by removing ē from M .By Lemma 2.3.5, we an desribe the proedure in whih we an disern the existene of a feasiblesolution of our problem, and redue the problem to Case 1 if one exists, in O(|A|) time as in Proedure 1.Proedure 1 Proessing degree one nodes1: Compute dGD

(y) for all y ∈ Y , and set Q = {y ∈ Y | dGD
(y) = 1} and M0 = ∅.2: while Q 6= ∅ do3: Choose ȳ ∈ Q. We denote by ē the single edge inident to ȳ. Put M0 ← M0 ∪ {ē} and remove ȳfrom Q. Then, we remove nodes ȳ and ∂X(ē), and edges ē and p(ē) from GD. Furthermore, if thedegree of ∂Y (p(ē)) in the updated GD is equal to one, we add ∂Y (p(ē)) to Q; if it is equal to zero,we remove ∂Y (p(ē)) from Q.4: end while5: return GD and M0.It should be noted that sine Q ontains all nodes y ∈ Y with dGD

(y) = 1 in eah iteration of Step 3,



2.3. In- and out arboresenes 29the proedure is orret. Furthermore, we an easily see the following lemma, due to Lemma 2.3.5.Lemma 2.3.6. Given a direted ayli graph D = (V,A) with roots r1, r2 ∈ V , Proedure 1 alwaysterminates in O(|A|) time. Suppose that Proedure 1 returns a bipartite graph G′
D = (X ′, Y ′;E′) and amathing M0. Then, we have dG′

D
(x) = 2 for every x ∈ X ′ and dG′

D
(y) 6= 1 for every y ∈ Y ′. If thereexists a node y in G′

D suh that dG′
D
(y) = 0, then there does not exist a pair of ar-disjoint spanning r1-in-arboresene and r2-out-arboresene. Otherwise we an onstrut a mathing M in GD whih oversall nodes of Y , from a mathing M ′ in G′

D whih overs all nodes of Y ′, by putting M ←M ′ ∪M0.A full desription of our algorithmWe are now ready to desribe a linear time algorithm for our problem.1. If there exists y ∈ Y with dGD
(y) = 1, apply Proedure 1 and let G′

D and M0 be the output ofProedure 1. If there exists a node whose degree is equal to zero in G′
D, return NULL (there existsno feasible solution). Otherwise, put GD ← G′

D and go to Step 2.2. Find a mathing M in GD overing all nodes of Y as desribed in the proof of Lemma 2.3.4, andput M ←M ∪M0.3. Using the mathing M in GD, ompute a pair of ar-disjoint spanning r1-in-arboresene F1 and
r2-out-arboresene F2 and return F1 and F2.It follows from Lemmas 2.3.4 and 2.3.6 that the above algorithm an �nd a mathing in GD whihovers all nodes of Y if one exists in O(|A|) time. This ompletes the proof of Theorem 2.3.3.2.3.3 An extension to multiple rootsNow we onsider the ase where we have multiple roots for in-arboresenes and out-arboresenes,respetively. Suppose that we are given a direted ayli graph D = (V,A), two disjoint �nite indexsets I1 and I2, and a root ri ∈ V for eah i ∈ I1 ∪ I2, where we allow ri = rj for distint i, j. We assumewithout loss of generality that δD(ri) = 0 (resp. ̺D(ri) = 0) holds for eah i ∈ I1 (resp. i ∈ I2). Let R1(resp. R2) be the set {ri | i ∈ I1} (resp. {ri | i ∈ I2}). Then we onsider the problem of diserning theexistene of a set of ar-disjoint ri-in-arboresenes Fi (i ∈ I1) and ri-out-arboresenes Fi (i ∈ I2) suhthat for eah i ∈ I1 (resp. i ∈ I2) the node set of Fi is (V \R1) ∪ {ri} (resp. (V \R2) ∪ {ri}).In the same manner as in Setion 2.3.1, we an see that there exist desired arboresenes if and onlyif there exists a mathing whih overs all nodes of Y in a bipartite graph GD = (X,Y ;E) de�ned asfollows.(i′) Node set |X| is given by X = {x(a) | a ∈ A}, where |X| = |A|.(ii′) Node set Y onsists of disjoint sets Y +

i (i ∈ I1) and Y −
i (i ∈ I2). For eah i ∈ I1 (resp. i ∈ I2) ,

Y +
i (resp. Y −

i ) is given by {y+i (v) | v ∈ V \R1} (reps., {y−i (v) | v ∈ V \R2}).(iii′) The edge set E onsists of two sets E+ and E−. For eah a ∈ A with h(a) /∈ R1 (resp. t(a) /∈ R2)and i ∈ I1 (resp. i ∈ I2), we onnet x(a) and y+i (t(a)) (resp. y−i (h(a))) by an edge in E+ (resp.
E−). For eah a ∈ A with h(a) ∈ R1 (resp. t(a) ∈ R2), we onnet x(a) and y+i (t(a)) (resp.
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y−i (h(a))) for i ∈ I1 with h(a) = ri (resp. i ∈ I2 with t(a) = ri). The edge sets E+ and E− ontainno other edge.We an disern the existene of desired arboresenes and �nd them if they exist, by omputing amaximum mathing in GD. However, notie that dGD

(x) ≥ 3 may hold for eah x ∈ X, whih isdi�erent from the ase of the problem of �nding a pair of an in-arboresene and an out-arboresene. Itis left open whether we an �nd desired arboresenes more e�iently than by using existing bipartitemathing algorithms.2.3.4 Thomassen's onjetureAs we have already mentioned, the problem of �nding disjoint in- and out-arboresenes for a givenroot node is NP -omplete. The following onjeture was proposed by Thomassen [123℄. Reall that adigraph D is k-edge-onneted if κ(u, v) ≥ k for eah u, v ∈ V .Conjeture 2.3.7 (Thomassen). There exists a value k so that in every k-edge-onneted direted graph
D = (V,A) and for every node v ∈ V , there are disjoint spanning in- and out-arboresenes rooted at v.It is known that Conjeture 2.3.7 is not true for k = 2, but it is still open for k = 3. Assume that
D = (V,A′) is a direted graph and r ∈ V is a designated root-node for whih D − r is ayli. Thenthe existene of disjoint spanning in- and out-arboresenes rooted at r an be deided easily with aslight modi�ation of the bipartite graph de�ned in 2.3.1.De�ne a bipartite graph G = (V + ∪ V −, A;E) where V + and V − are two opies of V − r, eahnode in A orresponds to an ar of D and E ontains the edges av+ and au− for eah uv = a ∈ A′ (if
u, v 6= r, in other ase one of the edges is missing from E). Sine D − r is ayli, a mathing overing
V + ∪ V − orresponds to a pair of disjoint spanning in- and out-arboresenes, hene Hall's theoremgives a neessary and su�ient ondition. However, as eah node in A has degree at most 2, it is easyto see that -for example- ̺(v), δ(v) ≥ 2 ∀v ∈ V − r ensures the existene of suh arboresenes in thisvery speial ase.Hene a natural idea would be the following. Leave out edges from a highly-edge-onneted diretedgraph in suh a way that the resulting graph ontains a node overing eah direted yle and everyother node has in- and out-degree at least 2. Then the above would imply the existene of disjoint in-and out-arboresenes rooted at r. Unfortunately this approah does not work in general. Take the samedireted yle v1, . . . , v2k k times, do the same with another direted yle w1, . . . , w2k and �nally addthe edges v2i−1w2i−1, w2iv2i for i = 1, . . . , k. The resulting digraph is learly k-edge-onneted. In orderto make eah direted yle going through the same node we have to ompletely ut through at least oneof the yles by leaving out edges. Then in this yle a node with in- or out-degree at most 1 ertainlyappears.2.4 Covering by arboresenesWhen an a digraph D = (V,A) be overed by k spanning arboresenes of root r? For any subset
X of nodes, let Γ−(X) = {v ∈ X: there is an edge uv ∈ A for whih u ∈ V \X} and all this set the



2.4. Covering by arboresenes 31entrane of X. That is, the entrane onsists of the head nodes of edges entering X. The followingresult of [131℄ may be onsidered as a overing ounterpart of Edmonds' disjoint arboresenes theorem.Theorem 2.4.1 (Vidyasankar). Let r be a root node of a digraph D = (V,A) so that no edge enters r.It is possible to over the edge set of D by k r-arboresenes if and only if
̺(v) ≤ k for every v ∈ V − r (2.7)and

k − ̺(X) ≤
∑

[k − ̺(v) : v ∈ Γ−(X)] (2.8)for every ∅ ⊂ X ⊆ V − r, where Γ−(X) is the entrane of X.Theorem 2.4.1 an be proved by using Edmonds' weak theorem. One may be interested in a similarovering ounterpart of Theorems 1.1.5 and 1.1.6 as well. The following theorem from [10℄ shows thatsuh a generalization of Theorem 2.4.1 is indeed valid.Theorem 2.4.2. Let D = (V,A) be a digraph and {r1, . . . , rk} = R ⊆ V be a set of (not neessarydistint) root-nodes. Let Ui ⊆ V be onvex sets with ri ∈ Ui. The edge set A an be overed by ri-arboresenes Fi not leaving Ui if and only if
̺(v) ≤ p1(v) for eah v ∈ V (2.9)and

p1(X)− ̺(X) ≤
∑

[p1(v)− ̺(v) : v ∈ Γ−(X)] (2.10)for every ∅ ⊂ X ⊆ V , where Γ−(X) denotes the entrane of X and p1(X) denotes the number of sets
Ui's for whih Ui ∩X 6= ∅ and ri 6∈ X.Proof. First we prove neessity. Suppose that there are k proper arboresenes overing A. We maysuppose that Fi spans Ui for eah i ∈ {1, . . . , k}. Sine an arboresene Fi ontains no edge entering v if
v = ri or v /∈ Ui, and one edge entering v if v 6= ri and v ∈ Ui, the neessity of (2.9) follows immediately.Neessity of (2.10) an be seen as follows. For eah e ∈ A let z(e) denote the number of arboresenesovering e minus 1. Then z ≥ 0, moreover ̺z(X)+̺(X) ≥ p1(X) for eah ∅ ⊂ X ⊆ V and ̺z(v)+̺(v) =

p1(v) for eah v ∈ V . Sine eah edge entering X has its head in Γ−(X), we have ̺z(X) ≤
∑

[̺z(v) :

v ∈ Γ−(X)] and these imply
p1(X)− ̺(X) ≤ ̺z(X) ≤

∑

[̺z(v) : v ∈ Γ−(X)] =
∑

[p1(v)− ̺(v) : v ∈ Γ−(X)].Now we turn to su�ieny. For every node v ∈ V , give a opy of v to D denoted by v′. For a subset
X of V let X ′ be the opy of X. Add p1(v) parallel edges from v to v′, p1(v)− ̺(v) parallel edges from
v′ to v, and �nally p1(v) parallel edges from u to v′ for every edge uv ∈ A. Let D′ denote the diretedgraph thus arising.If there exist F ′

1, . . . , F
′
k disjoint arboresenes in D′ suh that F ′

i is rooted at ri and F ′
i is spanning

Ui ∪ U ′
i (where U ′

i denotes the opy of Ui), then these determine k proper arboresenes of D overing
A. It is easy to see that for every onvex set X ⊆ V in D the union X ∪X ′ ⊆ V ∪ V ′ is also onvex in
D′.



32 2. Paking arboresenesIn other ase, by Fujishige's theorem, there is a subset W of V ∪V ′ suh that p′(W ) > ̺′(W ) where
p′(W ) = |{i ∈ {1, . . . , k} : (Ui ∪ U ′

i) ∩W 6= ∅, ri /∈ W}| and ̺′ = ̺D′ . We de�ne the following subsetsof W : X = {v ∈ V : v ∈W}, Y = {v ∈ V : v′ /∈W}, and Z = {v′ ∈W : v /∈W}. We have
p′(W ) ≤ p1(X) +

∑

[p1(v) : v′ ∈ Z].On the other hand
̺D′(W ) ≥ ̺(X) +

∑

[p1(v)− ̺(v) : v ∈ Y ] +
∑

[p1(v) : v ∈ Γ−(X)− Y ] +
∑

[p1(v) : v′ ∈ Z].The explanation of the seond sum is that if v ∈ Γ−(X) − Y , then v′ ∈ W also holds. Moreover, thereexists, sine v is in the entrane, u /∈W suh that uv ∈ A, hene there are p1(v) ars from u to v′.From these inequalities we get
p1(X) > ̺(X) +

∑

[p1(v) − ̺(v) : v ∈ Y ] +
∑

[p1(v) : v ∈ Γ−(X) − Y ]

≥ ̺(X) +
∑

[p1(v) − ̺(v) : v ∈ Γ−(X)],ontraditing ondition (2.10).As we have seen, most of the theorems about paking arboresenes admit a overing ounterpart. Itwould be natural to �nd suh an extension orresponding to Theorem 1.1.8. A set {F1, . . . , F|S|} of -notneessarily edge-disjoint- arboresenes is alled a apaitated maximal M-independent pakingof arboresenes if Fi has root π(si) for i = 1, . . . , |S|, the set {sj ∈ S : v ∈ V (Fj)} is independentinM and |{sj ∈ S : v ∈ V (Fj)}| = rM(SP (v)). We propose the following onjeture.Conjeture 2.4.3. Let (D,S, π) be a digraph with roots and M be a matroid on S with rank fun-tion rM. It is possible to over the edge set of D by a apaitated maximal M-independent paking ofarboresenes if and only if
̺(v) ≤ rM(SP (v))− rM(Sv) for every v ∈ V (2.11)and

rM(SP (X))− rM(SX)− ̺(X) ≤
∑

[rM(SP (v))− rM(Sv)− ̺(v) : v ∈ Γ−(X)]for every ∅ ⊂ X ⊆ V , where Γ−(X) is the entrane of X.We only prove neessity.Proof of neessity. Suppose that there exists a proper overing. Clearly, at most rM(SP (v)) − rM(Sv)arboresenes not rooted at v ontain v, hene (2.11) follows.Neessity of (2.12) an be seen as follows. For eah e ∈ A let z(e) denote the number of arboresenesovering e minus 1. Clearly, z ≥ 0. As there exists a apaitated maximal M-independent paking ofarboresenes, we have ̺z(X) + ̺(X) ≥ rM(SP (X))− rM(SX) for eah ∅ ⊂ X ⊆ V by Theorem 1.1.8.



2.4. Covering by arboresenes 33Moreover, ̺z(v) + ̺(v) = rM(SP (v))− rM(Sv) for eah v ∈ V by the maximality of the paking. Sineeah edge entering X has its head in Γ−(X), we have ̺z(X) ≤
∑

[̺z(v) : v ∈ Γ−(X)] and these imply
rM(SP (X))− rM(SX)− ̺(X) ≤ ̺z(X)

≤
∑

[̺z(v) : v ∈ Γ−(X)]

=
∑

[rM(SP (v))− rM(Sv)− ̺(v) : v ∈ Γ−(X)].
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Chapter 3Covering interseting bi-set families
3.1 Proof of Theorem 1.1.6We start this setion by proving Fujishige's theorem (Theorem 1.1.6) based on Theorem 1.2.4.Proof of Theorem 1.1.6. If the node set of an arboresene F of root ri intersets a subset Z ⊆ V − ri,then F ontains an element entering Z. Therefore if the k edge-disjoint arboresenes exist, then Zadmits as many entering edges as the number of sets Ui for whih Z ∩ Ui 6= ∅ and ri 6∈ Z, that is, (1.4)is indeed neessary.Now we prove su�ieny. For brevity, we all a strongly onneted omponent of D an atom. It isknown that the atoms form a partition of the node set of D and that there is a so-alled topologialordering of the atoms so that there is no edge from a later atom to an earlier one. By a subatom wemean a subset of an atom. Clearly, a subset X ⊆ V is a subatom if and only if any two elements of Xare reahable in D from eah other. The following observation is obvious from the de�nitions.Proposition 3.1.1. If a subatom X intersets a onvex set U , then X ⊆ U .De�ne k bi-set families Fi for i = 1, . . . , k as follows. Let

Fi := {(XO,XI) : XO ⊆ V − ri, XI = XO ∩ Ui 6= ∅, XI is a subatom}. (3.1)For eah bi-set X, let p2(X) denote the number of Fi's ontaining X. It follows immediately that Fi isan interseting bi-set family.Proposition 3.1.2. The bi-set families Fi satisfy the mixed interseting property.Proof. Let X = (XO,XI) and Y = (YO, YI) be members of Fi and Fj , respetively, and suppose that Xand Y are interseting, that is, XI ∩YI 6= ∅. By Proposition 3.1.1, we have that XI = XO ∩Ui ⊆ Ui∩Ujand YI = YO ∩ Uj ⊆ Ui ∩ Uj . This implies for sets ZO := XO ∩ YO and ZI := XI ∩ YI that ZO ∩ Ui =

XO∩Ui∩YO = XO∩Ui∩YO∩Uj = ZI and also ZO∩Uj = XO∩YO∩Uj = XO∩Ui∩YO∩Uj = ZI fromwhih ZI ⊆ Ui ∩Uj and (ZO −ZI)∩ (Ui ∪Uj) = ∅. Hene X ∩ Y = (ZO, ZI) ∈ Fi ∩Fj , as required.Proposition 3.1.3. ̺(X) ≥ p2(X) for eah bi-set X.Proof. Let q := p2(X) and suppose that X belongs to F1,F2, . . . ,Fq . Let V ′ := V − (U1 ∪ . . .∪Uq) and
Z := XI ∪ {v ∈ V ′ : XI is reahable from v}.Let e = uv be an edge of D entering the set Z. Then u annot be in V ′−Z for otherwise XI wouldbe reahable from u and then u should belong to Z. Therefore u is in (U1 ∪ . . . ∪ Uq) − Z. Let Ui be35



36 3. Covering interseting bi-set familiesone of the sets U1, . . . , Uq ontaining u. We laim that the head v of e must be in XI . For otherwise weare in a ontradition with the hypothesis that Ui is onvex sine v is reahable from Ui (along the edge
uv) and Ui is also reahable from v sine XI ⊆ Ui is reahable from v.It follows that the edge e entering the set Z also enters the bi-set X = (XO,XI). Therefore ̺(X) ≥
̺(Z). By (1.4), we have ̺(Z) ≥ p1(Z). It follows from the de�nition of Z that p1(Z) ≥ q = p2(X), andhene ̺(X) ≥ p2(X)Therefore Theorem 1.2.4 applies and hene the edges of D an be partitioned into subsets A1, . . . , Akso that Ai overs Fi for i = 1, . . . , k.Proposition 3.1.4. Eah Ai inludes an ri-arboresene Fi whih spans Ui.Proof. If the requested arboresene does not exist for some i, then there is a non-empty subset Z of
Ui− ri so that Ai ontains no edge from Ui−Z to Z. Consider a topologial ordering of the atoms andlet Q be the earliest one interseting Z. Sine no edge leaving a later atom an enter Q, no edge withtail in Z enters Q.Let XO := (V −Ui)∪(Z∩Q) and XI := XO∩Ui. Then XI = Z∩Q is a subatom and X = (XO,XI)belongs to Fi. Therefore there is an edge e = uv in Ai whih enters X. It follows that v ∈ XI ⊆ Z andthat u ∈ Ui−XI . Sine u is not in Z and not in V −Ui, it must be in Ui−Z, that is, e is an edge from
Ui − Z to XI ⊆ Z, ontraditing the assumption that no suh edge exists.

It is worth mentioning that Theorem 1.2.4 has an equivalent form that uses T -interseting familiesinstead of bi-sets [9℄. For a subset T of V , we all the set families F1, . . . ,Fk T -interseting if
X,Y ∈ Fi, X ∩ Y ∩ T 6= ∅ ⇒ X ∩ Y,X ∪ Y ∈ Fi.We say that F1, . . . ,Fk satisfy the mixed T -intersetion property if

X ∈ Fi, Y ∈ Fj, X ∩ Y ∩ T 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj.Then the equivalent form is as follows.Theorem 3.1.5. Let D = (V,A) be a digraph and T a subset of V that ontains the head of every edgeof D. Let F1, . . . ,Fk be T -interseting families also satisfying the mixed T -intersetion property. Then
A an be partitioned into subsets A1, . . . , Ak so that Ai overs Fi if and only if ̺(X) ≥ p(X) for eahnon-empty subset X of V where p(X) denotes the number of Fi's ontaining X.
3.2 The apaitated aseFujishige's theorem an also be reformulated in terms of root-sets and branhings.



3.2. The apaitated ase 37Theorem 3.2.1. Let D = (V,A) be a direted graph and let R = {R1, . . . , Rk} be a list of k (possiblynot distint) root-sets. Let Ui ⊆ V be onvex sets with Ri ⊆ Ui. There are edge-disjoint Ri-branhings
Bi spanning Ui for i = 1, . . . , k if and only if

̺D(Z) ≥ p1(Z) for every subset Z ⊆ V (3.2)where p1(Z) denotes the number of sets Ui's for whih Ui ∩ Z 6= ∅ and Ri ∩ Z = ∅.In [114℄ (pp. 920�921), Shrijver presented a strongly polynomial time algorithm to �nd maximumnumber of r-arboresenes under apaity restritions. By following his approah, one an �nd disjointbranhings satisfying the onditions of Theorem 3.2.1 in strongly polynomial time even in the moregeneral ase when a demand funtion is given on the set of root-sets. The approah of [114℄ does notwork diretly as it strongly relies on the supermodularity of the set funtion p(Z) =
∑

[m(Ri) : Ri ∈
R, Ri ∩ Z = ∅]. It is easy to see that p1 is no more supermodular (for that very reason the originalproof of Theorem 3.2.1 was far more ompliated than the one Lovász gave to Edmonds' theorem).Theorem 3.2.2. Let D = (V,A) be a digraph, g : A→ Z+ a apaity funtion, R = {R1, . . . , Rk} a listof root-sets, U = {U1, . . . , Uk} a set of onvex sets with Ri ⊆ Ui and m : R → Z+ a demand funtion.There is a strongly polynomial time algorithm that �nds (if there exist) m(R) disjoint branhings sothat m(Ri) of them are spanning Ui with root-set Ri and eah edge e ∈ A is ontained in at most g(e)branhings.Proof. De�ne the bi-set funtion

p2(X) =

{

∑

[m(Ri) : Ri ∈ R, XI ∩Ri = ∅, XI = XO ∩ Ui] if XI 6= ∅ is a subatom,
0 otherwise.By replaing every ar a by g(a) parallel ars, it follows from the proof of Theorem 1.1.6 using bi-setsthat (3.2) is equivalent to requiring that

̺g(X) ≥ p2(X) for every bi-set X ∈ P2. (3.3)The algorithm gradually inreases the set of triples (Ri, Ui,m(Ri)) during the algorithm, that is,new root sets may appear and we always assign one of the onvex sets to a newly appearing root-set.We may assume that g and m are stritly positive everywhere and (3.3) is satis�ed.We are done if Ri = Ui for eah triple so assume that, say, R1 ⊂ U1. Let e = uv be an ar with
u ∈ R1, v ∈ U1 \R1 and de�ne the following parameter.

µ = min
{

g(e), m(R1), min{̺g(Z)− p2(Z) : e enters Z, R1 ∩ ZI 6= ∅ or ZO ∩ U1 6= ZI}
}

. (3.4)Proposition 3.2.3. The value of µ an be determined in strongly polynomial time.Proof. Let S denote the atom ontaining v. Delete those ars of D that enter a node not in S. Note thatif e enters a bi-set Z with p2(Z) > 0 then ̺g(Z) does not hange during this step. Extend the graphwith a new node vRi
for eah root set Ri ∈ R. Add the ars vRi

w for eah Ri ∈ R and w ∈ Ui \ (S \Ri)with apaity m(Ri). Moreover, add a soure node s with outgoing ars svRi
with apaity m(Ri) for

Ri ∈ R, and �nally an ar su with in�nite apaity. Let D′ = (V ′, A′) and g′ denote the graph andapaity funtion thus arising.



38 3. Covering interseting bi-set familiesCompute a maximum �ow in D′ from s to v and let C denote a minimum ut ontaining v. Theonstrution of D′ implies that e enters C and if C ∩ Ri 6= ∅ or C ∩ Ui 6= C ∩ S then vRi
∈ C may beassumed. Hene for the bi-set Z = (ZO, ZI) = (C,C ∩ S) we have

̺g′(Z) = ̺g(Z) +
∑

[m(Ri) : Ri ∈ R, ZI ∩Ri 6= ∅ or ZO ∩ Ui 6= ZI ].That is,
̺g′(Z) = ̺g(Z)−

∑

[m(Ri) : Ri ∈ R, ZI ∩Ri = ∅, ZO ∩ Ui = ZI ] +
∑

[m(Ri) : Ri ∈ R]

= ̺g(Z)− p2(Z) +m(R).Hene a minimum ut de�nes a bi-set Z suh that e enters Z and ̺g(Z)− p2(Z) is minimal. To ensure
R1 ∩ ZI 6= ∅ or ZO ∩ U1 6= ZI , we an run the maximum �ow algorithm for eah ase when v is shrunktogether with a node in Ui \ (S \ Ri). The minimum of these values gives the minimum appearing in(3.4).By Theorem 3.2.1, there is an ar e for whih µ is stritly positive. Delete (R1, U1,m(R1)) from theset of triples, and add the triple (R1, U1,m(R1) − µ) instead if m(R1) − µ > 0. Moreover, delete thetriple (R1 + v, U1,m(R1 + v)) if exists and add the triple (R1 + v, U1,m(R1 + v) + µ) instead. Finally,revise g(e) by g(e) − µ. Due to the de�nition of µ, the revised problem also meets (3.3) and we anapply the basi step reursively.Now we turn to the running time. First we onsider phases when the minimum in (3.4) is taken on
g(e) or m(R1). If the minimum is taken on g(e) for some ar e, then the number of ars with positiveapaity dereases whih may happen at most |A| times. Note that the set of (Ri, Ui,m(Ri)) triples mayinrease only in these phases. Otherwise, the minimum is taken on m(R1) meaning that (R1, U1,m(R1))gets out from the set of observed triples. The size of eah root-set inreases at most |V | times and theset of triples may inrease, aording to the above, at most |A| times, hene the total number of phasesis bounded by (k + |A|)|V |.It only remains to take into aount those phases when the minimum is taken on min{̺g(W ) −
p1(W ) : e enters W, R1 ∩W 6= ∅}. The advantage of using bi-sets is that p2 is positively intersetingsupermodular on P2 (this an be seen similarly to Lemma 1.2.5). The olletion C = {X ∈ P2 : ̺g(X) =

p2(X) > 0} of tight bi-sets inreases in the onsidered phases (̺g(X) > 0 may be assumed, otherwisethe minimum in (3.4) is also taken on g(e) and suh phases are already ounted).Let CO(a) = {XO : X ∈ C, a enters X} for an arbitrary a ∈ A. However, |CO(a)| = |{X ∈ C :

a enters X}| holds for eah a. Indeed, for an arbitrary set ZO ontaining v, there is at most one set
ZI suh that v ∈ ZI and p2((ZO, ZI)) > 0. Namely, ZI must be a subatom and it must arise as theintersetion of ZO and the atom ontaining v. Hene for eah ZO ∈ CO(a) the orresponding inner set
ZI is uniquely determined. This implies that if a bi-set X beomes tight during the revision step then
XO 6∈ CO(a) before the revision step as otherwise X ∈ C, a ontradition.The above immediately implies that if C inreases then also CO(a) inreases for some a ∈ A. If anedge a enters both X,Y ∈ C, then ̺g(X ∩ Y ) > 0 and ̺g(X ∪ Y ) > 0. The submodularity of ̺g andpositively interseting supermodularity of p2 implies that CO(a) is a lattie family. As a lattie family
L is uniquely determined by the preorder de�ned as

s � t ⇔ eah set in L ontaining t also ontains s,



3.3. Polyhedral desription 39if L inreases then � dereases, whih an happen at most |V |2 times. Hene CO(a) inreases at most
|V |2 times for eah a ∈ A, and the number of phases is O(|A||V |2).Conluding the above, the total number of phases is bounded by O((k+ |A|)|V |+ |A||V |2), whih isdominated by O(k|V |+ |A||V |2).3.3 Polyhedral desriptionLet D = (V,A) be a digraph, R = {r1, . . . , rk} a set of root-nodes and U = {U1, . . . , Uk} a set ofonvex sets with ri ∈ Ui for eah i. We say that the digraph is arboresene-pakable (with respetto U) if there are k disjoint arboresenes F1, . . . , Fk so that Fi is an ri-arboresenes spanning Ui. Ournext goal is to desribe the onvex hull of the inidene vetors of arboresene-pakable subgraphs of
D. We may suppose that the root nodes r1, . . . , rk are distint, eah having exatly one leaving edgeand no entering ones. Let R = {r1, . . . , rk} and T = V \R, so Ui ∩R = {ri} for eah ri ∈ R. For everynon-empty subset Z of T , let p1(Z) denote the number of roots ri for whih Z ∩ Ui 6= ∅. In partiular,for every v ∈ T , p1(v) is the number of roots ri for whih v ∈ Ui.Theorem 1.1.6 an be reformulated as follows.Theorem 3.3.1. Let D = (V,A) be a digraph in whih R is a set of k root-nodes so that the out-degreeand the in-degree of eah root-node is one and zero, respetively. Let T = V \ R and for eah root-node ri let Ui be a onvex set for whih Ui ∩ R = {ri}. Then D is arboresene-pakable if and only if
̺(Z) ≥ p1(Z) for every subset Z ⊆ T .De�ne k bi-set families Fi for i = 1, . . . , k as follows. Let

Fi := {(XO,XI) : XO ⊆ T, XI = XO ∩ Ui 6= ∅, XI is a subatom}.For eah bi-set X, let p2(X) denote the number of Fi's ontaining X. It follows immediately that Fi isan interseting bi-set family.Remark 3.3.2. Suppose that the out-degree of the root nodes in R may be larger than one. Let
U = {U1, . . . , Uk} be a set of onvex sets so that Ui ∩ R = {ri} for eah ri ∈ R. Furthermore, let
m : R → Z+ be a demand funtion on the root nodes so that m(R) = t. By Fujishige's theorem,there are t disjoint arboresenes so that ri is the root of mi arboresenes spanning Ui if and only if
̺(Z) ≥ p1(Z) for every subset Z ⊆ V where

p1(Z) =
∑

{m(ri)| ri /∈ Z, Z ∩ Ui 6= ∅}.In this ase the bi-set families should be de�ned as follows. Let
F j
i := {(XO,XI) : XO ∩ T 6= ∅, XI = XO ∩ Ui, ∅ 6= XI ⊆ T is a subatom},where i = 1, . . . , k and j = 1, . . . ,m(ri). It is easy to see that F j

i is an interseting bi-set family. However,this form follows from Theorem 3.3.1 by an easy onstrution. Sine the statements are simpler whenroot nodes has out-degree one, we will use this speial form when formulating our result.



40 3. Covering interseting bi-set familiesBefore formulating our result, we prove two useful lemmas exhibiting an interrelation between setsand bi-sets.Lemma 3.3.3. For every bi-set X = (XO,XI) there is a subset Z ⊆ T for whih p1(Z) ≥ p2(X) and
∆in(Z) ⊆ ∆in(X).Proof. Let q := p2(X). If q = 0, then Z := ∅ will do. Suppose that q ≥ 1 andX belongs to F1,F2, . . . ,Fq .Let V ′ := V \(U1∪ . . .∪Uq). We laim that the set Z := XI ∪{v ∈ V ′ : XI is reahable from v} satis�esthe properties required by the lemma.One obviously has p1(Z) ≥ q = p2(X) sine Z intersets eah of U1, . . . , Uq . Consider now an edge
e = uv of D entering Z. The tail u of e annot be in V ′ \ Z for otherwise XI would be reahable from
u and then u should belong to Z. Therefore u must be in (U1 ∪ . . . ∪ Uq) \ Z. Let Ui be one of the sets
U1, . . . , Uq ontaining u. Then the head v of e must be in XI , for otherwise v is reahable from Ui (alongthe edge uv) and XI is also reahable from v by the de�nition of Z but this ontradits the onvexityof Ui sine XI ⊆ Ui. Hene the edge e entering the set Z also enters the bi-set X = (XO,XI).Lemma 3.3.4. For every subset Z ⊆ T ,there are bi-sets X1, . . . ,Xt so that∑[p2(Xj) : j = 1, . . . , t] =

p1(Z) and {∆in(Xj) : j = 1, . . . , t} is a partition of ∆in(Z).Proof. Let CZ := {C1, . . . , Ct} denote the set of atoms of D interseting Z and assume that its membersare arranged in a topologial ordering, that is, no edge of D leaving a Cj enters a Ci for whih i < j.For eah j = 1, . . . , t, let Xj = (Xj
O,X

j
I ) where Xj

O := Z ∩ (C1 ∪ . . . ∪Cj) and Xj
I := Z ∩Cj . We laimthat these bi-sets Xj satisfy the properties required by the lemma.If an edge e = uv enters a bi-set Xj , then its head v is in Z ∩ Cj while its tail u must be outside

Z by the property of the topologial ordering, that is, e enters Z, too. This and the obvious fat that
{Xj

I : j = 1, . . . , t} forms a partition of Z imply {∆in(Xj) : j = 1, . . . , t} forms a partition of ∆in(Z).Let UZ := {U ∈ U : U intersets Z}. Note that |UZ | has been denoted by p1(Z) and reall that anatom is either disjoint from or inluded by a onvex set. For j = 1, . . . , t, let
U j
Z := {U ∈ UZ : j is the smallest subsript for whih Cj ∈ CZ and Cj ⊆ U}.Some of the U j
Z 's may be empty but the non-empty ones form a partition of UZ . For eah j = 1, . . . , t,one has p2(Xj) = |U j

Z | and hene
p1(Z) = |UZ | =

t
∑

j=1

|U j
Z | =

t
∑

j=1

p2(Xj),as required.Consider the following two polyhedra.
R1 := {x ∈ RA : 0 ≤ x, ̺x(Z) ≥ p1(Z) for every non-empty Z ⊆ T}, (3.5)

R2 := {x ∈ RA : 0 ≤ x, ̺x(X) ≥ p2(X) for everynon-trivial bi-set X = (XO,XI) with XO ⊆ T}. (3.6)Lemma 3.3.5. R1 = R2.



3.4. Further remarks 41Proof. Suppose �rst that x ∈ R1. Let X be an arbitrary bi-set for whih p(X) > 0. By Lemma 3.3.3there is a subset Z ⊆ T for whih p1(Z) ≥ p2(X) and ∆in(Z) ⊆ ∆in(X). This and the non-negativityof x imply that ̺x(X) ≥ ̺x(Z) ≥ p1(Z) ≥ p2(X) from whih x ∈ R2 follows.Seond, suppose that x ∈ R2. Let Z be an arbitrary set for whih p1(Z) > 0. By Lemma 3.3.4there are bi-sets X1, . . . ,Xt so that ∑[p2(Xj) : j = 1, . . . , t] = p1(Z) and {∆in(Xj) : j = 1, . . . , t} is apartition of ∆in(Z). This and the non-negativity of x imply that ̺x(Z) ≥
∑

[̺x(Xj) : j = 1, . . . , t] ≥
[p2(Xj) : j = 1, . . . , t] = p1(Z) from whih x ∈ R1 follows.The following result was proved in [42℄.Theorem 3.3.6 (Frank and Jordán). Let D = (V,A) be a digraph and p a positively intersetingsupermodular bi-set funtion on V . Let g : A→ Z+ ∪ {∞} be a apaity funtion on A so that ̺g(X) ≥
p(X) for every bi-set. The following linear system for x ∈ R+ is totally dual integral (TDI):

{0 ≤ x ≤ g, ̺x(X) ≥ p(X) for every bi-set X}.From this we derive the following.Theorem 3.3.7. The linear system written for x ∈ RA

{0 ≤ x ≤ g, ̺x(Z) ≥ p1(Z) for every non-empty Z ⊆ T} (3.7)is totally dual integral (TDI). In partiular, the onvex hull of arboresene-pakable subgraphs of D isequal to the following polyhedron:
{x ∈ RA : 0 ≤ x ≤ 1, ̺x(Z) ≥ p1(Z) for every non-empty Z ⊆ T}. (3.8)Proof. By theorem 3.3.6, the system

{0 ≤ x ≤ g, ̺x(X) ≥ p2(X) for every bi-set X} (3.9)is TDI. By Lemma 3.3.5, this and (3.7) de�ne the same polyhedron.We say that an inequality qx ≥ β is an integer onsequene of a inequality system Qx ≥ p if there isan integer vetor y so that yQ = q and yp = β. By elementary properties of TDI systems, it su�es toshow that eah inequality from (3.9) is an integer ombination of inequalities of (3.7). By Lemma 3.3.3,for a bi-set X = (XO,XI), there is a subset Z ⊆ T for whih p1(Z) ≥ p2(X) and ∆in(Z) ⊆ ∆in(X).Therefore the inequality ̺x(X) ≥ p2(X) is indeed a integer onsequene of (3.7).A general result of Edmonds and Giles [35℄ implies that the polyhedron de�ned by (3.8) is integraland hene its verties are 0−1 vetors. By Theorem 3.3.1, these verties orrespond to the arboresene-pakable subgraphs of D.3.4 Further remarksTheorem 1.2.4 gives a ommon generalization of Szeg®'s theorem on overing interseting set families(Theorem 1.2.3) and the theorem of Fujishige on paking disjoint arboresenes spanning onvex sets(Theorem 1.1.6). Unfortunately, it does not imply the result of Cs. Király (Theorem 1.1.8), hene itwould be interesting to formulate a generalization of overing bi-set families using matroids.We onjeture that some -maybe rather modi�ed- variant of the following onjeture holds.



42 3. Covering interseting bi-set familiesConjeture 3.4.1. Let D = (V,A) be a digraph, F1, . . . ,Fk be interseting families of bi-sets onground set V satisfying the mixed intersetion property, and M = ({1, . . . , k}, rM) be a matroid onground set {1, . . . , k} with rank funtion rM. For a bi-set X, let IX = {i : X ∈ Fi} and assume that
̺(X) ≥ rM(IX) for eah bi-set X with XI = XO. Then there are sets I ′X ⊆ IX for eah bi-set Xsatisfying the following onditions:(i) the families F ′

i = {X ∈ Fi : i ∈ I ′X} are interseting and satisfy the mixed intersetion property;(ii) if IX ⊆ IY then I ′Y ∩ IX ⊆ I ′X ;(iii) ̺(X) ≥ |I ′X | for eah bi-set X;(iv) |I ′X | = rM(IX) for eah bi-set X with XI = XO.The above onjeture, if it is true, would imply Theorem 1.1.8. Indeed, let (D,S, π) be a digraphwith roots andM be a matroid on S = {s1, . . . , sk} with rank funtion rM. Let Ui be the set of nodesreahable from π(si) in D. De�ne Fi as in (3.1). It is easy to see that (1.6) implies ̺(X) ≥ rM(IX)for eah bi-set X with XI = XO. By (i), (iii) and Theorem 1.2.4, the edge set an be partitioned in
k parts A1, . . . ,Ak suh that Ai overs F ′

i . Let U ′
i =

⋃{XI : i ∈ I ′X}. The hoie of the Fi's and(ii) imply that U ′
i is onvex for eah i. However, without (iv) the hoie I ′X = ∅ would satisfy theonditions. If we apply (iv) to non-trivial bi-sets onsisting of a single node we get that eah node v isontained in rM({i : v ∈ Ui}) members of the new onvex sets. These together imply that Ai ontainsan arboresenes spanning U ′

i for eah i, and by (iv) these gives a maximalM-independent paking ofarboresenes.



Chapter 4Square-free 2-mathings
4.1 Connetivity and square-free 2-mathingsLet G = (V,E) be an undireted graph with node set V and edge set E, and n and m denotethe number of nodes and the number of edges, respetively. A yle C, whih is denoted by C =

(v1, v2, . . . , vl), is a subgraph onsisting of distint nodes v1, . . . , vl and edges v1v2, . . . , (vl−1vl, vlv1. Fora subgraph H of G, the node set and the edge set of H are denoted by VH and EH , respetively. Reallthat for an integer k, we say that a graph G = (V,E) is k-onneted if |V | ≥ k + 1 and G − X isonneted for every X ⊆ V with |X| ≤ k − 1. The omplement graph of G = (V,E) is the simplegraph Ḡ = (V, Ē) suh that uv ∈ Ē if and only if uv 6∈ E for distint u, v ∈ V .The degree of a node v ∈ V in G is the number of edges inident with v. The degree sequeneof an edge set F ⊆ E is the vetor dF ∈ ZV suh that dF (v) is the number of edges in F inident with
v. Note that if a self-loop e is inident with v, e is ounted twie. We say that a graph G = (V,E) issububi (resp. ubi) if dE(v) ≤ 3 (resp. dE(v) = 3) for every v ∈ V . An edge set M ⊆ E is said tobe a 2-mathing (resp. 2-fator) if dM (v) ≤ 2 (resp. dM (v) = 2) for every v ∈ V . In other words, a
2-mathing is a node-disjoint olletion of paths and yles. For a simple undireted graph G = (V,E),an edge set M ⊆ E is a square-free 2-mathing if M is a 2-mathing that ontains no yle of lengthfour as a subgraph.We now look at the properties of the omplement graphs of (n− t)-onneted graphs.Claim 4.1.1.1. G is (n− 2)-onneted if and only if Ḡ ontains no K1,2, that is, Ē is a mathing.2. G is (n− 3)-onneted if and only if Ḡ ontains neither K1,3 nor K2,2, that is, Ē is a square-free

2-mathing.3. G is (n−4)-onneted if and only if Ḡ ontains neither K1,4 nor K2,3, in partiular Ḡ is sububi.Proof. By the de�nition of k-onnetivity, for an integer t, a simple graph G = (V,E) is (n−t)-onnetedif and only if Ḡ ontains no omplete bipartite graph with t+1 nodes. Sine a graph has no K1,d if andonly if its maximum degree is at most d− 1, we obtain the results.In what follows, we deal with simple graphs when we onsider the (n−3)-onnetivity augmentationproblem and the square-free 2-mathing problem, and so we often omit to delare that the graph issimple. Non-simple graphs appear only when we shrink graphs.43



44 4. Square-free 2-mathingsDe�nition 4.1.2 (Shrinking a square). Let C = (v1, v2, v3, v4) be a yle of length four in G = (V,E).Shrinking of C in G onsists of the following operations:
• identify v1 with v3, and denote the orresponding node by u1,
• identify v2 with v4, and denote the orresponding node by u2, and
• identify all edges between u1 and u2.In the obtained graph, the edge between u1 and u2 orresponding to EC is alled a square-edge.Let C1, C2, . . . , Cq be node-disjoint yles of length four, and let G◦ = (V ◦, E◦) be the graph obtainedfrom G = (V,E) by shrinking C1, C2, . . . , Cq. Note that G◦ might have self-loops and parallel edges,whereas G does not. We also note that if G is sububi, G◦ is also sububi. In a shrunk graph G◦, asquare is a yle of length four whose nodes are not inident to a square-edge. In other words, a ylein G◦ is a square if its orresponding edges in G form a yle of length four. We say that an edge set ina shrunk graph G◦ is square-free if it ontains no square.4.2 Jump systemsLet V be a �nite set. For u ∈ V , we denote by χu the harateristi vetor of u, with χu(u) = 1and χu(v) = 0 for v ∈ V \ {u}. For x, y ∈ ZV , a vetor s ∈ ZV is alled an (x, y)-inrement if

x(u) < y(u) and s = χu for some u ∈ V , or x(u) > y(u) and s = −χu for some u ∈ V .A jump system, introdued by Bouhet and Cunningham [16℄, is de�ned as follows.De�nition 4.2.1 (Jump system). A nonempty set J ⊆ ZV is said to be a jump system if it satis�esan exhange axiom, alled the 2-step axiom:For any x, y ∈ J and for any (x, y)-inrement s with x + s 6∈ J , there exists an (x + s, y)-inrement t suh that x+ s+ t ∈ J .A set J ⊆ ZV is a onstant-parity system if x(V ) − y(V ) is even for any x, y ∈ J . Here x(S) =
∑

v∈S x(v) for x ∈ ZV and S ⊆ V . For onstant-parity jump systems, Geelen observed a strongerexhange property:(EXC) For any x, y ∈ J and for any (x, y)-inrement s, there exists an (x+ s, y)-inrement t suhthat x+ s+ t ∈ J and y − s− t ∈ J .This property haraterizes a onstant-parity jump system (see [107℄ for details).Theorem 4.2.2 (Geelen). A nonempty set J is a onstant-parity jump system if and only if it satis�es(EXC).A onstant-parity jump system is a generalization of the base family of a matroid, an even delta-matroid [133, 134℄, and a base polyhedron of an integral polymatroid (or a submodular system) [47℄.The degree sequenes of all subgraphs in an undireted graph form a typial example of a onstant-parity jump system [16, 102℄. Cunningham [25℄ showed that the set of degree sequenes of all Ck-free



4.3. Polynomial time algorithms for the problems 45
2-mathings is a jump system for k ≤ 3, but not a jump system for k ≥ 5. Kobayashi, Szabó, andTakazawa [90, 119℄ showed that it is also a jump system when k = 4.E�ient algorithms for optimization problems on jump systems are studied in [108, 116℄. For a set
S ⊆ ZV , we de�ne Φ(S) = maxv∈V {maxy∈S y(v) −miny∈S y(v)}.Theorem 4.2.3 (Shioura and Tanaka). Let J ⊆ ZV be a �nite jump system, and c ∈ RV be a vetor.Suppose that a vetor x0 ∈ J is given, and we an hek whether x ∈ J or not in γ time. Then, we an�nd a vetor x ∈ J maximizing cx in O(n3 log Φ(J)γ) time.We an also �nd a vetor maximizing the sum of univariate onave funtions e�iently. A univariatefuntion φ : Z→ R is onave if it satis�es

2φ(x) ≥ φ(x− 1) + φ(x+ 1)for any x ∈ Z. A univariate funtion φ is onvex if −φ is onave. The following result appearedin [108℄.Theorem 4.2.4 (Murota and Tanaka). Let J ⊆ ZV be a �nite jump system, and φv : Z → R bea univariate onave funtion for eah v ∈ V . Suppose that a vetor x0 ∈ J is given, and we anhek whether x ∈ J or not in γ time. Then, we an �nd a vetor x ∈ J maximizing ∑v∈V φv(x) in
O(n3Φ(J)γ) time.Note that Shioura and Tanaka [116℄ gave an algorithm for the problem that runs in O(n4(log Φ(J))2γ)time. However, if Φ(J) is �xed, it is slower than the algorithm in Theorem 4.2.4.4.3 Polynomial time algorithms for the problemsLet γ1 denote the time to solve the b-fator problem when b(v) ≤ 2. That is, for a not neessarilysimple graph G = (V,E) with |V | = n and a vetor b ∈ {0, 1, 2}V , we an determine whether thereexists an edge set F ⊆ E suh that dF = b in γ1 time. It is of the same order as the running timeof �nding a maximum ardinality mathing, and γ1 is bounded by O(

√
nm logn

n2

m
) [57℄. In sububigraphs, sine m = O(n), we have γ1 = O(n

3
2 ).Our �rst results are the following.Theorem 4.3.1. In sububi graphs, the square-free 2-mathing problem an be solved in O(n3γ1) time.Theorem 4.3.2. The (n− 3)-onnetivity augmentation problem is solvable in O(n3γ1) time.Theorem 4.3.2 obviously follows from Theorem 4.3.1. Note that we an onstrut the omplementgraph in O(n2) time, whih is shorter than O(n3γ1) time. Our proof for Theorem 4.3.1 is based on thefat that the degree sequenes of all square-free 2-mathings in a sububi graph form a jump system.Let Jsq(G) ⊆ ZV denote the set of all degree sequenes of square-free 2-mathings in G, that is,

Jsq(G) = {dM |M is a simple square-free 2-mathing in G}.Then the following theorem holds [90, 119℄.



46 4. Square-free 2-mathingsTheorem 4.3.3 (Kobayashi, Szabó, and Takazawa). For any sububi graph G, Jsq(G) is a onstant-parity jump system.Although a stronger result is given in [90, 119℄, we give a new proof for this theorem in Setion 4.4whih an be extended to the weighted version.On the other hand, the membership problem of Jsq(G) an be solved in polynomial time, whoseproof is given in Setion 4.3.1.Lemma 4.3.4. Given a sububi graph G = (V,E) and a vetor x ∈ ZV , we an determine whether
x ∈ Jsq(G) or not in O(γ1) time.By ombining Theorems 4.2.3 and 4.3.3 and Lemma 4.3.4, we obtain Theorem 4.3.1. Note that
(0, 0, . . . , 0) ∈ ZV is a vetor ontained in Jsq(G).We give a faster algorithm for the square-free 2-mathing problem in Setion 4.3.2, whih does notuse jump systems. However, the advantage of using a jump system is that we an immediately extendthe result to optimization problems with the aid of some results on jump systems.When the weight funtion is node-indued on V , the weighted square-free 2-mathing problem isthe problem of �nding a square-free 2-mathing M maximizing a linear funtion of dM . Therefore, byTheorems 4.2.3 and 4.3.3 and Lemma 4.3.4, we obtain the following orollaries.Corollary 4.3.5. The weighted square-free 2-mathing problem in sububi graphs is solvable in O(n3γ1)time if the weight funtion is node-indued on V .Corollary 4.3.6. The weighted (n− 3)-onnetivity augmentation problem is solvable in O(n3γ1) timeif the weight funtion is node-indued on V .In the same way as these orollaries, we obtain the following by Theorem 4.2.4.Corollary 4.3.7. Let φv : Z→ R be a univariate onave funtion for eah v ∈ V . For a sububi graph
G = (V,E), we an �nd a square-free 2-mathing M maximizing

∑

v∈V

φv(dM (v))in O(n3γ1) time.Corollary 4.3.8. Let φv : Z → R be a univariate onvex funtion for eah v ∈ V . For an (n − 4)-onneted graph G = (V,E), we an �nd in O(n3γ1) time an edge set E′ ⊆ Ē minimizing
∑

v∈V

φv(dE∪E′(v))suh that G′ = (V,E ∪ E′) is a simple (n− 3)-onneted graph.4.3.1 Proof of Lemma 4.3.4In what follows we give a proof for Lemma 4.3.4.



4.3. Polynomial time algorithms for the problems 47Take a maximal family of node-disjoint yles C1, C2, . . . , Cq of length four suh that x(v) = 2 foreah v ∈ ⋃V (Ci). Obviously, if there is a yle Ci suh that V (Ci) spans a K4 then x 6∈ Jsq(G). Thus,we may assume that V (Ci) does not span a K4.Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking C1, C2, ..., Cq as inDe�nition 4.1.2. De�ne E1 ⊆ E as the set of all shrunk edges, that is, E1 = E(C1)∪ · · ·∪E(Cq), and let
E0 = E \E1. Similarly, de�ne V1 ⊆ V as the set of all shrunk nodes, that is, V1 = V (C1)∪ · · · ∪ V (Cq),and let V0 = V \V1. Therefore E0 and V0 are also subsets of E◦ and V ◦, respetively. Note that E◦ mayontain self-loops and also parallel edges.Let x◦ ∈ ZV ◦ be the vetor obtained from x by setting

x◦(v) =







x(v) if v ∈ V0,
2 if v ∈ V ◦ \ V0.We will show that x ∈ Jsq(G) if and only if x◦ is the degree sequene of some 2-mathing in G◦.Let x ∈ Jsq(G) and let M be a square-free 2-mathing in G = (V,E) with dM = x. Note that

|E(Ci)∩M | = 2 or |E(Ci)∩M | = 3 for i = 1, 2, . . . , p, beause G is sububi. Let ui1 and ui2 denote thenodes arising when shrinking Ci = (vi1, v
i
2, v

i
3, v

i
4). Let I denote the set of indies for whih |E(Ci)∩M | =

3. Then de�ne M◦ as
M◦ = (M ∩ E0) ∪

(

⋃

i∈I

{ui1ui2}
)

.One an see easily that M◦ is a 2-mathing in G◦ with dM◦ = x◦.Conversely, let M◦ be a 2-mathing in G◦ = (V ◦, E◦) with dM◦ = x◦. Let C = (v1, v2, v3, v4) beone of the shrunk yles and let u1, u2 be the orresponding nodes in G◦. If u1u2 6∈ M◦ then either
{v1v2, v3v4} or {v1v4, v2v3} an be added to M◦ ∩E0 without forming a square sine G is sububi (weuse here the assumption that V (Ci) does not span a K4). One an also see that if u1u2 ∈M◦ then threeproperly hosen edges of C an be added to M◦ ∩ E0 without forming a square (see Figure 4.1). Whatwe do exatly is that we blow up the yles one by one. In eah step we extend the atual 2-mathingto a new one in the extended graph using one of the two extensions desribed above in suh a way thatthe arising 2-mathing has no square. Reall that a square is de�ned as a yle of length four whose allfour nodes are ontained in V0. In this way M◦ ∩E0 an be extended to a square-free 2-mathing M of
G = (V,E) with dM = x.The above redution an be done in linear time and we an determine whether x◦ is a degree sequeneof a 2-mathing or not in O(γ1) time whih proves the lemma.4.3.2 Faster algorithmIn this setion we give another algorithm for the square-free 2-mathing problem that runs in O(γ1)time. A faster algorithm for the (n− 3)-onnetivity augmentation problem follows from the algorithm.However, in this ase, we have to onsider the time to onstrut the omplement graph, whih is denotedby γ0. Obviously, γ0 is bounded by O(n2), but it depends on how the input graph is represented.Theorem 4.3.9. The square-free 2-mathing problem in sububi graphs an be solved in O(γ1) time.The (n − 3)-onnetivity augmentation problem is solvable in O(γ0 + γ1) time, where γ0 is the time toonstrut the omplement graph.
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: edges in M

u1 u2

u2u1
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v1

v2

v2 v3
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Figure 4.1: Construting M from M◦Proof. Let G = (V,E) be a sububi graph. If G ontains a omplete graph on four nodes then this
K4 forms a omponent of G sine the graph is sububi. Clearly, a maximum square-free 2-mathingontains exatly three edges of suh a omponent. By handling these omponents separately, we mayassume that G ontains no K4.Take a maximal family of node-disjoint yles C1, C2, . . . , Cq of length four. Our �rst observation isthat for any maximum square-free 2-mathing M in G either |M ∩ Ci| = 2 or |M ∩ Ci| = 3 for every
Ci = (vi1, v

i
2, v

i
3, v

i
4). Moreover, we may assume the following:(A) If |M ∩ Ci| = 2 then M ∩ Ci = {vi1vi2, vi3vi4} or {vi1vi4, vi2vi3}.Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking C1, C2, . . . , Cq. De�ne

E0, E1 and V0, V1 on the same lines with Lemma 4.3.4.We will show that for any maximum square-free 2-mathing M in G satisfying ondition (A) we an�nd a 2-mathing M◦ in G◦ with |M◦| = |M | − 2q. Conversely, for any maximum 2-mathing M◦ in
G◦ we an de�ne a square-free 2-mathing M in G so that |M | = |M◦|+ 2q. Sine a 2-mathing in G◦with maximum ardinality an be found in O(γ1) time that would prove the theorem.The orrespondene desribed in Lemma 4.3.4 works again. Namely, letM be a maximum square-free
2-mathing in G satisfying ondition (A) and let I denote the set of indies for whih |E(Ci)∩M | = 3.Then de�ne M◦ as

M◦ = (M ∩ E0) ∪
(

⋃

i∈I

{ui1ui2}
)

.One an see easily that M◦ is a 2-mathing in G◦ and the observation above implies |M◦| = |M | − 2q.Conversely, let M◦ be a maximum 2-mathing in G◦. Let C = (v1, v2, v3, v4) be one of the shrunkyles and let u1, u2 be the orresponding nodes in G◦. If u1u2 6∈ M◦ then either {v1v2, v3v4} or
{v1v4, v2v3} an be added to M◦ ∩E0 without forming a square sine G is sububi (again, we use herethe assumption that G ontains no K4). One an also see that if u1u2 ∈M◦ then three properly hosenedges of C an be added to M◦∩E0 without forming a square. In both ases, the size of the 2-mathing



4.4. Proof of Theorem 4.3.3 49inreases by two. Hene M◦ ∩ E0 an be extended to a square-free 2-mathing M of G = (V,E) with
|M | = |M◦|+ 2q.Now it is understandable why K4's are handled di�erently. If we let G ontain a K4 then aftershrinking the yles the K4 orresponds to an edge with two self-loops at the end-nodes in G◦. However,a maximum 2-mathing in G◦ ontains the two self-loops and a maximum square-free 2-mathing in Gontains three edges from the K4 so in this ase the size of the 2-mathing inreases only by one whenblowing bak the orresponding yle.As above, the square-free 2-mathing problem an be redued to the ordinary maximum 2-mathingproblem, whih an be solved in O(γ1) time.The latter half of the theorem is immediately derived from the �rst half.4.4 Proof of Theorem 4.3.3This setion is devoted to the proof of Theorem 4.3.3, that is, we show that Jsq(G) is a onstant-parity jump system for any sububi graph G. Reall that G is simple. In this setion, we give analgorithm for �nding an (x + s, y)-inrement t suh that x + s + t ∈ Jsq(G) and y − s − t ∈ Jsq(G).Without loss of generality, we assume that s = −χu for some u ∈ V .Let M and N be edge sets in an undireted (not neessarily simple) graph. We say that a path
P = (v0, v1, v2, . . . , vl) is an (M,N)-alternating path if
• vivi+1 ∈M \N if i is even,
• vivi+1 ∈ N \M if i is odd, and
• vivi+1 6= vjvj+1 for i 6= j.Obviously, dM∆E(P ) = dM −χv0 + (−1)lχvl and dN∆E(P ) = dN + χv0 − (−1)lχvl . By taking the longest

(M,N)-alternating path, we an see the following.Lemma 4.4.1. For 2-mathings M,N in an undireted graph and for a (dM , dN )-inrement s = −χu,there exists an (M,N)-alternating path P beginning with v0 = u suh that both M∆E(P ) and N∆E(P )are 2-mathings (not neessarily square-free), dM∆E(P ) = dM + s + t, and dN∆E(P ) = dN − s − t forsome (dM + s, dN )-inrement t.Let L be a subset of edges and let C1, C2, . . . , Cq be node-disjoint yles of length four suh that
|E(Ci) ∩ L| = 3 for i = 1, 2, . . . , p. If an edge set L◦ ⊆ E◦ is obtained from L ⊆ E by shrinking
C1, C2, . . . , Cq, we say that L◦ is the shrunk edge set of L, and L is an expanded edge set of L◦.Note that the shrunk edge set L◦ ontains all square-edges in G◦.We now de�ne a map φ : ZV → ZV ◦ by

(φ(x))(u) =
∑

{x(v) | v ∈ V, v orresponds to u}

− 2|{square-edges inident to u}| (4.1)for x ∈ ZV and u ∈ V ◦. One an see that for an edge set L ⊆ E satisfying that |E(Ci) ∩ L| = 3 for
i = 1, 2, . . . , p, φ(dL) is the degree sequene of the shrunk edge set of L. Conversely, the following lemmaholds [93℄.



50 4. Square-free 2-mathingsLemma 4.4.2 (Kobayashi and Takazawa). Let L◦ ⊆ E◦ be a 2-mathing in G◦ that ontains all square-edges and x be a vetor in {0, 1, 2}V . If φ(x) is the degree sequene of L◦, there exists an expanded edgeset L of L◦ in G suh that dL = x. Furthermore, suh L is unique.4.4.1 Finding an (x+ s, y − s)-inrementAlthough we need an (x + s, y)-inrement t to prove Theorem 4.3.3, in this subsetion, we give aproedure to �nd an (x+ s, y− s)-inrement t suh that x+ s+ t ∈ Jsq(G) and y− s− t ∈ Jsq(G). Afterthat, we modify the proedure to obtain an (x+ s, y)-inrement t in Setion 4.4.2.For given degree sequenes x, y ∈ Jsq(G), take edge sets M,N ⊆ E suh that dM = x and dN = y.Let s = −χu be an (x, y)-inrement for some u ∈ V . Let C1, C2, . . . , Cq be node-disjoint yles of lengthfour in G suh that E(Ci) ⊆ M ∪ N and |E(Ci) ∩M | = |E(Ci) ∩ N | = 3 for i = 1, 2, . . . , p. We takesuh C1, C2, . . . , Cq maximally, and shrink them. Let G◦ = (V ◦, E◦) be the obtained graph, and let
M◦, N◦, x◦, y◦, u◦ and s◦ be ounterparts in G◦ to M,N, x, y, u and s, respetively.If s◦ = −χu◦ is not an (x◦, y◦)-inrement, thenG has a square C = (u, v1, v2, v3) suh that dM (u) = 2,
dN (u) = 1, dM (v2) = 1, dN (v2) = 2, and C is shrunk in G◦. In this ase, t = χv2 is an (x+s, y)-inrementsuh that x+ s+ t ∈ Jsq(G) and y − s− t ∈ Jsq(G) by Lemma 4.4.2.Thus, in what follows in this subsetion, we only onsider the ase when s◦ = −χu◦ is an (x◦, y◦)-inrement. Reall that a square is a yle of length four whose nodes are not inident to a square-edge.Then, G◦ satisfy the following ondition.(B) Both edge sets M◦ and N◦ ontain all square-edges in G◦, and G◦ has no square C suh that

E(C) ⊆M◦ ∪N◦ and |E(C) ∩M◦| = |E(C) ∩N◦| = 3.In order to obtain an (x + s, y − s)-inrement t, it su�es to �nd an (x◦ + s◦, y◦ − s◦)-inrement
t◦ and edge sets M∗, N∗ in the shrunk graph G◦ suh that M∗ and N∗ are square-free 2-mathings in
G◦, dM∗ = x◦ + s◦ + t◦, and dN∗ = y◦ − s◦ − t◦. This is beause a unit vetor t orresponding to t◦ isa desired (x+ s, y − s)-inrement by Lemma 4.4.2. Thus, in what follows, we desribe a proedure that�nds an (x◦ + s◦, y◦ − s◦)-inrement t◦ and edge sets M∗, N∗ in G◦.Let P = (v0, v1, v2, . . . , vl) be an (M◦, N◦)-alternating path beginning with v0 = u◦ suh that both
M◦∆E(P ) and N◦∆E(P ) are 2-mathings, dM◦∆E(P ) = dM◦ + s◦ + t◦, and dN◦∆E(P ) = dN◦ − s◦ − t◦for some (x◦ + s◦, y◦)-inrement t◦. The existene of suh a path is guaranteed by Lemma 4.4.1. Wehoose v1 suh that N + v0v1 is square-free if possible. Furthermore, we assume the minimality of P ,that is, any subpath (v0, v1, v2, . . . , vp) does not satisfy the above onditions for 1 ≤ p ≤ l− 1. Let P (p)be the subpath (v0, v1, v2, . . . , vp) of P , and de�ne M (p) = M◦∆E(P (p)) and N (p) = N◦∆E(P (p)).If M (l) and N (l) are square-free, then t◦ := dM (l) − dM◦ − s◦ is an (x◦ + s◦, y◦)-inrement by thede�nition of P , and M (l), N (l), and t◦ are the desired outputs. Otherwise, let p be the integer suh that
M (0),M (1), . . . ,M (p) and N (0), N (1), . . . , N (p) are square-free, and M (p+1) or N (p+1) ontains a square.We onsider the ase when p is even, that is,M (p+1) is square-free and N (p+1) has a square ontaining
vpvp+1. The ase when p is odd an be dealt with in the same way. Let C1 = (vp+1, vp, u1, u2) be thesquare in N (p+1). When p ≥ 1, by the minimality of l, M (p) is not a 2-mathing, that is, dM (p)(vp) = 3.Therefore {vpvp+1, vpu1} ⊆ M (p), beause G◦ is sububi. Furthermore, {vpvp+1, vpu1} ⊆ M (p) is alsotrue when p = 0 by the following laim and the de�nition of P .



4.4. Proof of Theorem 4.3.3 51: edges in M .: edges in N .v0 u3

u2u1

(Parallel edges represent the same edge.)Figure 4.2: An illustration of Claim 4.4.3.Claim 4.4.3. One of the followings holds:
• there exists an edge e ∈ δ(v0) ∩ (M◦ \N◦) suh that N◦ ∪ {e} is square-free, or
• G◦ has a square C = (v0, u1, u2, u3) suh that {v0u1, v0u3} ⊆ M◦ and {v0u1, u1u2, u2u3} ⊆ N◦(see Figure 4.2).Proof. It is obvious beause dM◦(v0) > dN◦(v0).Then, by the ondition (B), vp+1u2, u1u2 6∈ M (p). Sine the graph is sububi and vp+1u2, u1u2 6∈

M (p), we have dM (p)(u2) ≤ 1.Now we de�ne
M ′ = M (p) − vpvp+1 + vp+1u2,

N ′ = N (p) + vpvp+1 − vp+1u2(see Figure 4.3). Obviously, N ′ is square-free. Sine dM (p)(u2) ≤ 1 and dN(p)(u2) = 2, M ′ and N ′ are
2-mathings and dM ′−dM◦−s◦ = χu2 is a (dM◦+s◦, dN◦−s◦)-inrement. Therefore, ifM ′ is square-free,then M ′ and N ′ are the desired 2-mathings and t◦ = χu2 is the desired unit vetor.Otherwise, M ′ has a square C2 = (vp+1, u2, u3, u4) ontaining vp+1u2. Then, the following laimholds.Claim 4.4.4. u3 6= vp.Proof. Assume that u3 = vp. Sine vpu1 ∈M ′, we have u1 = u4 and u1vp+1 ∈M ′. Then, |M◦∩E[C2]|+
|N◦ ∩ E[C2]| = |M ′ ∩ E[C2]| + |N ′ ∩ E[C2]| = 7, where E[C2] is the set of edges whose end-nodes areboth in V (C2). This ontradits that M◦ and N◦ are square-free 2-mathings.By this laim, {u3, u4} ∩ {vp, vp+1} = ∅. Now we de�ne

M ′′ = M ′ − u2u3, N ′′ = N ′ + u2u3(see Figure 4.4). Obviously, M ′′ is a square-free 2-mathing. Furthermore, N ′′ is square-free, beause
N ′′ ontains u3u2, u2u1, u1vp, vpvp+1, whih means that it has no square ontaining u2u3. If dN ′(u3) ≤
1, then M ′′ and N ′′ are the desired 2-mathings and t◦ = −χu3 is the desired unit vetor, beause
dM ′(u3) = 2.Otherwise, dN ′(u3) = 2 and dN ′′(u3) = 3. Sine G◦ is sububi, u3u4 ∈ N ′.Claim 4.4.5. u4vp+1 6∈ N ′.
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: edges in M (p).: edges in N (p).

vp vp+1

u2u1 : edges in M ′.: edges in N ′.
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u2u1

Figure 4.3: De�nitions of M ′ and N ′.
vp vp+1

u2u1 : edges in M ′.: edges in N ′.u3
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Figure 4.4: De�nitions of M ′′ and N ′′.
vp vp+1

u2u1 : edges in M ′′.: edges in N ′′.u3
u4 vp vp+1

u2u1 : edges in M ′′′.: edges in N ′′′.u3
u4

Figure 4.5: De�nitions of M ′′′ and N ′′′.Proof. If u4vp+1 ∈ N ′, then |M◦ ∩ E(C2)| + |N◦ ∩ E(C2)| = |M ′ ∩ E(C2)| + |N ′ ∩ E(C2)| = 6, whihontradits the ondition (B).We de�ne
M ′′′ = M ′′ − u2vp+1 + u2u3,

N ′′′ = N ′′ − u3u4 + u4vp+1(see Figure 4.5). Then, δ(vp+1)∩M ′′′ = {vp+1u4} and δ(vp+1)∩N ′′′ = {vpvp+1, vp+1u4}. Hene M ′′′ and
N ′′′ are square-free 2-mathings and t◦ = dM ′′′−dM◦−s◦ = −χvp+1 is a (dM◦ +s◦, dN◦ −s◦)-inrement.



4.5. NP-hardness of the weighted problem 534.4.2 Finding an (x+ s, y)-inrementWe have already presented a proedure to �nd an (x+ s, y − s)-inrement. To obtain an (x+ s, y)-inrement t, we hoose M and N satisfying the following assumption.Assumption 4.4.6. For x, y ∈ Jsq(G), let M and N be square-free 2-mathings with dM = x and
dN = y maximizing |M ∩N |.We show that under Assumption 4.4.6 we an �nd an (x+ s, y)-inrement by the proedure in theprevious subsetion. It su�es to show that we an �nd an (x◦ + s◦, y◦)-inrement t◦ in the shrunkgraph G◦. Note that an (x◦ + s◦, y◦ − s◦)-inrement t◦ is not an (x◦ + s◦, y◦)-inrement if and only if
t◦ = −s◦. We also note that, by Assumption 4.4.6, M◦ and N◦ maximize |M◦ ∩N◦| among all square-free 2-mathings in G◦ suh that both of them ontain all square-edges and their degree sequenes are
x◦ and y◦, respetively. Clearly, the modi�ed 2-mathings in our proof ontain all square-edges in eahstep, sine the path is alternating and we modify in squares, where a square is a yle of length fourwhose nodes are not inident to a square-edge.Suppose that the output (M∗, N∗, t◦) in the previous subsetion satis�es that t◦ = −s◦, that is,
dM∗ = dM◦ and dN∗ = dN◦ . Then, either |M∗ ∩ N∗| > |M◦ ∩ N◦| holds or a pair of square-free 2-mathings (M∗, N◦) satis�es that dM∗ = x◦, dN◦ = y◦, and |M∗ ∩ N◦| > |M◦ ∩ N◦|. More preisely,the following laims hold.
• If p is even and (M∗, N∗) = (M ′, N ′), then |M∗ ∩N◦| − |M◦ ∩N◦| ≥ |E(P (p)) ∩N◦| = p

2 .
• If p is odd (in this ase, we alternate M and N in the proedure in the last subsetion) and

(M∗, N∗) = (M ′′, N ′′), then |M∗ ∩N◦| − |M◦ ∩N◦| ≥ |E(P (p+1)) ∩N◦| = p+1
2 .

• If p is odd (in this ase, we alternate M and N in the proedure in the last subsetion) and
(M∗, N∗) = (M ′′′, N ′′′), then |M∗ ∩ N∗| − |M◦ ∩ N◦| = 1, beause M∗ ∩ N∗ = ((M◦ ∩ N◦) ∪
{(u2, u3), (vp+1, u4)}) \ {(u3, u4)}.This ontradits Assumption 4.4.6.Thus the output t◦ is an (x◦ + s◦, y◦)-inrement and its orresponding unit vetor t ∈ ZV is an

(x+ s, y)-inrement, whih ompletes the proof of Theorem 4.3.3.4.5 NP-hardness of the weighted problemThe objetive of this setion is to show the NP-hardness of the weighted square-free 2-mathingproblem in sububi graphs. Atually, we show the following stronger result, whih extends Z. Király'sresult for bipartite graphs.Theorem 4.5.1. The weighted square-free 2-mathing problem is NP-hard even if the given graph isubi, bipartite, and planar.First, we show the NP-hardness of the problem of �nding a square-free 2-fator of maximum totalweight, alled the weighted square-free 2-fator problem. After that we derive Theorem 4.5.1 fromthis result.
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Figure 4.6: De�nitions of V e, Ee, and Ev .Theorem 4.5.2. The weighted square-free 2-fator problem is NP-hard even if the given graph is ubi,bipartite, and planar.Proof. We give a polynomial redution from the independent set problem in planar ubi graphs tothe weighted square-free 2-fator problem. For a graph G = (V,E), a node set I ⊆ V is independentif there exists no edge in E onneting two nodes in I. The independent set problem is to �nd anindependent set I of maximum size, and this problem is NP-hard even if the input graph is ubi andplanar [54℄.Let G = (V,E) be a ubi planar graph whih is an instane of the independent set problem. Weonstrut a new graph G′ = (V ′, E′) as follows. As shown in Figure 4.6, de�ne a node set V e and anedge set Ee orresponding to e = uv ∈ E by
V e = {ue1, ue2, ue3, ue4, ve1, ve2, ve3, ve4},
Ee = {ue1ue2, ue2ue3, ue3ue4, ue4ue1,

ve1v
e
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e
2v

e
3, v

e
3v

e
4, v

e
4v

e
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e
3v

e
4, v

e
3u

e
4}.For any node v ∈ V with δ(v) = {e1, e2, e3}, de�ne an edge set Ev by

Ev = {ve11 ve22 , ve21 ve32 , ve31 ve12 },and de�ne
V ′ =

⋃

e∈E

V e, E′ =

(

⋃

e∈E

Ee

)

∪
(

⋃

v∈V

Ev

)

.Note that Ev is depending on the ordering of e1, e2, and e3, and if three edges in δ(v) are arranged inan appropriate order for eah v ∈ V , then G′ is planar. It is obvious that G′ is ubi and bipartite.Set L = 3|V |+ 1, and de�ne the weight w : E′ → R+ by
w(e′) =



















L if e′ = ue1u
e
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e
1v

e
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e
3v

e
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e
4 for some e = uv ∈ E,

1 if e′ ∈ Ev for some v ∈ V ,
0 otherwise.Then the following laim holds.
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ue1 ue4

ue3ue2 ve4

ve3

ve1

ve2 ue1 ue4

ue3ue2 ve4

ve3

ve1

ve2 ue1 ue4

ue3ue2 ve4

ve3

ve1

ve2

Figure 4.7: Three patterns of M ∩ Ee.Claim 4.5.3. The original graph G = (V,E) has an independent set of size k if and only if G′ = (V ′, E′)ontains a square-free 2-fator whose total weight is 4|E|L+ 3k.Proof of Claim 4.5.3. Let M ⊆ E′ be a square-free 2-fator in G′ whose total weight is at least 4|E|L.We show that suh a square-free 2-fator in G′ and an independent set of G orrespond to eah other.First, by the de�nition of L, one an see that M ontains all edges of weight L. Then, sine M is asquare-free 2-fator, we have the following three possibilities for eah e = uv ∈ E (see Figure 4.7):
M ∩ Ee =



















Ee \ {ue3ue4, ve3ve4},

Ee \ {ue1ue4, ue2ue3, ve3ve4},

Ee \ {ve1ve4, ve2ve3, ue3ue4}.

(4.2)Note that a 2-fator is a olletion of yles overing all nodes.For a node v ∈ V with δ(v) = {e1, e2, e3}, let Cv be a yle of length six in G′ through ve11 , ve12 , ve21 ,

ve22 , ve31 , and ve32 . Then, eah yle in M is ontained in Ee for some e ∈ E or oinides with Cv for some
v ∈ V .Let VM ⊆ V be a node set de�ned by VM = {v | v ∈ V, E(Cv) ⊆M}. By (4.2), VM is an independentset of G. On the other hand, when we are given an independent set I of G, we an onstrut a square-free 2-fator M in G′ suh that M ontains Cv for v ∈ I and w(M) ≥ 4|E|L by (4.2). As above, anindependent set I of G and a square-free 2-fator M in G′ with w(M) ≥ 4|E|L orrespond to eahother.Sine M ontains 3|VM | edges of weight 1, w(M) = 4|E|L+ 3|VM |, whih shows the laim.By this laim, the independent set problem in G is equivalent to the weighted square-free 2-fatorproblem in (G′, w).Now we an easily give a proof of Theorem 4.5.1.Proof of Theorem 4.5.1. Let G = (V,E) and w be an instane of the weighted square-free 2-fatorproblem. De�ne a new weight funtion w′ : E → R+ by w′(e) = L+w(e), where L = n(maxe∈E w(e))+1.We onsider an instane (G,w′) of the weighted square-free 2-mathing problem. Then, by the de�nitionof w′, the optimal solution M of the weighted square free 2-mathing problem must be a 2-fator if
w′(M) ≥ nL, and in this ase M is also an optimal solution of the original problem. If w′(M) < nL, wean onlude that G has no 2-fators.Therefore, we an redue the weighted square-free 2-fator problem to the weighted square-free
2-mathing problem, whih means that Theorem 4.5.1 an be derived from Theorem 4.5.2.



56 4. Square-free 2-mathingsSine the graph G′ in the proof of Theorem 4.5.2 ontains no omplete bipartite graph with �venodes (i.e. K1,4 and K2,3) as a subgraph, its omplement graph is (|V ′| − 4)-onneted. Hene, we alsoobtain the following theorem.Theorem 4.5.4. The weighted (n − 3)-onnetivity augmentation problem is NP-hard.
4.6 Weighted square-free 2-mathingsWe have already seen in Setion 4.5 that the weighted square-free 2-mathing problem in sububigraphs is NP-hard for general weight funtions. In this setion, we show that the weighted square-free
2-mathing problem is polynomially solvable if the weight funtion is node-indued on every square.Suppose that for a weighted (not neessarily simple) graph (G,w) and for a vetor x ∈ {0, 1, 2}V ,we an �nd in γ2 time an edge set F ⊆ E maximizing w(F ) suh that dF = x. Note that γ2 is boundedby O(n(m + n log n)) [51℄ and O(m log(nw(E))

√

nα(m,n) log n) [53℄, where α is the inverse of theAkermann funtion.Theorem 4.6.1. In a weighted sububi graph (G,w), if w is node-indued on every square in G, thenthe weighted square-free 2-mathing problem is solvable in O(n3γ2) time.In what follows, we give a proof of Theorem 4.6.1. In our proof, we show the relation between theweighted square-free 2-mathing problem and M-onave funtions, whih are a quantitative extensionof jump systems.4.6.1 M-onave funtionsAn M-onave (M-onvex) funtion on a onstant-parity jump system is a quantitative extensionof a jump system, whih is a generalization of valuated matroids [28, 30℄, valuated delta-matroids [29℄,and M-onave (M-onvex) funtions on base polyhedra [105, 106℄.De�nition 4.6.2 (M-onave funtion on a onstant-parity jump system [107℄). For J ⊆ ZV , we all
f : J → R an M-onave funtion on a onstant-parity jump system if it satis�es the followingexhange axiom:(M-EXC) For any x, y ∈ J and for any (x, y)-inrement s, there exists an (x+ s, y)-inrement t suhthat x+ s+ t ∈ J , y − s− t ∈ J , and f(x) + f(y) ≤ f(x+ s+ t) + f(y − s− t).It diretly follows from (M-EXC) that J satis�es (EXC), and hene J is a onstant-parity jumpsystem. We all a funtion f : J → R an M-onvex funtion if −f is an M-onave funtion on aonstant-parity jump system. M-onave funtions on onstant-parity jump systems appear in manyombinatorial optimization problems suh as the weighted mathing problem, the minsquare fatorproblem [2℄, and the weighted even fator problem in odd-yle-symmetri digraphs [94℄. Some propertiesof M-onave funtions are investigated in [89℄, and e�ient algorithms for maximizing an M-onavefuntion on a onstant-parity jump system are given in [108, 116℄.



4.6. Weighted square-free 2-mathings 57Theorem 4.6.3 (Murota and Tanaka). Let J ⊆ ZV be a �nite onstant-parity jump system, and
f : J → Z be an M -onave funtion on J . Suppose that a vetor x0 ∈ J is given, and we an hekwhether x ∈ J or not and evaluate f(x) in γ time. Then we an �nd a vetor x ∈ J maximizing f(x)in O(n3Φ(J))γ) time.Note that O(n4(log Φ(J))2γ) time algorithm is proposed in [116℄ also for this problem.4.6.2 Relation with M-onave funtionsWe onsider a generalization of Theorem 4.3.3. For a weighted sububi graph (G,w), de�ne afuntion fsq on Jsq(G) by

fsq(x) = max

{

∑

e∈M

w(e)

∣

∣

∣

∣

M is a square-free 2-mathing, dM = x

}

.Then, the following theorem holds.Theorem 4.6.4. For a weighted sububi graph (G,w), if w is node-indued on every square in G, fsqis an M-onave funtion on the onstant-parity jump system Jsq(G).In what follows, we give a proof of this theorem. In a similar way as Theorem 4.3.3, we use theproedure in Setion 4.4.1 to �nd an (x+ s, y)-inrement t satisfying (M-EXC) for given x, y, and
s. We now onsider the weight of the output. De�ne E1 ⊆ E as the set of all shrunk edges, that is,
E1 = E(C1) ∪ · · · ∪ E(Cq), and let E0 = E \ E1. De�ne w(F ) =

∑

e∈F w(e) for F ⊆ E. Then thefollowing lemma holds.Lemma 4.6.5. Let M and N be square-free 2-mathings in G, whose shrunk edge sets in G◦ are M◦ and
N◦, respetively. Let M∗, N∗ be square-free 2-mathings in G◦ obtained from M and N by the proedurein Setion 4.4.1. Then, w(M∗ ∩ E0) + w(N∗ ∩E0) = w(M◦ ∩ E0) + w(N◦ ∩ E0).Proof. If (M∗, N∗) = (M (l), N (l)), (M ′, N ′), (M ′′, N ′′), then M∗+N∗ = M◦+N◦, where `+' means theunion when we onsider the multipliity of the edges. Hene, w(M∗∩E0)+w(N∗∩E0) = w(M◦∩E0)+

w(N◦∩E0). If (M∗, N∗) = (M ′′′, N ′′′) thenM∗+N∗ = M◦+N◦−{u2vp+1, u3u4}+{u2u3, vp+1u4}, where`−' means the di�erene of sets when we onsider the multipliity of the edges. Sine w is node-induedon vp+1u2, u3u4, we have w(M∗ ∩E0) + w(N∗ ∩ E0) = w(M◦ ∩ E0) + w(N◦ ∩ E0).Lemma 4.6.6. Let M∗, N∗ and t◦ be the outputs of the proedure in Setion 4.4.1. Suppose that M∗∗and N∗∗ are square-free 2-mathings whih are expanded edge sets of M∗ and N∗, respetively, and t isa (dM + s, dN − s)-inrement orresponding to t◦ suh that dM∗∗ = dM + s+ t and dN∗∗ = dN − s− t.Then, w(M∗∗) + w(N∗∗) = w(M) + w(N).Proof. By Lemma 4.6.5, it su�es to show that
w(M∗∗ ∩ E(Ci)) + w(N∗∗ ∩ E(Ci)) = w(M ∩ E(Ci)) + w(N ∩ E(Ci)) (4.3)for any shrunk yle Ci. Sine dM∗∗∩E0 + dN∗∗∩E0 = dM∩E0 + dN∩E0 and dM∗∗ + dN∗∗ = dM + dN , itholds that dM∗∗∩E(Ci) + dN∗∗∩E(Ci) = dM∩E(Ci) + dN∩E(Ci). Then the equation (4.3) holds beause w isnode-indued on Ci.



58 4. Square-free 2-mathingsWe are now ready to show Theorem 4.6.4.Proof of Theorem 4.6.4. For x, y ∈ Jsq(G) and an (x, y)-inrement s, let M and N be square-free 2-mathings suh that dM = x, dN = y, w(M) = fsq(x), and w(N) = fsq(y). As with Assumption 4.4.6,we assume that M and N maximize |M ∩N | among suh 2-mathings.Let M∗∗, N∗∗, and t be as in Lemma 4.6.6. If t is not an (x+ s, y)-inrement, then dM∗∗ = dMand dN∗∗ = dN . Sine w(M∗∗) + w(N∗∗) = w(M) + w(N) by Lemma 4.6.6, w(M∗∗) = w(M) and
w(N∗∗) = w(N). However, either |M∗∗ ∩N∗∗| > |M ∩ N | or |M∗∗ ∩N | > |M ∩N | holds in the sameway as Setion 4.4, whih ontradits the maximality of |M ∩N |. Thus, t is an (x+ s, y)-inrement.On the other hand, by Lemma 4.6.6, we have

fsq(x) + fsq(y) = w(M) + w(N)

= w(M∗∗) + w(N∗∗)

≤ fsq(x+ s+ t) + fsq(y − s− t).Hene fsq is an M-onave funtion on Jsq.4.6.3 Polynomial time algorithmNow we are ready to give a proof of Theorem 4.6.1 with the aid of previous works on M-onavefuntions. As a generalization of Lemma 4.3.4, we show the following lemma.Lemma 4.6.7. Given a weighted sububi graph (G,w) and a vetor x ∈ Jsq(G), we an alulate fsq(x)in O(γ2) time if w is node-indued on every square.Proof. Take a maximal family of node-disjoint yles C1, C2, . . . , Cq of length four suh that x(v) = 2for eah v ∈ ⋃V (Ci). Let G◦ = (V ◦, E◦) denote the graph obtained from G = (V,E) by shrinking
C1, C2, . . . , Cq. Let ui1 and ui2 denote the nodes arising when shrinking Ci = (vi1, v

i
2, v

i
3, v

i
4). Let πi bea funtion on V (Ci) suh that w(e) = πi(u) + πi(v) for every edge e = (u, v) ∈ E(Ci), and let π bethe funtion on ⋃V (Ci) de�ned by π(v) = πi(v) for v ∈ V (Ci). Sine the yles C1, . . . , Cq are disjointwe an de�ne suh π. Let E0, E1, V0, V1 and x◦ be the same as in the proof of Lemma 4.3.4. We de�ne

w◦ : E◦ → R as follows (see Figure 4.8):
w◦(e) =



















w(e) when u, v ∈ V0,
w(e) − π(v) when u ∈ V0 and v ∈ V ◦ \ V0,
w(e) − π(u)− π(v) when u, v ∈ V ◦ \ V0,for eah e = uv ∈ E0, and
w◦(e) = π(vi1) + π(vi2) + π(vi3) + π(vi4)for eah e = ui1u

i
2 ∈ E◦ \ E0.We will show that fsq(x) = f(x◦) + π(V1) where
f(x◦) = max

{

∑

e∈M◦

w◦(e)

∣

∣

∣

∣

M◦ is a 2-mathing in G◦, dM◦ = x◦

}

.
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π1

π2
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w(a)

w(b) w(c)

w(d)

w(e) w(f)

w(g)

w(a) − π1

w(b) − π2 w(c) − π3 w(e) − π6

w(d) − π4 − π5

w(g) − π8

w(f)− π7

: edges in M

: edges in M◦

w(M) = w(a) + w(d) + w(f) + π1 + π4 + π5 + π7 + 2π2 + 2π3 + 2π6 + 2π8

w◦(M◦) = w(a) + w(d) + w(f) + π2 + π3 + π6 + π8

∑4
i=1 πi

∑8
i=5 πi

Figure 4.8: Example of w◦(M◦)Clearly, that would prove the lemma sine f(x◦) an be alulated in O(γ2) time.For a square-free 2-mathing M with dM = x we an get a 2-mathing M◦ in G◦ with dM◦ = x◦,and onversely, for any 2-mathing M◦ of G◦ with dM◦ = x◦ we an de�ne a square-free 2-mathing Mof G with dM = x as desribed in Lemma 4.3.4. One only has to observe that for a orresponding pair
M,M◦, we have w(M) = w◦(M◦)+π(V1). This means that for any M with dM = x and w(M) = fsq(x)we an �nd an M◦ with w◦(M◦) = fsq(x) − π(V1), and onversely, for any M◦ with dM◦ = x◦ and
w◦(M◦) = f(x◦) we an �nd an M with w(M) = f(x◦) + π(V1), hene we are done.Theorem 4.6.1 follows from Lemma 4.6.7 and Theorems 4.6.3 and 4.6.4.4.7 A min-max formulaIn this setion we give a min-max formula that haraterizes the maximum size of a square-free
2-mathing in a sububi graph. The proof is based on the onnetion between square-free 2-mathingsin G and 2-mathings in G◦ that was desribed in Setion 4.3.The following haraterization of the maximum size of a 2-mathing (not neessarily square-free)an be derived from a onstrution of Tutte [126℄.Theorem 4.7.1. Let G = (V,E) be a graph. The maximum size of a 2-mathing in G is equal to the



60 4. Square-free 2-mathingsminimum value of
τG(U,S) = |V |+ |U | − |S|+

∑

T

⌊12 |E(T, S)|⌋, (4.4)where U and S are disjoint subsets of V , S is independent, and T ranges over the omponents of
G− U − S.We drop the subsript G if it is lear from the ontext. Our �rst observation is that U an beeliminated from the formula in the sububi ase.Theorem 4.7.2. Let G = (V,E) be a sububi graph. The maximum size of a 2-mathing in G is equalto the minimum value of

τ ′G(S) = |V | − |S|+
∑

T

⌊12 |E(T, S)|⌋, (4.5)where S is an independent subset of V , and T ranges over the omponents of G− S.Proof. Let U and S be disjoint subsets of V that minimize (4.4). If U = ∅, then we are done, otherwisetake a node u ∈ U . As G is sububi, d(u) ≤ 3 and so we have the following ases.
• If u has all of its neighbors in U∪S, then u is a omponent of G−(U−u)−S and ⌊12 |E(u, S)|⌋ ≤ 1.Hene τ(U − u, S) ≤ τ(U,S).
• If u has exatly one neighbor in V \ (U ∪S), then let T be the omponent of G−U −S ontainingthe neighbor of u. Then ⌊12 |E(T + u, S)|⌋ ≤ ⌊12 |E(T, S)|⌋ + 1, hene τ(U − u, S) ≤ τ(U,S).
• If u has exatly two neighbors in V \ (U ∪ S), then we have two subases. If these neighborsare ontained in the same omponent T of G − U − S then ⌊12 |E(T + u, S)|⌋ ≤ ⌊12 |E(T, S)|⌋ + 1so τ(U − u, S) ≤ τ(U,S). If the two neighbors are ontained in T1 and T2, then T1 + T2 + uwill form one omponent of G − (U − u) − S. It is easy to see that ⌊12 |E(T1 + T2 + u, S)|⌋ ≤
⌊12 |E(T1, S)|⌋ + ⌊12 |E(T2, S)|⌋+ 1 whih implies τ(U − u, S) ≤ τ(U,S) again.
• If u has three neighbors in V \ (U ∪ S), then, depending on the position of these neighbors in theomponents of G−U −S, we may get one from two or three omponents when leaving u out from
U . One an easily hek that the sum in (4.4) belonging to the omponents of G − U − S mayinrease only by one in eah ase while the size of U always dereases by one. That means that
τ(U − u, S) ≤ τ(U,S).The observations above imply that if U and S attain the minimum in (4.4) and the graph is sububi,then we an make U empty by trimming its nodes one by one so that the value τ(U,S) does not inrease.At the end, we get an independent set S for whih τ ′(S) = τ(U,S), and we are done.Now we turn to the min-max formula haraterizing the maximum size of a square-free 2-mathing.Let G be a sububi graph, let S be an independent subset of V , and take a set C of node-disjoint yles

C1, . . . , Cq of length four. We de�ne the C-omponents of G− S as follows.De�nition 4.7.3 (C-omponent). We say that u, v ∈ V \ S are in the same C-omponent of G − S ifand only if one of the followings hold:
• u and v are in the same omponent of G− S, or
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• u ∈ V (T1), v ∈ V (T2) (where T1 and T2 are omponents of G − S), and there is a yle C =

(v1, v2, v3, v4) ∈ C suh that v1 ∈ V (T1), v3 ∈ V (T2), v2, v4 ∈ S.We say that C = (v1, v2, v3, v4) ∈ C �ts a C-omponent T if v1, v3 ∈ V (T ) and v2, v4 ∈ S.In other words, a C-omponent is the union of some omponents of G − S that are onneted withyles from C in a speial on�guration. Using this de�nition, we an formalize our result.Theorem 4.7.4. Let G = (V,E) be a sububi graph and let C be a maximal set of node-disjoint ylesof length four. The maximum size of a square-free 2-mathing in G is equal to the minimum value of
τG(S) = |V | − |S|+

∑

T

⌊12 (|E(T, S)| − |CT |)⌋ − |K|, (4.6)where S is an independent subset of V , T ranges over the C-omponents of G− S, CT ⊆ C denotes theset of yles �tting T , and K is the set of K4's in G.Seemingly, the minimum value of (4.6) also depends on the hoie of C. The theorem implies that wean anyhow take node-disjoint yles maximally, the minimum value of τG(S) will always be the same,namely, the maximum size of a square-free 2-mathing.Proof. As a K4 forms a omponent of G, �rst we handle suh a omponent separately. Let K ∈ K be a
K4-subgraph of G. For an independent set S ⊆ V , |S ∩K| = 0 or 1 by the de�nition of independene,and in both ases, |S∩K| = ⌊12(|E(K−S, S)|−|CK−S |)⌋. Thus, a square-free 2-mathing M of maximumsize satis�es that

|M ∩E(K)| = 3 = |K| − |S ∩K|+ ⌊12 (|E(K − S, S)| − |CK−S|)⌋ − 1,and hene it su�es to onsider the ase when G has no K4 as a subgraph.First we show that the maximum is not more than the minimum. Let M be a square-free 2-mathingand take an independent subset S of V . We laim that for eah C-omponent T of G− S, the numberof edges in M spanned by V (T ) ∪ S is at most |V (T )|+ ⌊12(|E(T, S)| − |CT |)⌋. Indeed,
2|M ∩ E(T + S)| = 2|M ∩ E(T )| + 2|M ∩ E(T, S)|

≤ 2|M ∩ E(T )| + |M ∩ E(T, S)|+ |E(T, S)| − |CT |
≤ 2|V (T )|+ |E(T, S)| − |CT |.Here, T + S denotes the graph indued by V (T ) ∪ S. Hene we have

|M | ≤
∑

T

(|V (T )|+ ⌊12(|E(T, S)| − |CT |)⌋)

= |V | − |S|+
∑

T

⌊12(|E(T, S)| − |CT |)⌋.Now we turn to the reverse inequality. Aording to the above mentioned, we may assume that Gdoes not ontain a K4. Let C = {C1, . . . , Cq} and let G◦ = (V ◦, E◦) denote the graph obtained from
G = (V,E) by shrinking C1, C2, . . . , Cq . By Theorem 4.7.2, the maximum size of a 2-mathing in G◦ isequal to the minimum value of

τ ′G◦(S◦) = |V ◦| − |S◦|+
∑

T ◦

⌊12 |E◦(T ◦, S◦)|⌋. (4.7)



62 4. Square-free 2-mathingsFrom now let S◦ ⊆ V ◦ be an independent set attaining the minimum in (4.7). In Setion 4.3, wehave already shown that the maximum size of a square-free 2-mathing in G is equal to τ ′G◦(S◦) + 2q.So we only have to �nd an independent subset S of V suh that τG(S) = τ ′G◦(S◦) + 2q.Let S denote the set of nodes in V that orresponds to S◦. Sine no self-loops are inident to nodesin S◦ by the de�nition of an independent set, S is obviously independent. We laim that τG(S) =

τ ′G◦(S◦) + 2q. To see this, we will blow bak the yles one by one and show that (4.7) inreases by twoat eah step. Assume that some of the yles are already blown bak, and G′ and S′ are the atual graphand an independent set, while G′′ and S′′ are those arising after blowing bak the next square-edge. Wealso use the notation C′ and C′′ for the set of yles already blown bak.If the edge has both of its end-nodes in V ′ \ S′ then |V ′′| = |V ′| + 2, |S′′| = |S′| and the set ofedges going between S′ and V ′ \S′ does not hange. Hene τG′′(S′′) = τG′(S′)+2. Now assume that thesquare-edge has one of its end-nodes in S′ and the other in T ′ where T ′ is a C′-omponent of G′ − S′.Then we have |V ′′| = |V ′|+ 2, |S′′| = |S′|+ 1, and |E(T ′′, S′′)| − |C′′T ′′ | = |E(T ′, S′)| − |C′T ′ |+ 2. Hene
τG′′(S′′) = τG′(S′) + 2 again, and we are done.Remark 4.7.5. It is easy to see that both an algorithm and a min-max theorem an be presented inthe slightly more general ase when a list of forbidden squares is given in the graph. That is, if we denoteby L the list, we are looking for a maximum L-free 2-mathing M where L-free means that M ontainsat most three edges from eah square in L. The only di�erene is that we have to take node-disjointyles of length four maximally from L and only shrink these yles.By using the min-max result, we an prove a speial ase of a onjeture of Jordán appeared in [79℄.To desribe the onjeture, �rst we give some de�nitions.We all an ordered pair L = (Z,P) a lump of G if Z is a ut of size k − 1 and P is a partition of
V \Z suh that no edge of G joins two distint member of P. A lump L overs a pair of nodes u, v if
u and v belong to distint members of P. A bush B is a set of lumps suh that eah pair of nodes isovered by at most two of them. A bush B overs a pair of nodes if it ontains a lump overing them.Two bushes B1 and B2 are disjoint if no pair of nodes is overed by both of them. Let

σ(B) = ⌈12
∑

(Z,P)∈B

(|P| − 1)⌉.It is easy to see that in order to make G k-onneted, one must add a set of at least ∑B∈D σ(B) edgesto G for any olletion D of disjoint bushes.Conjeture 4.7.6 (Jordán). Let G be a (k − 1)-onneted graph. Then the minimum number of edgesthat must be added to G to make it k-onneted is equal to the maximum value of ∑B∈D σ(B), wherethe maximum is taken over all sets of pairwise disjoint bushes D of G.The onjeture an be easily veri�ed for k = n− 1 and n− 2. Now we show how it follows from ourmin-max result when k = n− 3.Theorem 4.7.7. Let G be an (n − 4)-onneted graph. Then the minimum number of edges that mustbe added to G to make it (n − 3)-onneted is equal to the maximum value of ∑B∈D σ(B), where themaximum is taken over all sets of pairwise disjoint bushes D of G.



4.7. A min-max formula 63Proof. Obviously, the maximum is at most the minimum. We prove the reverse inequality. Let Ḡ = (V, Ē)be the omplement of the graph, whih is a sububi graph. We have already seen that a graph is
(n − 3)-onneted if and only if its omplement is a square-free 2-mathing. Take a maximal familyof node-disjoint yles C1, . . . , Cq of length four in Ḡ. However, we know, by the min-max result, thatthe minimum number of edges that must be added to G to make it (n − 3)-onneted is equal to themaximum value of

|Ē| − (|V | − |S|+
∑

T

⌊12(|Ē(T, S)| − |CT |)⌋ − |K|), (4.8)where S is an independent subset of V in Ḡ, T ranges over the C-omponents of Ḡ − S, and K is theset of K4's of Ḡ. Assume that S attains the minimum in (4.8). Let T1, . . . , Tt be the C-omponents of
Ḡ− S interseting no K4. We will de�ne a set of disjoint bushes D of G suh that

∑

B∈D

σ(B) ≥ |Ē| − (|V | − |S|+
∑

T

⌊12 (|Ē(T, S)| − |CT |)⌋ − |K|), (4.9)whih would learly prove the theorem.For i = 1, . . . , t, let Bi be the set of the following lumps:
• for v ∈ Ti with dḠ(v) = 3, let L be the star of v, namely L = (Z,P) where Z = V \ (NḠ(v)∪{v})and P = {{v}, NḠ(v)};
• for a yle C = (v1, v2, v3, v4) ∈ C �tting Ti, let L = (Z,P) be a lump suh that Z = V \ V (C)and P = {{v1, v3}, {v2, v4}}.Here NG(v) is the set of nodes adjaent to v in G.Clearly, these pairs are lumps in G. Moreover, eah pair of nodes is overed by at most two of them.Hene the Bi's form a set D of pairwise disjoint bushes of G. We have

σ(Bi) = ⌈12
∑

(Z,P)∈Bi

(|P| − 1)⌉

= ⌈12 (|{v ∈ V (Ti) : dḠ(v) = 3}|+ |CTi
|)⌉

≥ ⌈12 (
∑

v∈Ti

(dḠ(v)− 2) + |CTi
|)⌉

= ⌈12 (2|Ē(Ti)|+ |Ē(Ti, S)| − 2|V (Ti)|+ |CTi
|)⌉

= |Ē(Ti)| − |V (Ti)|+ ⌈12(|Ē(Ti, S)|+ |CTi
|)⌉

= |Ē(Ti + S)| − |V (Ti)| − ⌊12 (|Ē(Ti, S)| − |CTi
|)⌋Note that for a subgraph T of Ḡ = (V, Ē), Ē(T ) is the set of edges of T .For T ∈ K, the bush BT will ontain a single lump twie. Namely, if V (T ) = {v1, v2, v3, v4}, then

L = (Z,P) is de�ned by Z = V \ V (T ) and P = {{v1}, {v2}, {v3}, {v4}}. Clearly, σ(BT ) = 3. Bysumming these values over the bushes de�ned above we get
∑

B∈D

σ(B) ≥
t
∑

i=1

(|Ē(Ti + S)| − |V (Ti)| − ⌊12(|Ē(Ti, S)| − |CTi
|)⌋) + 3|K|

=
∑

T

(|Ē(T + S)| − |V (T )| − ⌊12 (|Ē(T, S)| − |CT |)⌋) + |K|

= |Ē| − (|V | − |S|+
∑

T

⌊12 (|Ē(T, S)| − |CT |)⌋ − |K|),



64 4. Square-free 2-mathingswhere T ranges over the C-omponents of G − S and the seond equality follows from |Ē(T + S)| =
6, |V (T )| = 4 if T ∈ K and |Ē(T +S)| = 6, |V (T )| = 3, |Ē(T, S)| = 3 if T + v ∈ K for some v ∈ S.



Chapter 5
Kt,t- and Kt+1-free t-mathings

Let K be a list of forbidden Kt,t and Kt+1 subgraphs where t ≥ 2 is assumed throughout the hapter.For disjoint subsets X,Y of V we denote by K[X] and K[X,Y ] the members of K ontained in X andhaving edges only between X and Y , respetively. That is, K[X,Y ] stands for forbidden Kt,t's whoseolour lasses are subsets of X and Y . Reall that VK and EK denote the node-set and edge-set of theforbidden graph K ∈ K, respetively.5.1 Main theoremBefore stating our theorem, let us reall the well-known min-max formula on the maximum size ofa b-mathing (see e.g. [114, Vol A, p. 562.℄).Theorem 5.1.1 (Maximum size of a b-mathing). Let G = (V,E) be a graph with an upper bound
b : V → Z+. The maximum size of a b-mathing is equal to the minimum value of

b(U) + |E[W ]|+
∑

T

⌊

1
2(b(T ) + |E[T,W ]|)

⌋ (5.1)where U and W are disjoint subsets of V , and T ranges over the onneted omponents of G−U −W .Let us now formulate our theorem. There are minor tehnial di�ulties when t = 2 that do notour for larger t. In order to make both the formulation and the proof simpler it is worth introduing thefollowing de�nitions. We refer to forbidden K2,2 and K3 subgraphs as squares and triangles, respetively.De�nition 5.1.2. For t = 2, we all a omplete subgraph on four nodes square-full if it ontains threeforbidden squares.Note that, by assumption (1.10), every square-full subgraph is a onneted omponent of G. Wedenote the number of square-full omponents of G by S(G) for t = 2, and de�ne S(G) = 0 for t > 2. Itis easy to see that a K-free b-mathing ontains at most three edges from eah square-full omponentof G. The following de�nition will be used in the proof of the theorem.De�nition 5.1.3. For t = 2, a forbidden triangle is alled square-overed if its node set is ontainedin the node set of a forbidden square, otherwise unovered.The theorem is as follows. 65



66 5. Kt,t- and Kt+1-free t-mathingsTheorem 5.1.4. Let G = (V,E) be a graph with an upper bound b : V → Z+ and K be a list of forbidden
Kt,t and Kt+1 subgraphs of G so that (1.8), (1.9) and (1.10) hold. Then the maximum size of a K-free
b-mathing is equal to the minimum value of

b(U) + |E[W ]| − |K̇[W ]|+
∑

T∈P

⌊

1
2(b(T ) + |E[T,W ]| − |K̇[T,W ]|)

⌋

− S(G) (5.2)where U and W are disjoint subsets of V , P is a partition of the onneted omponents of G− U −Wand K̇ ⊆ K is a olletion of node-disjoint forbidden subgraphs.For �xed U,W,P and K̇ the value of (5.2) is denoted by τ(U,W,P, K̇). It is easy to see that theontribution of a square-full omponent to (5.2) is always 3 and a maximum K-free b-mathing ontainsexatly 3 of its edges. Hene we may ount these omponents of G separately, so the following theoremimmediately implies the general one.Theorem 5.1.5. Let G = (V,E) be a graph with an upper bound b : V → Z+ and K be a list of forbidden
Kt,t and Kt+1 subgraphs of G so that (1.8), (1.9) and (1.10) hold. Furthermore, if t = 2, assume that Ghas no square-full omponent. Then the maximum size of a K-free b-mathing is equal to the minimumvalue of

b(U) + |E[W ]| − |K̇[W ]|+
∑

T∈P

⌊

1
2(b(T ) + |E[T,W ]| − |K̇[T,W ]|)

⌋ (5.3)where U and W are disjoint subsets of V , P is a partition of the onneted omponents of G− U −Wand K̇ ⊆ K is a olletion of node-disjoint forbidden subgraphs.Proof of max ≤ min in Theorem 5.1.5. Let M be a K-free b-mathing. Then learly |M ∩ (E[U ] ∪
E[U, V \ U ])| ≤ b(U) and |M ∩ E[W ]| ≤ |E[W ]| − |K̇[W ]|. Moreover, for eah T ∈ P we have

2 · |M ∩ (E[T ] ∪ E[T,W ])| = 2 · |M ∩ E[T ]|+ 2 · |M ∩ E[T,W ]|
≤ 2 · |M ∩ E[T ]|+ |M ∩ E[T,W ]|
+ |E[T,W ]| − |K̇[T,W ]|
≤ b(T ) + |E[T,W ]| − |K̇[T,W ]|.These together prove the inequality.

5.2 ShrinkingIn the proof of max ≥ min we use two shrinking operations to get rid of the Kt,t and Kt+1 subgraphsin K.De�nition 5.2.1 (Shrinking a Kt,t subgraph). Let K be a Kt,t subgraph of G = (V,E) with olourlasses KA and KB . Shrinking K in G onsists of the following operations (see Figure 5.1:
• identify the nodes in KA, and denote the orresponding node by ka,
• identify the nodes in KB , and denote the orresponding node by kb, and



5.2. Shrinking 67
KB

KA ka

kb

t− 1 edges
Figure 5.1: Shrinking a Kt,t subgraph

VK

k

⌊ t+1
2 ⌋ − 1 loops

Figure 5.2: Shrinking a Kt+1 subgraph
• replae the edges between KA and KB with t − 1 parallel edges between ka and kb (we all theset of these edges a shrunk bundle between ka and kb).When identifying the nodes in KA and KB , the edges (and also loops) spanned by KA and KB arereplaed by loops on ka and kb, respetively. Eah edge e ∈ E \EK is denoted by e again after shrinkinga Kt,t subgraph and is alled the image of the original edge. By abuse of notation, for an edge set

F ⊆ E \EK , the orresponding subset of edges in the ontrated graph is also denoted by F . Hene foran edge set F ⊆ E \ EK we have hF (KA) = dF (ka), hF (KB) = dF (kb).De�nition 5.2.2 (Shrinking a Kt+1 subgraph). Let K be a Kt+1 subgraph of G = (V,E). Shrinking
K in G onsists of the following operations (see Figure 5.2:
• identify the nodes in VK , and denote the orresponding node by k,
• replae the edges in EK by ⌊ t+1

2

⌋

− 1 loops on the new node k.Again, for an edge set F ⊆ E \ EK , the orresponding subset of edges in the ontrated graph isalso denoted by F .We usually denote the graph obtained by applying one of the shrinking operations by G◦ = (V ◦, E◦).Throughout the setion, the graph G, the funtion b and the list K of forbidden subgraphs are supposedto satisfy the onditions of Theorem 5.1.5. It is easy to see, by using (1.10), that two members of K areedge-disjoint if and only if they are also node-disjoint, hene we simply all suh pairs disjoint.



68 5. Kt,t- and Kt+1-free t-mathingsThe following two lemmas give the onnetion between the maximum size of a K-free b-mathing in
G and a K◦-free b◦-mathing in G◦ where b◦ is a properly de�ned upper bound on V ◦ and K◦ is a listof forbidden subgraphs in the ontrated graph.Lemma 5.2.3. Let G◦ = (V ◦, E◦) be the graph obtained by shrinking a Kt,t subgraph K. Let K◦ bethe set of forbidden subgraphs disjoint from K and de�ne b◦ as b◦(v) = b(v) for v ∈ V \ VK and
b◦(ka) = b◦(kb) = t. Then the di�erene between the maximum size of a K-free b-mathing in G and themaximum size of a K◦-free b◦-mathing in G◦ is exatly t2 − t.Lemma 5.2.4. Let G◦ = (V ◦, E◦) be the graph obtained by shrinking a Kt+1 subgraph K ∈ K where
K is unovered if t = 2. Let K◦ be the set of forbidden subgraphs disjoint from K and de�ne b◦ as
b◦(v) = b(v) for v ∈ V \ VK , b◦(k) = t if t is even and b◦(k) = t + 1 if t is odd. Then the di�erenebetween the maximum size of a K-free b-mathing in G and the maximum size of a K◦-free b◦-mathingin G◦ is exatly ⌊ t22 ⌋.The proof of Lemma 5.2.3 is based on the following laim.Claim 5.2.5. Assume that K ∈ K is a Kt,t subgraph with olour lasses KA and KB and M ′ is a
K-free b-mathing of G − EK . Then M ′ an be extended to a K-free b-mathing M of G with |M | =
|M ′|+ t2 −max{1, hM ′(KA), hM ′(KB)}.Proof. First we onsider the ase t ≥ 3. Let P be a minimum size mathing of K overing eah node
v ∈ VK with dM ′(v) = 1 (note that dM ′(v) ≤ 1 for v ∈ VK as d(v) ≤ t + 1). If there is no suh node,then let P onsist of an arbitrary edge in EK . We laim that M = M ′ ∪ (EK \ P ) satis�es the aboveonditions. Indeed, M is a b-mathing and |M ∩ EK | = t2 −max{1, hM ′(KA), hM ′(KB)} learly holds,so we only have to verify that it is also K-free.Assume that there is a forbidden Kt,t subgraph K ′ in M with olour lasses K ′

A,K
′
B . EK ′ mustontain an edge uv ∈ EK ∩M with u ∈ K ′

A and v ∈ K ′
B. By symmetry, we may assume that u ∈ KA.As b(u) = t, ΓM (u) = K ′

B and also |ΓM (u) ∩KB | ≥ t− 1. Hene |K ′
B ∩KB | ≥ t− 1. Consider a node

z ∈ KA. Sine dM (z,KB) ≥ t − 1 and t ≥ 3, we get dM (z,K ′
B) > 0, thus KA ⊆ ΓM(K ′

B). Beause of
ΓM (K ′

B) = K ′
A, this gives KA = K ′

A. KB = K ′
B follows similarly, giving a ontradition.If there is a forbidden Kt+1 subgraph K ′ in M , then EK ′ must ontain an edge uv ∈ EK ∩ M ,

u ∈ KA. As above, |VK ′ ∩KB | ≥ t− 1. Using t ≥ 3 again, KA ⊆ ΓM (VK ′ ∩KB) ⊆ VK ′. But KA ⊆ VK ′is a ontradition sine t+ 1 = |VK ′ | ≥ |VK ′ ∩KA|+ |VK ′ ∩KB | ≥ t+ t− 1 = 2t− 1 > t+ 1.Now let t = 2 and KA = {v1, v3}, KB = {v2, v4}. If max{hM ′(KA), hM ′(KB)} ≤ 1, then we mayassume by symmetry that dM ′(v1) = dM ′(v2) = 0. Clearly, M = M ′ ∪ {v1v2, v1v4, v2v3} is a K-free2-mathing. If max{hM ′(KA), hM ′(KB)} = 2, we laim that at least one of M1 = M ′ ∪{v1v2, v3v4} and
M2 = M ′ ∪ {v1v4, v2v3} is K-free. Assume M1 ontains a forbidden square or triangle K ′; by symmetryassume it ontains the edge v1v2. If K ′ ontains v3v4 as well, then K ′ is the square v1v3v4v2. Otherwise,it onsists of v1v2 and a path L of length 2 or 3 between v1 and v2, not ontaining v3 and v4. In the�rst ase, the only forbidden subgraph possibly ontained in M2 is the square v1v3v2v4, implying that
{v1, v2, v3, v4} is a square-full omponent, a ontradition. In the latter ase, it is easy to see that M2annot ontain a forbidden subgraph.



5.2. Shrinking 69Proof of Lemma 5.2.3. First we show that if M is a K-free b-mathing in G then there is a K◦-free
b◦-mathing M◦ in G◦ with |M◦| ≥ |M | − (t2 − t). Let M ′ = M \ EK . Clearly, |M ∩ EK | ≤ t2 −
max{1, hM ′(KA), hM ′(KB)}. In G◦, let M◦ be the union of M ′ and t−max{1, dM ′(ka), dM ′(kb)} paralleledges from the shrunk bundle between ka and kb. Is is easy to see that M◦ is a K◦-free b◦-mathing in
G◦ with |M◦| ≥ |M | − (t2 − t).The proof is ompleted by showing that for an arbitrary K◦-free b◦-mathing M◦ in G◦ there existsa K-free b-mathing M in G with |M | ≥ |M◦| + (t2 − t). Let H denote the set of parallel edges in theshrunk bundle between ka and kb, and let M ′ = M◦ \H. Now |M◦ ∩H| ≤ t−max{1, dM ′(ka), dM ′(kb)}and, by Claim 5.2.5, M ′ may be extended to a K-free b-mathing in G with |M ∩ EK | = t2 −
max{1, hM ′(KA), hM ′(KB)}, that is

|M | = |M◦| − |M◦ ∩H|+ |M ∩ EK | ≥ |M◦| − (t−max{1, dM ′(ka), dM ′(kb)})
+ (t2 −max{1, hM ′(KA), hM ′(KB)}) ≥ |M◦|+ (t2 − t).

Lemma 5.2.4 an be proved in a similar way by using the following laim.Claim 5.2.6. Assume that K ∈ K is a Kt+1 subgraph and M ′ is a K-free b-mathing of G − EK . If
t = 2, then assume that K is unovered. Then M ′ an be extended to obtain a K-free b-mathing M of
G with |M | = |M ′|+

(

t+1
2

)

−
⌈

max{1,hM′(VK )}
2

⌉.Proof. Let P be a minimum size subgraph of K overing eah node v ∈ VK with dM ′(v) = 1 (so Pis a mathing or a mathing and one more edge in EK). If there is no suh node, then let P onsistof an arbitrary edge in EK . For t = 2 and 3, we will hoose P in a spei� way, as given later in theproof. We show that M = M ′ ∪ (EK \ P ) satis�es the above onditions. Indeed, M is a b-mathing and
|M ∩ EK | =

(

t+1
2

)

−
⌈

max{1,hM′(K)}
2

⌉ learly holds, so we only have to show that it is also K-free.Assume that there is a forbidden Kt+1 subgraph K ′ in M . EK ′ must ontain an edge uv ∈ EK ∩M .By the minimal hoie of P at least one of |ΓM (u) ∩ VK | ≥ t− 1 and |ΓM (v) ∩ VK | ≥ t− 1 is satis�edwhih implies |VK ′ ∩ VK | ≥ t − 1. For t ≥ 3 this immediately implies VK ⊆ ΓM(VK ′ ∩ VK) ⊆ VK ′ , aontradition.If t = 2, then |VK ′∩VK | ≥ 1 does not imply VK ⊆ VK ′ and an improper hoie of P may enable M toontain a forbidden K3. The only suh ase is when hM ′(VK) = 3, VK = {v1, v2, v3}, VK ′ = {v2, v3, v4},
v2v4, v3v4 ∈ M ′ and P = {v1v2, v1v3} (Figure 5.3). In this ase, we may leave the edge inident to v1from M ′ and then P = {v2v3} is a good hoie. Indeed, the only problem ould be that v1v2v3v4 is aforbidden square, ontraditing K being unovered.Otherwise hM ′(VK) ≤ 2 implies |P | ≤ 1. Hene at least one of |ΓM (u)∩VK | = 2 and |ΓM (v)∩VK | = 2is satis�ed meaning K ′ = K, a ontradition again.Now assume that there is a forbidden Kt,t subgraph K ′ in M with olour lasses K ′

A,K
′
B . Thesame argument gives a ontradition for t ≥ 4. However, in ase of t = 3, hoosing P arbitrarilymay enable M to ontain a forbidden K3,3 in the following single on�guration: VK = {v1, v2, v3, v4},

K ′
A = {v1, v2, x}, K ′

B = {v3, v4, y}, xv3, xv4, yv1, yv2, xy ∈ M ′ and P = {v1v2, v3v4} (Figure 5.4). Inthis ase, P = {v1v4, v2v3} is a good hoie.



70 5. Kt,t- and Kt+1-free t-mathings
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: edges in M: edges in PFigure 5.3: Choie of P for t = 2 in the proof of Claim 5.2.6
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Figure 5.4: Choie of P for t = 3 in the proof of Claim 5.2.6
v1

v3

v2

v4

v5 : edges in M: edges in P

v1

v3

v2

v4

v5 : edges in M: edges in PFigure 5.5: Choie of P for t = 2 in the proof of Claim 5.2.6Finally, for t = 2 no forbidden square appears if hM ′(K) ≤ 2 as otherwise K would be a square-overed triangle. If hM ′(K) = 3, then suh a square K ′ may appear only if VK = {v1, v2, v3}, VK ′ =

{v2, v3, v4, v5}, v3v4, v4v5, v5v2 ∈M ′, P = {v1v2, v1v3} (v1 6= v4, v5 as K is unovered). In this ase both
P = {v1v2, v2v3} and P = {v1v3, v2v3} give a proper M (Figure 5.5).Proof of Lemma 5.2.4. First we show that if M is a K-free b-mathing in G then there is a K◦-free
b◦-mathing M◦ in G◦ with |M◦| ≥ |M | −

⌊

t2

2

⌋. Let M ′ = M \ EK . Clearly, |M ∩ EK | ≤
(

t+1
2

)

−
⌈

max{1,hM′ (VK)}
2

⌉. In G◦, let M◦ be the union of M ′ and ⌊ t−max{1,dM′ (k)}
2

⌋ or ⌊ t+1−max{1,dM′ (k)}
2

⌋ loopson k depending on whether t is even or not, respetively. Is is easy to see thatM◦ is a K◦-free b◦-mathingin G◦ with |M◦| ≥ |M | −
⌊

t2

2

⌋.The proof is ompleted by showing that for an arbitrary K◦-free b◦-mathing M◦ in G◦ there existsa K-free b-mathing M in G with |M | ≥ |M◦|+
⌊

t2

2

⌋. Let H denote the set of loops on k obtained when



5.3. Proof of Theorem 5.1.5 71shrinking K, and let M ′ = M◦ \ H. Now |M◦ ∩ H| ≤
⌊

t−max{1,dM′ (k)}
2

⌋ if t is even and |M◦ ∩ H| ≤
⌊

t+1−max{1,dM′ (k)}
2

⌋ if t is odd. By Claim 5.2.5,M ′ an be extended modi�ed as to get a K-free b-mathingin G with |M ∩ EK | =
(

t+1
2

)

−
⌈

max{1,hM′(VK)}
2

⌉, that is
|M | = |M◦| − |M◦ ∩H|+ |M ∩ EK | ≥ |M◦| −

⌊

t−max{1,dM′ (k)}
2

⌋

+
(

t+1
2

)

−
⌈

max{1,hM′ (VK)}
2

⌉

≥ |M◦|+
⌊

t2

2

⌋if t is even and
|M | = |M◦| − |M◦ ∩H|+ |M ∩ EK | ≥ |M◦| −

⌊

t+1−max{1,dM′ (k)}
2

⌋

+
(

t+1
2

)

−
⌈

max{1,hM′ (VK)}
2

⌉

≥ |M◦|+
⌊

t2

2

⌋if t is odd.5.3 Proof of Theorem 5.1.5We prove max ≥ min by indution on |K|. For K = ∅, this is simply a onsequene of Theorem 5.1.1.Assume now that K 6= ∅ and let K be a forbidden subgraph suh that K is unovered if t = 2. Let
G◦ = (V ◦, E◦) denote the graph obtained by shrinking K, let b◦ be de�ned as in Lemma 5.2.3 or 5.2.4depending on whether K is a Kt,t or a Kt+1. We denote by K◦ the list of forbidden subgraphs disjointfrom K.By indution, the maximum size of a K◦-free b◦-mathing in G◦ is equal to the minimum value of
τ(U◦,W ◦,P◦, K̇◦). Let us hoose an optimal U◦,W ◦,P◦, K̇◦ so that |U◦| is minimal. The following laimgives a useful property of U◦.Claim 5.3.1. Assume that v ∈ U is suh that d(v,W ) + |Γ(v) ∩ (V \W )| ≤ b(v) + 1. Then τ(U −
v,W,P ′, K̇) ≤ τ(U,W,P, K̇) where P ′ is obtained from P by replaing its members inident to v by theirunion plus v.Proof. By removing v from U , b(U) dereases by b(v). |E[W ]| − |K̇[W ]| remains unhanged, while thebound on d(v,W ) + |Γ(v) ∩ (V \W )| implies that the inrement in the sum over the omponents of
G− U −W is at most b(v).Case 1: K is a Kt,t with olour lasses KA and KB.By Lemma 5.2.3, the di�erene between the maximum size of a K-free b-mathing in G and themaximum size of a K◦-free b◦-mathing in G◦ is exatly t2 − t. We will de�ne U,W,P and K̇ suh that

τ(U,W,P, K̇) = τ(U◦,W ◦,P◦, K̇◦) + t2 − t. (5.4)The shrinking replaes KA and KB by two nodes ka and kb with t− 1 parallel edges between them.Let U,W and P denote the pre-images of U◦,W ◦,P◦ in G, respetively and let K̇ = K̇◦ ∪ {K}. By(1.10), dG◦−kb(ka), dG◦−ka(kb) ≤ t. Sine b◦(ka) = b◦(kb) = t, Claim 5.3.1 and the minimal hoie of
|U◦| implies that if ka ∈ U◦, then kb ∈W ◦.Hene we have the following ases (T ◦ denotes a member of P◦). In eah ase we are only onsideringthose terms in τ(U◦,W ◦,P◦, K̇◦) that hange when taking τ(U,W,P, K̇) instead.
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Shrinking

τ(U◦,W ◦,P◦, K̇◦) = 5τ(U,W,P, K̇) = 5 + 32 − 3 = 11Figure 5.6: Extending M◦

• ka ∈ U◦, kb ∈W ◦: b(U) = b◦(U◦) + t2 − t.
• ka, kb ∈W ◦: |E[W ]| = |E◦[W ◦]|+ t2 − t+ 1 and |K̇[W ]| = |K̇◦[W ◦]|+ 1.
• ka ∈W ◦, kb ∈ T ◦: |E[T,W ]| = |E◦[T ◦,W ◦]|+ t2 − t+ 1, b(T ) = b◦(T ◦) + t2 − t and |K̇[T,W ]| =
|K̇◦[T ◦,W ◦]|+ 1 (see Figure 6.9 for an example).

• ka ∈ T ◦, kb ∈W ◦: similar to the previous ase.
• ka, kb ∈ T ◦: b(T ) = b◦(T ◦) + 2t2 − 2t.(5.4) is satis�ed in eah of the above ases, hene we are done. Note that in the �rst and the lastase we may leave out K from K̇ as it is not ounted in any term.Case 2: K is a Kt+1.By Lemma 5.2.4, the di�erene between the maximum size of a K-free b-mathing in G and themaximum size of a K◦-free b◦-mathing in G◦ is ⌊ t22 ⌋. We show that for the pre-images U,W and P of

U◦,W ◦ and P◦ with K̇ = K̇◦ ∪ {K} satisfy
τ(U,W,P, K̇) = τ(U◦,W ◦,P◦, K̇◦) +

⌊

t2

2

⌋

. (5.5)After shrinking K = (VK , EK) we get a new node k with ⌊ t+1
2

⌋

− 1 loops on it. (1.10) implies thatthere are at most t+ 1 non-loop edges inident to k. Sine b◦(k) ≥ t, Claim 5.3.1 implies k 6∈ U . Henewe have the following two ases (T ◦ denotes a member of P◦).
• k ∈W ◦: |E[W ]| = |E◦[W ◦]|+

(

t+1
2

)

−
⌊

t+1
2

⌋

+ 1 and |K̇[W ]| = |K̇◦[W ◦]|+ 1.
• k ∈ T ◦: b(T ) = b◦(T ◦) + t2 if t is even and b(T ) = b◦(T ◦) + t2 − 1 for an odd t.



5.4. Algorithm 73(5.5) is satis�ed in both ases, hene we are done. We may also leave out K from K̇ in the seondase as it is not ounted in any term.5.4 AlgorithmIn this setion we show how the proof of Theorem 5.1.5 immediately yields an algorithm for �ndinga maximum K-free b-mathing in strongly polynomial time. In suh problems, an important questionfrom an algorithmi point of view is how K is represented. For example, in the K-free b-mathingproblem for bipartite graphs solved by Pap in [110℄, the set of exluded subgraphs may be exponentiallylarge. Therefore Pap assumes that K is given by a membership orale, that is, a subroutine is givenfor determining whether a given subgraph is a member of K. However, with suh an orale there is nogeneral method for determining whether K = ∅. Fortunately, we do not have to takle suh problems:by the next laim, we may assume that K is given expliitly, as its size is linear in n. We use n = |V |,
m = |E| for the number of nodes and edges of the graph, respetively.Claim 5.4.1. If the graph G = (V,E) satis�es (1.8) and (1.10), then the total number of Kt,t and Kt+1subgraphs is bounded by (t+3)n

2 .Proof. Assume that v ∈ V is ontained in a forbidden subgraph and so dG(v) = t + 1. If we seletan edge inident to v, the remaining t edges may be ontained in at most one Kt+1 subgraph henethe number of Kt+1's ontaining v is at most t + 1. However, these t edges also determine one of theolour lasses of those Kt,t's ontaining them. If we pik a node v′ from this olour lass (implying
dG(v

′) = t + 1), pik an edge inident to v′ (but not to v), then the remaining t edges, if they do so,exatly determine the other olour lass of a Kt,t subgraph. Therefore the number of Kt,t subgraphsontaining v is bounded by (t+1)t = t2+t. Hene the total number of forbiddenKt,t andKt+1 subgraphsis at most (t2+t)n
2t + (t+1)n

t+1 = (t+3)n
2 .Now we turn to the algorithm. First we hoose an inlusionwise maximal subset H = {H1, . . . ,Hk}of disjoint forbidden subgraphs greedily. For t = 2, let us always hoose squares as long as possible andthen go on with triangles. This an be done in O(t3n) time as follows. Maintain an array of size mthat enodes for eah edge whether it is used in one of the seleted forbidden subgraphs or not. Wheninreasing H, one only has to hek whether any of the edges of the examined forbidden subgraph isalready used, whih takes O(t2) time. This and Claim 5.4.1 together give an O(t3n) bound.Let us shrink the members of H simultaneously (this an be easily done sine they are disjoint),resulting in a graph G′ = (V ′, E′) with a bound b′ : V ′ → Z+ and no forbidden subgraphs sine H wasmaximal. One an �nd a maximal b′-mathing M ′ in G′ in O(|V ′||E′| log |V ′|) = O(nm logm) time as in[50℄. Using the onstrutions desribed in Lemmas 5.2.3 and 5.2.4 for Hk, ...,H1, this an be modi�edinto a maximal K-free b-mathing M . Note that, for t = 2, Hi is always unovered in the atual graphby the seletion rule. A dual optimal solution U,W,P, K̇ an be onstruted simultaneously as in theproof of Theorem 5.1.5. The best time bound of the shrinking and extension steps may depend on thedata struture used and the representation of the graph. In any ase, one suh step may be performedin O(m) time and |H| = O(n), hene the total running time is O(t3n+ nm logm).
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Chapter 6Polyhedral desriptions
6.1 Main resultsLet G = (V,E) be a graph and b : V → Z+ an upper bound on the node set suh that for any T ∈ Tand any node v of T ,

dG(v) ≤ 3, (6.1)
b(v) = 2. (6.2)These settings learly inludes and generalizes the triangle-free 2-fator and 2-mathing problems insububi graphs.In this hapter we give new proofs of Theorems 1.4.5 and 1.4.7 in a slightly more general form, basedon a newly introdued ontration operation. The proof easily extends to the polyhedral desriptionof T -free b-fators under assumptions (6.1) and (6.2). Hartvigsen and Li showed that the polyhedraldesription of T -free 2-mathings is far more ompliated, and proved their fundamental haraterizationin [63℄. We give a slight generalization of their nie result by extending our ontration tehniques.Yet giving a polyhedral desription of triangle-free (or, more generally, T -free) 2-fators and 2-mathings of arbitrary graphs is still open. One might wonder whether the desription for sububigraphs ould be a valid desription for the general ase. Unfortunately, the answer is negative as shownby the ounterexample of Figure 6.9.As the onsidered graphs may ontain parallel edges and self-loops, it may happen that two non-idential triangles share the same node-set, that is, T1 and T2 are triangles with VT1 = VT2 but ET1 6= ET2 .We all these triangles node-idential. If there exists a pair of node-idential triangles in G then, by(6.1) and (6.2), no b-fator exists.Theorem 6.1.1. Let G = (V,E), b : V → Z+ and T a olletion of triangles satisfying (6.1) and (6.2).Assume that there are no node-idential triangles in G. The T -free b-fator polytope is determined by

(i) 0 ≤ x(e) ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) = b(v) (v ∈ V ), (P7)
(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | ((K,F ) odd),
(iv) x(ET ) = 2 (T ∈ T ).Our main result is the proof of the following theorem whih gives a slight generalization of Theo-rem 1.4.7. The method we use is also inspired by Edmonds' mathing algorithm, but di�erent from thatof [63℄ and is based on a new shrinking approah. 75



76 6. Polyhedral desriptionsTheorem 6.1.2. Let G = (V,E), b : V → Z+ and T a olletion of triangles satisfying (6.1) and (6.2).The T -free b-mathing polytope is determined by
(i) 0 ≤ x(e) ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) ≤ b(v) (v ∈ V ),

(iii) x(E[K]) + x(F ) +
∑

T∈T x(ET ) ≤ ((K,F,T) odd (P8)
⌊ b(K)+|F |+3|T|

2 ⌋ tri-omb of Type 2),
(iv) x(ET ) ≤ 2 (T ∈ T ),
(v) x(ET1 ∪ ET2) ≤ 2 (T1, T2 ∈ T , VT1 = VT2).Assumption (6.1) here is essential: the theorem is false if we remove the degree bound dG(v) ≤ 3 onnodes of forbidden triangles. An example is shown in Setion 6.9.6.2 Shrinking odd pairsWe prove Theorem 1.4.2 by indution on b(V ), |V | and |E|. In the proof we use a shrinking oper-ation to get a smaller graph on whih the indution step an be applied. Note that ondition (iii) inTheorems 1.4.2 and 6.1.1 is required for odd pairs. If b(V ) is odd then (V, ∅) is an odd pair and thus(P2) and (P7) are infeasible. In the sequel we assume that b(V ) is even.De�nition 6.2.1 (Shrinking an odd pair). Shrinking an odd pair (K,F ) onsists of the followingoperations (see Figure 6.1):

• replae K by an edge pq with b◦(p) = |F | and b◦(q) = 1,
• de�ne b◦(v) = b(v) for eah v ∈ V \K,
• replae eah edge e with eu ∈ K, ev ∈ V \K by an edge pev if e ∈ F , otherwise by qev.

K V −K V −K
b◦(q) = 1

b◦(p) = |F |:: edges in δ(K) \ Fedges in FFigure 6.1: Shrinking an odd pair (K,F )We usually denote the graph obtained by shrinking an odd pair by G◦ = (V ◦, E◦). By abuse ofnotation, eah edge e ∈ δ(K) is denoted by e again after shrinking the pair and is alled the image ofthe original edge. Hene the intersetion E ∩ E◦ stands for the set of all edges not indued by K, inother words, E◦ − pq ⊆ E. Similarly, V ◦ \ {p, q} ⊆ V .



6.2. Shrinking odd pairs 77Assume that x ∈ RE satis�es (P2). An odd pair (K,F ) is alled x-tight if it satis�es (iii) withequality. When shrinking an x-tight pair, we use the notation x◦ for the image of x, namely
x◦(e) =







x(e) if e ∈ E◦ − pq,
|F | − x(F ) if e = pq.The main advantage of the shrinking operation is the following.Lemma 6.2.2. Let G = (V,E) be a graph with b : V → Z+. Assume that x ∈ RE satis�es (P2) and

(K,F ) is an x-tight pair. Then x◦ satis�es (P2) in G◦ = (V ◦, E◦) with b◦.Proof. (i) learly holds for edges di�erent from pq. Conerning pq, x◦(pq) = |F | − x(F ) ≥ 0. Thetightness of (K,F ) implies x◦(pq) = |F | − x(F ) = 1− x(δ(K) \ F ) ≤ 1.For a node v in V ◦ \ {p, q}, by the de�nition of shrinking, x◦(δ̇(v)) = x(δ̇(v)) = b(v) = b◦(v). Also,
x◦(δ̇(p)) = x(F ) + x◦(pq) = |F | = b◦(p). By the tightness of (K,F ), x◦(δ̇(q)) = x(δ(K) \ F ) + x◦(pq) =

1 = b◦(q).It only remains to show that x◦ satis�es (iii) in G◦. First, observe that -assuming b(V ) is even-
(Z,H) is an odd pair if and only if (Z̄,H) is also an odd pair. For these two pairs, ondition (iii) isidential.

(iii) immediately follows for odd pairs (Z,H) with Z ⊆ V ◦ \ {p, q} as x satis�ed (iii) in the originalproblem. By taking (Z̄,H) instead, it also holds if p, q ∈ Z. Again by possibly hanging Z to Z̄, itremains to show that (iii) is satis�ed if p ∈ Z, q 6∈ Z.If pq ∈ H, then add q to Z and delete pq from H. We have previously seen that the odd pair
(Z ′,H ′) = (Z + q,H − pq) satis�es (iii), thus

x(δ(Z) \H)− x(H) ≥ x(δ(Z ′) \H ′)− x(H ′)− x(δ(q))

≥ (1− |H ′|)− 1

= 1− |H|.If pq 6∈ H, then �rst onsider the ase when F ∩ (δ(Z) \H) 6= ∅. Let f be an edge in this set. De�ne
(Z ′,H ′) = (Z + q,H + f), whih is again an odd pair satisfying (iii). Then

x(δ(Z) \H)− x(H) ≥ x(δ(Z ′) \H ′)− x(H ′) + 2x(pq)− x(δ(q)) + 2x(f)

≥ (1− |H ′|) + 2(x(pq) + x(f))− 1

= 1− |H|+ 2(x(pq) + x(f)− 1)

≥ 1− |H|.For the last inequality, we use that x(δ(p)) = |F |, and the degree of p is |F | + 1. Hene pq and f , twoedges inident to p must have x value together at least 1.If F ∩ (δ(Z) \H) = ∅, then let F1 = F ∩H, F2 = F \H. De�ne Z ′ = Z − p, H ′ = (H \ F1) ∪ F2.
(Z ′,H ′) is odd sine b(Z ′)+ |H ′| = b(Z)+ |H|− |F |− |F1 |+ |F2| = b(Z)+ |H|− 2|F1|. As we have seen,



78 6. Polyhedral desriptionsthe pair (Z ′,H ′) satis�es (iii), so
x(δ(Z) \H)− x(H) ≥ x(δ(Z ′) \H ′)− x(H ′) + x(F2) + x(pq)− x(F1)

≥ (1− |H ′|) + x(δ̇(p))− 2x(F1)

≥ (1− |H ′|) + |F | − 2|F1|
= 1− |H|.This ompletes the proof.

6.3 Proof of Theorem 1.4.2It is easy to see that eah b-fator satis�es (i) and (ii). To show that (iii) indeed holds for a b-fator
M ⊆ E, add all equalities dM (v) = b(v) for v ∈ K. This gives

2|M ∩ E[K]|+ |M ∩ δ(K)| = b(K). (6.3)Adding the inequalities |M ∩ F | ≤ |F | and −|M ∩ (δ(K) \ F )| ≤ 0, we get 2|M ∩ E[K]| + 2|M ∩ F | ≤
b(K) + |F |. This yields |M ∩ E[K]| + |M ∩ F | ≤ ⌊12 (b(K) + |F |)⌋ = 1

2(b(K) + |F | − 1) sine (K,F ) isodd. Subtrating the double of this from (6.3), we get |M ∩ (δ(K)\F )|− |M ∩F | ≥ 1−|F |, as required.Reall that we may assume that b(V ) is even sine otherwise there exists no b-fator and the polytope(P2) is empty.It remains to show that (i), (ii) and (iii) ompletely determine the b-fator polytope, that is, any
x ∈ RE satisfying (P2) is a onvex ombination of inidene vetors of b-fators. Assume that this doesnot hold. Let us hoose x to be a vertex of the polytope desribed by (P2) not ontained in the b-fatorpolytope.We hoose this ounterexample in suh a way that (|ℓ(V )|, b(V ), |V |, |E|) is lexiographially minimal.This implies that 0 < x < 1 as edges with x(e) = 0 ould be deleted, while if x(e) = 1 we an delete
e and derease the b values on its ends by one (if e is a loop on v then derease b(v) by 2). It is easyto see that the x′ and b′ thus obtained would satisfy (i) − (iii) thus giving a smaller ounterexample,a ontradition. Also, it an be shown that, in presene of parallel edges, the total x value of paralleledges between two nodes should be stritly smaller than one.As b(v) ≥ 1 for eah v ∈ V , eah node has degree at least 2 in G, so |E| ≥ |V |. G is onneted,otherwise one of its omponents would be a smaller ounterexample. If |E| = |V |, then G is an evenyle as it implies that b ≡ 1 and b(V ) is even. By (ii), x is alternately µ and 1 − µ for some value
0 < µ < 1 on the edges of this yle, hene it is the onvex ombination of the two perfet mathings ofthe graph, a ontradition.So |E| > |V |. As x is a vertex, it satis�es |E| linearly independent onstraints among (P2) withequality. From |E| > |V |, there is a tight odd pair (K,F ) linearly independent from the equalities ofform (ii).Proposition 6.3.1. For any tight odd pair (K,F ) independent from equalities of form (ii), the shrinkingof (K,F ) results in a lexiographially smaller problem, and the same holds for (K̄, F ).



6.3. Proof of Theorem 1.4.2 79Proof. The seond part follows by omplementing K and by the observation that (K,F ) is independentfrom equalities of form (ii) if and only if (K̄, F ) does so.What we have to prove is that either (A) ℓ(K) 6= ∅, or (B) ℓ(K) = ∅ and b(K) > |F | + 1, or (C)
ℓ(K) = ∅, b(K) = |F | + 1 and |K| > 2, or (D) ℓ(K) = ∅, b(K) = |F | + 1, |K| = 2 and E[K] > 1 as
(|ℓ(V )|, b(V ), |V |, |E|) dereases only in these ases. However, we will show that either (A), (B) or (C)is satis�ed.We laim that G[K] is onneted. Indeed, assume indiretly that K = K1 ∪K2 where K1 ∩K2 = ∅and there is no edge between K1 and K2. De�ne Fi = F ∩ δ(Ki) for i = 1, 2. Then one of the pairs
(K1, F1), (K2, F2) is odd while the other is not, say (K1, F1) is odd. We have

1− |F | = x(δ(K) \ F )− x(F )

= x(δ(K1) \ F1)− x(F1) + x(δ(K2) \ F2)− x(F2)

≥ 1− |F1| − |F2|
= 1− |F |,thus we have equality everywhere. That means that x(δ(K2)\F2)−x(F2) = −|F2|, whih is only possible(by 0 < x < 1) if δ(K2) = ∅, ontraditing the onnetivity of G. Hene G[K] must be onneted.Assume that (A) does not hold, so ℓ(K) = ∅ and (B) does not hold either, so b(K) ≤ |F | + 1.We show that b(K) = |F | + 1 in this ase. Otherwise b(K) ≤ |F | − 1 as (K,F ) is an odd pair. As

x(F ) ≥ |F |−1, only b(K) = |F |−1 is possible. By 0 < x < 1, E[K] = ∅ and so |K| = 1 by the previousobservation. If F = δ(v), the tightness of (K,F ) is idential to x(δ̇(v)) = b(v), ontraditing linearindependene. Hene δ(v) \F 6= ∅ and thus x(δ(v) \F ) > 0. Also, x(F ) ≤ b(v) ≤ |F | − 1. Consequently,
x(δ(v) \ F )− x(F ) > 1− |F |, a ontradition.Now we show that |K| ≥ 2. If K = {v} then x(δ(v) \ F ) ≥ 1 as x(δ̇(v)) = |F | + 1 and ℓ(v) = ∅. If
F 6= ∅ then x(F ) < |F | as x < 1, so (iii) annot hold with equality. Hene F = ∅ and x(δ(v)) = 1 = b(v),so the tightness of (K,F ) is idential to x(δ̇(v)) = b(v), ontraditing independene.Assume that (C) does not hold either, so ℓ(K) = ∅, b(K) = |F |+1 and |K| = 2. We show that thisleads to ontradition. Let K = {u, v}, and let C be the set of parallel edges between u and v. Then wehave

x(δ(K) \ F )− x(F ) = b(u) + b(v)− 2x(C)− 2x(Fu)− 2x(Fv).As b(u) + b(v) = |F | + 1, either b(u) ≤ |Fu| or b(v) ≤ |Fv |, say the �rst holds. In this ase x(C) +

x(Fu) ≤ b(u) ≤ |Fu|, so x(C) + x(Fu) + x(Fv) ≤ |Fu| + |Fv |. Here Fv = ∅, otherwise strit inequalityholds by x < 1, ontraditing the tightness of (K,F ), and also b(u) = |Fu| follows. Then the tightnessof the pair an be reformulated as x(δ(u) \ C) − 2x(Fu) = 1 − |Fu|. By subtrating this from equality
2x(C)+x(δ(K)) = |F |+1, we get 2x(C)+x(δ(K)\δ(u))+2x(Fu) = 2|Fu| = 2b(u). But x(C)+x(Fu) ≤
b(u), hene δ(K) \ δ(u) = ∅ and x(C) + x(Fu) = x(C) + x(δ(u)) = b(u) = |Fu|, b(v) = 1. That meansthat the tightness of (K,F ) is idential to x(δ(u)) = b(u), ontraditing linear independene.Note that (K̄, F ) is also x-tight. Let G◦

1 = (V ◦
1 , E

◦
1), b

◦
1, x

◦
1 and G◦

2 = (V ◦
2 , E

◦
2 ), b

◦
2, x

◦
2 denote theproblems we get after shrinking (K,F ) and (K̄, F ), respetively. By Proposition 6.3.1, the indutionstep an be applied, and -by the minimality of G- x◦i is the onvex ombination of inidene vetorsof b◦i -fators of G◦

i . Note, that a b◦i -fator ontains either eah edge of F and exatly one edge from
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Figure 6.2: Illustration of the shrinking method
δ(K) \F , or all but one edges of F , the edge piqi and none of the edges of δ(K) \F . We an write theseombinations in the form x◦1 = 1

k

∑

χMi
and x◦2 = 1

k

∑

χNj
for some k ∈ Z+, where the Mi's and Nj 'sare (not neessarily distint) b◦1- and b◦2-fators, respetively (note that x◦ is rational, being a vertex ofa rational polytope).Then eah edge e ∈ δ(K) \ F is ontained in exatly kx(e) number of Mi's and Nj 's. Eah of themontains the entire F . We an pair these b-fators and `glue' them together to get kx(e) b-fators of Gontaining the edge e. This an be done for eah edge e ∈ δ(K) \F . Similarly, for eah edge e ∈ F thereare exatly k(1 − x(e)) Mi's and Nj 's that does not ontain e. Notie that these ontain all edges in

F − e and none in δ(K) − F . Again, pair and glue these together to get b-fators of G not ontaining
e. For an illustration of this step, see Figure 6.2.These b-fators altogether yield x as a onvex ombination of b-fators of G, a ontradition.Remark 6.3.2. Note that the above proof also gives a new proof of Theorem 1.4.3 by using the well-known onstrution given below.Take a opy of G denoted by G′ and for eah v ∈ V add b(v) new edges between v and v′. Let G∗be the graph thus arising and de�ne b∗(v) = b∗(v′) = b(v). Theorem 1.4.3 follows as the restrition of a
b∗-fator of G∗ to G gives a b-mathing in G, and the restrition of the b∗-fator polytope of G∗ to Ggives exatly the polytope desribed by P3.



6.4. Triangle-free b-fators 816.4 Triangle-free b-fatorsIn this setion, we extend the proof of Theorem 1.4.2 to Theorem 6.1.1. Besides shrinking odd pairs,we also need to shrink triangles. The following shrinking operation appeared in [12℄.De�nition 6.4.1 (Shrinking a triangle). Assume G, b and T satisfy (6.1) and (6.2). Shrinking atriangle T ∈ T onsists of the following operations (see Figure 6.3):
• replae T by a node t,
• replae eah edge e ∈ E \ET with eu ∈ VT , e

v ∈ V \ VT by an edge tev, and eah edge e ∈ E \ETwith eu, ev ∈ VT by a loop e on t,
• let b◦(t) = 2 and de�ne b◦(v) = b(v) if v 6= t,
• let T ◦ denote the set of triangles in T node-disjoint from T .

b◦(t) = 2

t1

t2 t3Figure 6.3: Shrinking a triangleSimilarly to De�nition 6.2.1, we use the notation G◦ = (V ◦, E◦) for the shrunk graph with E◦ ⊆ Eand V ◦ − t ⊆ V . It is easy to see that G◦, b◦ and T ◦ also satisfy (6.1) and (6.2).Assume that x ∈ RE satis�es (P7). When shrinking a triangle, we use the notation x◦ for the imageof x, that is, x◦(e) = x(e) for eah e ∈ E◦.Lemma 6.4.2. Let G = (V,E), b : V → Z+ and T a olletion of triangles satisfying (6.1) and (6.2).Assume that there are no node-idential forbidden triangles in T . If x ∈ RE satis�es (P7) and T ∈ T isa forbidden triangle, then x◦ satis�es (P7) in G◦ = (V ◦, E◦) with b◦ and T ◦.Proof. (i), (iii) and (iv) easily follow from the same inequalities in the original graph. Also, (ii) holdsfor nodes di�erent from t. As T is x-tight, x◦(δ̇(t)) = x(δ(VT )) =
∑

x(δ̇(ti))− 2x(ET ) = 2 = b◦(t).Now we turn to the proof of Theorem 6.1.1. It is lear that a T -free b-fator satis�es (i)− (iv) ((iii)an be veri�ed as in the proof of Theorem 1.4.2).It remains to show that (i)−(iv) ompletely determine the polytope in question, that is, any x ∈ REsatisfying (P7) is a onvex ombination of inidene vetors of T -free b-fators. Assume that this doesnot hold. Let us hoose x to be a vertex of the polytope desribed by (P7) not ontained in the T -free
b-fator polytope.We hoose this ounterexample in suh a way that (|V |, |E|) is lexiographially minimal. Thisimmediately implies that T = ∅. Indeed, if there is a triangle T ∈ T then it is automatially tight,that is, x(ET ) = 2. Shrink T to a single node t as in De�nition 6.4.1, obtaining G◦, b◦, T ◦, x◦. ByLemma 6.4.2, these satisfy (P7). As |V ◦| < |V |, x◦ is a onvex ombination of T ◦-free b◦-fators Mi of
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G◦. Note that b◦(t) = 2 and dG◦(t) ≤ 3 follows by (6.1). Let x◦ = 1

k

∑

λiχM◦
i
. For eah i, |M◦

i ∩δ(t)| = 2.Moreover, |M◦
i ∩ δ(tj)| ≤ 1 for j = 1, 2, 3. We extend M◦

i to a T -free b-mathing of G as follows: if
|M◦

i ∩ δ(tj)| = |M◦
i ∩ δ(tj+1)| = 1 (indies are meant modulo 3) then Mi = M◦

i ∪ {eTj,j+2, e
T
j+1,j+2}.Proposition 6.4.3. Mi is a T -free b-fator of G.Proof. Assume that |M◦

i ∩ δ(t1)| = |M◦
i ∩ δ(t2)| = 1. Mi annot ontain a triangle in T ◦, and neitherontains T due to the onstrution. It su�es to hek that it does not ontain a triangle T ′ ∈ T whihshares a node with T . By (6.1), T and T ′ must have an edge in ommon. If the ommon edge is eT12,then Mi does not ontain T ′ sine eT12 6∈ Mi. If the ommon edge is eT13 then eT13, e

T
23 ∈ Mi and (6.2)implies that the edge of T ′ not inident to t1 is not in Mi. The same argument works if the ommonedge of T and T ′ is eT23.As b(tj) = 2 for j = 1, 2, 3 and x(ET ) = 2, an easy omputation shows that x(eTj,j+1) = x(δ̇(tj+2) \

ET ). This implies that x = 1
k

∑

χMi
, a ontradition. So T = ∅ indeed holds and the theorem followsfrom Theorem 1.4.2.6.5 Extending the shrinking operationsTheorem 6.1.1 turned out to easily follow from Theorem 1.4.2 due to the fat that a forbiddentriangle is always tight if (6.1) and (6.2) hold. Not surprisingly, this does not hold for b-mathings. Inthis setion, we extend the notion of shrinking to tri-ombs. To prove Theorem 6.1.2, we also need toslightly modify the notion of shrinking a triangle. We start with the latter one.De�nition 6.5.1 (Shrinking a triangle - extended). Assume G, b and T satisfy (6.1) and (6.2).Shrinking a triangle T ∈ T onsists of the following operations (see Figure 6.4):

• replae T by two nodes t, t′,
• replae eah edge e ∈ E \ET with eu ∈ VT , e

v ∈ V \ VT by an edge tev, and eah edge e ∈ E \ETwith eu, ev ∈ VT by a loop e on t,
• add three edges between t and t′ denoted by g1, g2 and g3,
• let b◦(t) = 2, b◦(t′) = 2 and de�ne b◦(v) = b(v) if v 6= t, t′,
• let T ◦ denote the set of triangles in T node-disjoint from T .We use the notation G◦ = (V ◦, E◦) for the shrunk graph with E◦ \{g1, g2, g3} ⊆ E and V ◦ \{t, t′} ⊆

V . It is easy to see that G◦, b◦ and T ◦ also satisfy (6.1) and (6.2).Assume that x ∈ RE satis�es (P8). A triangle T ∈ T is alled x-tight if it satis�es (iv) withequality. Let T ∈ T be a tight triangle with VT = {t1, t2, t3} and δ(t1) \ ET = f1, δ(t2) \ ET = f2 and
δ(t3) \ ET = f3 (two of these edges may oinide). When shrinking T , we use the notation x◦ for theimage of x, namely

x◦(e) =







x(e) if e ∈ E◦ \ E◦[t, t′],
x(eTi+1,i+2)− x(fi) if e = gi for i = 1, 2, 3.
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t1

t2 t3
b◦(t) = 2

b◦(t′) = 2f1

f2

f3

f1

f2

f3

e12e13

e23

g1 g2 g3

Figure 6.4: Shrinking a triangle - extendedRemark 6.5.2. In ase of x being a b-fator, x(gi) = 0 for eah i, making the presene of edges
g1, g2, g3 unneessary. That is the reason for the simpler de�nition of shrinking a triangle when provingTheorem 6.1.1.Lemma 6.5.3. Let G = (V,E), b : V → Z+ and T a olletion of triangles satisfying (6.1) and (6.2).Assume that x ∈ RE satis�es (P8) and T is an x-tight triangle. Then x◦ satis�es (P8) in G◦ = (V ◦, E◦)with b◦ and T ◦.Proof. Let VT = {t1, t2, t3} and δ(t1)\ET = f1, δ(t2)\ET = f2 and δ(t3)\ET = f3 again. Then (i), (iv)and (v) easily follow from the same inequalities in the original graph and from x(gi) = x(eTi+1,i+2) −
x(fi) ≥ 0. Also, (ii) holds for nodes di�erent from t and t′. Clearly, x◦(δ̇(t)) = x(ET ) = 2 = b◦(t). Asfor t′, x◦(δ̇(t′)) = x(ET )−

∑

i x(δ(ti) \ET ) ≤ 2 = b◦(t′).Conerning (iii), for a tri-omb (Z,H,R) with Z ⊆ V ◦,H ⊆ δ(Z),R ⊆ T ◦ the required inequalityfollows from the same inequality for (Z \ {t, t′}, H \ (δ(t) ∪ δ(t′)), R) in the original graph.As mentioned earlier, forbidden triangles are not automatially tight in ase of b-mathings. Thisphenomenon lead us to extend the notion of shrinking to more omplex strutures than odd pairs,namely to tri-ombs, already introdued in Setion 1.4.De�nition 6.5.4 (Shrinking a tri-omb of Type 1). Shrinking a tri-omb (K,F,T) of Type 1 onsistsof the following operations (see Figure 6.5):
• replae K by an edge pq with b◦(p) = |F |+ |T| and b◦(q) = 1,
• replae eah triangle T ∈ T with VT = {u, v, w} and VT∩K = {u} by edges prT , rT sT , rT tT ,sT v, tTwwhere rT , sT and tT are new nodes with b◦(rT ) = 2, b◦(sT ) = b◦(tT ) = 1, and we also set
b◦(v) = b◦(w) = 1,
• de�ne b◦(v) = b(v) for eah v ∈ V \ (K ∪ VT),
• replae eah edge e ∈ E with eu ∈ K, ev ∈ V \ K by an edge pev if e ∈ F , and by qev if
e ∈ δ(K) \ (F ∪ ET),
• let T ◦ denote the set of triangles in T node-disjoint from K ∪ VT.We usually denote the graph obtained by shrinking a tri-omb of Type 1 by G◦ = (V ◦, E◦). Byabuse of notation, eah edge e ∈ δ(K) \ ET is denoted by e again after shrinking the tri-omb and is
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K V −K V −K

b◦(q) = 1

b◦(p) = |F |+ |T|:: edges in δ(K) \ Fedges in F ∪ET

rT

sT

tT

u

v

w

v

w

Figure 6.5: Shrinking a tri-omb of Type 1alled the image of the original edge. Hene the intersetion E ∩E◦ stands for the set of all edges notindued by K nor by a triangle in T.Assume that x ∈ RE satis�es (P8). When shrinking a tri-omb of Type 1, we use the notation x◦for the image of x, namely
• for an edge e ∈ E ∩E◦ let x◦(e) = x(e),
• for a triangle T ∈ T with VT = {u, v, w} and VT ∩K = {u} onsider the new edges mentioned inDe�nition 6.5.4, and de�ne

x◦(prT ) = 2x(eTvw) + x(eTuv) + x(eTuw)− 2,

x◦(rT sT ) = 2− x(eTvw)− x(eTuv),

x◦(rT tT ) = 2− x(eTvw)− x(eTuw),

x◦(sT v) = x(eTvw) + x(eTuv)− 1,

x◦(tTw) = x(eTvw) + x(eTuw)− 1,

• de�ne x◦(pq) = |F |+ 3|T| − x(F )−∑T∈T x(ET )−
∑

T∈T x(eT ).Reall that eT denotes the speial edge of triangle T , that is, the edge in ET having no end in K.De�nition 6.5.5 (Shrinking an odd tri-omb of Type 2). Shrinking a tri-omb (K,F,T) of Type 2onsists of the following operations (see Figure 6.6):
• replae K by an edge pq with b◦(p) = |F |+ |T| and b◦(q) = 1,
• replae eah triangle T ∈ T with VT = {u, v, w} and VT ∩K = {u, v} by an edge prT , a loop lTon rT , and two parallel edges between rT and wT (denoted by rTw

1 and rTw
2) where rT is a newnode with b◦(r) = 2,

• de�ne b◦(v) = b(v) for eah v ∈ V \K,
• replae eah edge e ∈ E with eu ∈ K, ev ∈ V \ K by an edge pev if e ∈ F , and by qev if
e ∈ δ(K) \ (F ∪ ET),
• let T ◦ denote the set of triangles in T node-disjoint from K.
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K V −K V −K

b◦(q) = 1

b◦(p) = |F |+ |T|:: edges in δ(K) \ Fedges in F ∪ ET

rT

w

u

v

w

Figure 6.6: Shrinking a tri-omb of Type 2We usually denote the graph obtained by shrinking a tri-omb of Type 2 by G◦ = (V ◦, E◦). Again,eah edge e ∈ δ(K) \ ET is denoted by e again after shrinking the tri-omb.Assume that x ∈ RE satis�es (P8). When shrinking a tri-omb of Type 2, we use the notation x◦for the image of x, namely
• for an edge e ∈ E ∩ E◦ let x◦(e) = x(e),
• for a triangle T ∈ T with VT = {u, v, w} and VT ∩K = {u, v} onsider the new edges mentionedin De�nition 6.5.5, and de�ne

x◦(prT ) = 2x(eTuv) + x(eTvw) + x(eTuw)− 2,

x◦(lT ) = 2− x(eTuv)− x(eTvw)− x(eTuw),

x◦(rTw
1) = x(eTuw),

x◦(rTw
2) = x(eTvw),

• de�ne x◦(pq) = |F |+ 3|T| − x(F )−∑T∈T x(ET )−
∑

T∈T x(eT ).Reall that eT denotes the speial edge of triangle T , that is, the edge in ET having both ends in K.An odd tri-omb (K,F,T) of Type 2 is alled x-tight (or tight, for short) if it satis�es (iii) withequality. A tri-omb (K,F,T) of Type 1 is alled tight if (K̄, F,T) is a tight tri-omb of Type 2. If
T = ∅ then (K,F ) is alled a tight pair instead.The following simple observation will be useful later.Proposition 6.5.6. Let (K,F,T) be an x-tight tri-omb of any type for some 0 < x < 1 satisfying(P8). For any F ′ ⊆ F,T′ ⊆ T,T′′ ⊆ T and H ⊆ δ(K) \ (F ∪ ET) we have

x(H) ≤ 1and
|F ′|+ 2|T′|+ |T′′| − 1 ≤ x(F ′) +

∑

T∈T′

x(ET ) +
∑

T∈T′′

x(eT ) ≤ |F ′|+ 2|T′|+ |T′′|.Moreover, if at least one of F ′ and T′′ is nonempty then the upper bound hold with strit inequality.



86 6. Polyhedral desriptionsProof. We may assume that the tri-omb is of Type 2. Summing up inequalities x(δ̇(v)) ≤ b(v) for
v ∈ K, x(e) ≤ 1 for e ∈ F , x(ET ) ≤ 2 and x(eT ) ≤ 1 for T ∈ T gives

2x(E[K]) + x(δ(K)) + x(F ) +
∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≤ b(K) + |F |+ 3|T|.As (K,F,T) is x-tight, we have
x(E[K]) + x(F ) +

∑

T∈T

x(ET ) =
b(K)+|F |+3|T|−1

2 .These together imply x(δ(K) \ (F ∪ ET)) ≤ 1, hene proving the �rst part. The upper bound in theseond part follows from x < 1 (from what strit inequality immediately follows if F ′ or T′′ is notempty). On the other hand, the tightness of the tri-omb means that we may loose at most 1 whensumming up the inequalities as desribed above, hene
x(F ) +

∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≥ |F |+ 3|T| − 1,from what the lower bound follows by x < 1.In the sequel, we will refer to the following speial ase of Proposition 6.5.6 several times.Corollary 6.5.7. If v is a node without loops and x(δ(v)) = b(v) = d(v) − 1 then x(F ) ≥ |F | − 1 forany F ⊆ δ(v).Proof. The tri-omb (v, δ(v), ∅) is odd as b(v) + |δ(v)| = b(v) + d(v) = 2d(v) − 1 and is also tight as
x(δ(v)) = d(v)− 1 = b(v)+|δ(v)|−1

2 . The statement follows from Proposition 6.5.6.The main advantage of shrinking odd pairs was that the arising graph G◦ and vetor x◦ still satis�ed(P2). The above de�nitions also have this useful property, as shown in the following lemma. The proofis rather tehnial and needs a lot of omputation, hene is left to the end of this hapter. The readermay skip it in order to follow the main idea of the proof of Theorem 6.1.2.Lemma 6.5.8. Let G = (V,E), b : V → Z+ and T a olletion of triangles satisfying (6.1) and (6.2).Assume that x ∈ RE, 0 < x < 1 satis�es (P8) and (K,F,T) is an x-tight tri-omb of Type 2. Theneither shrinking (K,F,T) or (K̄, F,T), (6.1) and (6.2) hold for G◦ = (V ◦, E◦). Moreover, b◦,T ◦ and x◦satis�es (P8).Remark 6.5.9. In the above, we only de�ned shrinking for tri-ombs either of Type 1 or 2. Thede�nition ould be easily generalized to shrink gadgets having both triangles 1-�tting and 2-�ttingthem. The reason for not introduing shrinking in that way was the form of desription (P8).6.6 Proof of Theorem 6.1.2It is easy to see that eah T -free b-mathing satis�es (i), (ii), (iv) and (v). To show that (iii)indeed holds for a T -free b-mathing M ⊆ E, take an odd tri-omb (K,F,T) and add up inequalities
dM (v) ≤ b(v) for v ∈ K, |M ∩ F | ≤ |F |, |M ∩ ET | ≤ 2 and |M ∩ eT | ≤ 1 for T ∈ T. This gives
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2|M ∩ E[K]|+ |M ∩ δ(K)| + |M ∩ F |+

∑

T∈T

(|M ∩ ET |+ |M ∩ eT |) ≤ b(K) + |F |+ 3|T|.Clearly, |M∩F |+|M∩ET| ≤ |M∩δ(K)|+∑T∈T |M∩eT |, so |M∩E[K]|+|M∩F |+∑T∈T |M∩ET | ≤
⌊12(b(K) + |F | + 3|T|)⌋, as required. The above proof easily implies that (iii) is also valid for even tri-ombs, where a tri-omb (K,F,T) is alled even if b(K) + |F |+ |T| is even.It remains to show that (i)− (v) ompletely determine the T -free b-mathing polytope, that is, any
x ∈ RE satisfying (P8) is a onvex ombination of inidene vetors of T -free b-mathings. Assume thatthis does not hold. Let us hoose x to be a vertex of the polytope desribed by (P8) not ontained inthe T -free b-mathing polytope.We hoose this ounterexample in suh a way that (|T |, |ℓ(V )|, b(V ), |V |, |E|) is lexiographiallyminimal. G is onneted, otherwise one of its omponents would be a smaller ounterexample. As x isa vertex, it satis�es |E| linearly independent onstraints among (P8) with equality. We all a node, atri-omb or a triangle x-tight (or simply tight for short) if the orresponding inequality, whih is oftype (ii), (iii) or (iv), respetively, is satis�ed with equality. Also, the orresponding inequality is alled
x-tight. We also use this notation for even tri-ombs satisfying (iii) with equality.From now on, our aim is to show that there is a tight tri-omb or triangle whose shrinking resultsin a lexiographially smaller problem. Then we show that a proper onvex ombination for the smallerproblem an be transformed into a onvex ombination for the original problem giving x, thus leadingto ontradition. However, this latter step requires muh more work than it did in ase of b-fators.We start with some tehnial observations.Proposition 6.6.1. For eah T ∈ T , VT does not span parallel edges.Proof. Assume to the ontrary that VT = {u, v, w} spans parallel edges, say between v and w as onFigure 6.7. By (6.1), d(u), d(v), d(w) ≤ 3. We laim that G is in fat onsists of these three nodes, orthese three nodes plus an edge inident to u. Indeed, d(u) ≤ 3 implies that if |V | ≥ 4 then u has athird neighbour di�erent from v and w, say z, and uz is a utting edge in G. Let G1 and G2 denote thegraphs onsisting of a omponent of G − uz plus uz. We denote by x1, b1,T1 and x2, b2,T2 the naturalrestrition of x, b and T to G1 and G2, respetively. If both of these graphs have at least two nodes thenwe get two lexiographially smaller instanes, hene xi is a onvex ombination of Ti-free bi-mathingsof Gi. These ould be glued together as to get a onvex ombination of T -free b-mathings of G giving
x, a ontradition.

u

v w

z

e1 e2

e3

e4

f

Figure 6.7: VT spanning parallel edges



88 6. Polyhedral desriptionsSo G is in fat onsists of four or three nodes. Let us onsider the �rst ase, the seond an behandled similarly (by using (v) of (P8)). We use the notation of Figure 6.7. First assume that bothtriangles are forbidden. Delete z from G. The graph thus arising is not a ounterexample, hene therestrition of x to G − z is a onvex ombination of T -free b-mathings of G − z. Let 1
k

∑

χMi
denotethis ombination and let λI = 1

k
|{i : Mi = {ej : j ∈ I}}| for I ⊆ {1, 2, 3, 4}. Moreover, take a onvexombination with λ12 as small as possible. That means that λ12 = 0 or λ3 = λ4 = λ34 = 0. Indeed,assume to the ontrary that both λ12 > 0 and λ34 > 0 hold. Take an Mi with e1, e2 ∈ Mi and an Mjwith e3, e4 ∈Mj and exhange the edges e1 and e3 between them. Then we get T -free b-mathings stillgiving the restrition of x to G− z but the value of λ12 dereased, a ontradition. The other ases anbe proved similarly.If λ12 = 0 then f an be added to any of these b-mathings, a ontradition. So λ3 = λ4 = λ34 = 0and λ12 + λ13 + λ14 + λ23 + λ24 + λ1 + λ2 = 1. If λ12 ≤ 1− x(f) then we an add the edge f to some ofthese b-mathings with oe�ients in total equals x(f) and so get a proper onvex ombination in theoriginal graph, a ontradition. Hene x(δ̇(u)) = x(f) + 2λ12 + λ13 + λ14 + λ23 + λ24 + λ1 + λ2 > 2, aontradition.Now assume that only one of the triangles, say {e1, e2, e3}, is forbidden. Delete z from G. The graphthus arising is not a ounterexample, hene the restrition of x to G−z is a onvex ombination of T -free

b-mathings of G − z. Let 1
k

∑

χMi
denote this ombination and let λI = 1

k
|{i : Mi = {ej : j ∈ I}}|for I ⊆ {1, 2, 3, 4}. Moreover, take a onvex ombination with λ12 as small as possible, and beside this,

λ124 as small as possible. That means that λ12 = 0 or λ3 = λ4 = λ34 = 0, and also λ124 = 0 or
λ3 = λ4 = 0. If both λ12 = λ124 = 0 then f an be added to any of these b-mathings, a ontradition.Otherwise if λ12 + λ124 ≤ 1− x(f) then we an add the edge f to some of these b-mathings with totaloe�ients x(f) and so get a proper onvex ombination in the original graph, a ontradition again.Hene λ12 + λ124 > 1− x(f) and λ12 + λ13 + λ14 + λ23 + λ24 + λ34 + λ1 + λ2 = 1. We have

x(E[VT ]) + x(f) = 3λ124 + 2λ12 + 2λ13 + 2λ14 + 2λ23 + 2λ24 + 2λ34 + λ1 + λ2 + x(f)

= λ124 + 2 + x(f)

> 3− λ12.As x satis�es (iii) of (P8) for the odd pair (VT , f), λ12 > 0 must hold. But then λ34 = 0 and so
x(δ̇(u)) = x(f) + 2λ124 + 2λ12 + λ13 + λ14 + λ23 + λ24 + λ1 + λ2 > 2, a ontradition.Proposition 6.6.2. 0 < x(e) < 1 for eah e ∈ E.Proof. Clearly, edges with x(e) = 0 ould be deleted, ontraditing minimality.If x(e) = 1 and T = ∅, delete e and derease b on its endnodes by 1 (if e is a loop on v then derease
b(v) by 2). However, the situation is more ompliated if T 6= ∅. If e ∈ ET for some T ∈ T , it mayhappen that there is a proper onvex ombination in the smaller graph, but it an not be extended tothe original problem beause a triangle may arise. Hene we use a simple trik here to show x(e) < 1.Assume that x(uv) = 1 and let Tuv ⊆ T denote the set of triangles ontaining uv (there are at mosttwo suh triangles as (6.1) holds). Note that the edge uv is well-de�ned as there exist no parallel edgesbetween u and v by Proposition 6.6.1. For a triangle T ∈ Tuv, let tT denote its third node.By (6.1), tT has at most one neighbour di�erent from u and v, denoted by zT (if exists). Delete
e = uv from G, derease b(u) and b(v) by one, for eah T ∈ Tuv derease b(tT ) by one, delete -if exists-
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Figure 6.8: Exluding saturated edges
tT zT and add a new edge t′T zT where t′T is a new node. The graph thus arising will be denoted by
G′ = (V ′, E′). The modi�ed degree presription is denoted by b′ (with b′(t′T ) = 1 for a new node) andthe natural image of x on E′ is denoted by x′ (that is, x′(t′T zT ) = x(tT zT )). Let T ′ ⊆ T denote theset of triangles disjoint from the triangles in Tuv. The degree ondition implies that two triangles arenode-disjoint if and only if they are edge-disjoint. It is easy to hek that x′ satis�es (P8) in G′ with b′and T ′.As |T ′| < |T |, x′ is a onvex ombination of inidene vetors of T ′-free b′-mathings of G′, say
x′ = 1

k

∑

χM ′
i
. These b′-mathings use at most one of eTutT , eTvtT for eah T ∈ Tuv. If we extend M ′

iby uv and edges {tT zT : T ∈ Tuv, t′T zT ∈ M ′
i}, we get a T -free b-mathing Mi of G by (6.2) andProposition 6.6.1.An easy omputation shows that x = 1

k

∑

χMi
, hene x is a onvex ombination of T -free b-mathingsof G, a ontradition.So we may assume that 0 < x(e) < 1 for eah edge e ∈ E.Proposition 6.6.3. For eah u, v ∈ V , x(E[u, v]) < 1.Proof. If |E[u, v]| = 1 then the proposition follows from Proposition 6.6.2. Otherwise no edge in E[u, v]is ontained in a forbidden triangle by Proposition 6.6.1 and we an derease the x-values on them by onein total and also derease b(u), b(v) by one, thus obtaining a smaller ounterexample, a ontradition.Claim 6.6.4. There is no x-tight triangle T ∈ T .Proof. Assume that there exists a tight triangle T and let VT = {t1, t2, t3}. Shrink T to a single node tas in De�nition 6.5.1, obtaining G◦, b◦, T ◦, x◦. By Lemma 6.5.3, these satisfy (P8).As |T ◦| < |T |, x◦ is a onvex ombination of T ◦-free b◦-mathings M◦

i of G◦. Let x◦ = 1
k

∑

χM◦
iand let αjl =

1
k
|{i : fj, fl ∈Mi}|, βjl = 1

k
|{i : fj, gl ∈Mi}| and �nally γjl =

1
k
|{i : gj , gl ∈Mi}| where

f1, f2, f3, g1, g2, g3 are as in De�nition 6.5.1. As x◦(δ̇(t)) = 2, we have ∑αjl +
∑

βjl +
∑

γjl = 1.Proposition 6.6.5. There exist a proper onvex ombination for what ∑βjj = 0.Proof. Take a ombination in whih∑βjj is minimal and assume that β11 > 0. This immediately impliesthat β22, β23, β32, β33, γ23 = 0 as otherwise we ould easily modify the b◦-mathings and derease∑βjj .



90 6. Polyhedral desriptionsWe have the following equalities.
α12 + α13 + β11 + β12 + β13 = x(f1),

α12 + α23 + β21 = x(f2),

α13 + α23 + β31 = x(f3),

β11 + β21 + β31 + γ12 + γ13 = x(t2t3)− x(f1),

β12 + γ12 = x(t1t3)− x(f2),

β13 + γ13 = x(t1t2)− x(f3).From these and from x(ET ) = 2 we get α23 − β11 = 1− x(t2t3) > 0. Hene there is an Mi, say M1,with f1, g1 ∈ M1 and another one, say M2, with f2, f3 ∈ M2. The proof of Theorem 4.1 of [88℄ impliesthat we an take an alternating path P in M1△M2 starting at t′ suh that M1△P and M2△P are also
T ◦-free b◦-mathings of G◦. Hene β11 an be dereased while β22 and β33 do not hange, so in total
∑

βii an be dereased, and the proposition follows.Take a onvex ombination 1
k

∑

χMi
as in Proposition 6.6.5. We extend the M◦

i 's to T -free b-mathings of G as follows: if M◦
i ∩ δ(t) = {fj , fl} or {fj, gl} or {gj , gl} where j 6= l then de�ne

Mi = M◦
i ∪ (ET − eTj,l).It su�es to verify that the b-mathings thus arising are T -free b-mathings of G. Indeed, theyannot ontain any triangle in T ◦, and neither ontain T due to the onstrution. For a triangle T ′ ∈ Twhih shares a node with T , by (6.1), T and T ′ must have an edge in ommon. By Proposition 6.6.1,they do not have the same node-set but then (6.2) implies that at least one of the edges of T ′ is not in

Mi.The onvex ombination of the Mi's gives x. To see this, it su�es to hek that the ombinationgives x(eTj,j+1) in total for eah j = 1, 2, 3. This is assured by the hoie of the oe�ients as T istight.If x is a b-fator, that is, x(δ̇(v)) = b(v) for eah v ∈ V then eah T ∈ T is tight. By Theorem 1.4.2and Claim 6.6.4, x is not a b-fator. So our aim is now to show that there is an x-tight odd tri-omb
(K,F,T) of Type 2 whose shrinking lexiographially dereases (|T |, b(V ), ℓ(V ), |V |, |E|), and the sameholds for (K̄, F,T).The next proposition states that, as one would expet, b ≤ d an be assumed.Proposition 6.6.6. b(v) ≤ min{d(v), ⌈x(δ̇(v))⌉ + 1} for eah v ∈ V .Proof. Assume that b(v) > d(v) for some v ∈ V . By (6.1) and (6.2), v is not a node of a triangle. Set
b(v) := d(v). We laim that the inequalities of (P8) remain valid, ontraditing the minimal hoie of theounterexample. Assume indiretly that there is a tri-omb (K,F,T) with v ∈ K violating (iii) after themodi�ation. However, for the tri-omb (K−v, F \Fv∪E[v,K−v],T) the left hand side of (iii) dereasesby x(ℓ(v)) + x(Fv) while the right dereases by exatly 1

2(d(v) + |Fv| − |E[v,K − v]|) = |ℓ(v)| + |Fv |(ompared to (K,F,T) after the modi�ation) implying that (K−v, F \Fv∪E[v,K−v],T) is a violatingodd tri-omb in the original problem, a ontradition.



6.6. Proof of Theorem 6.1.2 91If we set b′(v) := ⌈x(δ̇(v))⌉ for eah v ∈ V then (i), (ii), (iv) and (v) learly remains valid in (P8).Assume that there is an odd tri-omb (K,F,T) violating (iii) after the modi�ation. Inequalities of form
(iii) are obtained by summing up inequalities of from (i) and (ii), then dividing by two and taking the�oor of the right hand side. But until the very last step the inequality remains valid, so the violation,that is, the de�ieny of the tri-omb an be at most 1

2 . Hene setting b′(v) := min{b(v), ⌈x(δ̇(v))⌉+1}assures that no violating tri-omb arises.The proposition follows by the hoie of the ounterexample.Sine G is onneted, |E| ≥ |V | − 1. If |E| = |V | − 1 or |E| = |V | and G does not ontain trianglesthen x is a onvex ombination of b-mathings by Theorem 1.4.3, a ontradition. Assume that |E| = |V |and T 6= ∅. This is only possible if G is obtained from a tree by replaing a node with a triangle (wherethe degree of a node of the triangle should not exeed 3). If after deleting the edges of the triangle atleast one of the onneted omponents has size larger than 2 then the G an be divided into two smallergraphs as in the proof of Proposition 6.6.1, giving a ontradition. So G is in fat a triangle with atmost one extra edge at eah of its nodes. These ases an be easily seen not to give a ounterexample(similarly to the proof of Proposition 6.6.1), hene we may assume that |E| > |V |.We all an even tri-omb (K,F,T) tight if x(E[K]) + x(F ) +
∑

T∈T x(ET ) =
b(K)+|F |+3|T|

2 .Proposition 6.6.7. Let (K,F ) be a tight pair (odd or even), v ∈ K̄. If b(v) ≤ |Fv| then (K+ v, F \Fv)is also tight. Moreover, ℓ(v) = ∅ and E[v,K] \ F = ∅.Proof. By adding v to K, the left hand side of (iii) of (P8) may only inrease while the right hand sidemay only derease. The seond part follows by Proposition 6.6.2.If there is an x-tight odd tri-omb (K,F,T) suh that T 6= ∅, then |T | dereases when shrinkingeither (K,F,T) or (K̄, F,T), and we are done. So assume that this is not the ase. Reall that a tighttri-omb (K,F,T) with T = ∅ was alled a tight pair.We have already seen that there is no tight onstraint of form (i), (iv) or (v), and now we assumedthat neither of form (iii) with T 6= ∅. Let us all an x-tight onstraint bad if it is of form (ii) for some
v ∈ V , or it is of form (iii) for some odd pair (K,F ) and at least one of the followings holds.(I) ℓ(K) = ∅, b(K) ≤ |F |(II) ℓ(K) = ∅, b(K) = |F |+ 1, |K| = 1(III) ℓ(K) = ∅, b(K) = |F |+ 1, |K| = 2, |E[K]| ≤ 1(IV) ℓ(K̄) = ∅, b(K̄) ≤ |F |(V) ℓ(K̄) = ∅, b(K̄) = |F |+ 1, |K̄ | = 1(VI) ℓ(K̄) = ∅, b(K̄) = |F |+ 1, |K̄ | = 2, |E[K̄ ]| ≤ 1If the shrinking of (K,F ) or the shrinking of (K̄, F ) does not result in a lexiographially smallerproblem then (K,F ) must be bad (however, it may happen that we get a smaller problem even in aseof a bad pair as TK 6= ∅ would also assure that).



92 6. Polyhedral desriptionsAs we may assume that |E| > |V |, the existene of a tight odd pair (K,F ) whose shrinking results in alexiographially smaller problem and the same holds for (K̄, F ) is assured by the following fundamentallemma. The proof of the lemma is quite tehnial and is detailed in the end of the hapter.Lemma 6.6.8. Under the assumption that there is no tight onstraint of form (iii) with T 6= ∅, themaximum number of linearly independent bad onstraints is at most |V |.As |E| > |V |, Lemma 6.6.8 implies that there exists a tight odd tri-omb (K,F,T) whose shrinkinglexiographially dereases the problem, and the same holds for (K̄, F,T). More preisely, there is atight tri-omb (K,F,T) with either T 6= ∅ or being independent from L de�ned earlier. Take suh atri-omb with |K| being minimal and let G◦
1 = (V ◦

1 , E
◦
1), b

◦
1, x

◦
1,T ◦

1 and G◦
2 = (V ◦

2 , E
◦
2), b

◦
2, x

◦
2,T ◦

2 denotethe problems arising through shrinking (K,F,T) and (K̄, F,T), respetively. We refer to the new nodes
p, q in these graphs by p1, q1 and p2, q2, respetively. By the minimality of the ounterexample, x◦i isa onvex ombination of T ◦

i-free b◦i -mathings of G◦
i , say, x◦1 = 1

k

∑

χMi
and x◦2 = 1

2

∑

χNj
for some

k ∈ Z+ (note that x◦i is rational, being a vertex of a rational polytope). The following proposition is aneasy observation.Proposition 6.6.9. The tightness of (K,F,T) implies that exatly one of the followings holds for eah
Mi:
• (δ(p1)− p1q1) ⊆Mi, |(δ(q1)− p1q1) ∩Mi| ≤ 1, or
• |(δ(p1)− p1q1) \Mi| = 1, p1q1 ∈Mi, (δ(q1)− p1q1) ∩Mi = ∅.Similarly, for Nj's:
• (δ(p2)− p2q2) ⊆ Nj , |(δ(q2)− p2q2) ∩Nj | ≤ 1, or
• |(δ(p2)− p2q2) \Nj| = 1, p2q2 ∈ Nj , (δ(q2)− p2q2) ∩Nj = ∅.Eah edge e ∈ δ(K) \ (F ∪ET) is ontained in exatly kx(e) number of Mi's and Nj 's. By the aboveobservation, eah of these Mi's ontains the entire F and edges prT , rTw1 or prT , rTw2 for eah T ∈ T,while eah of the Nj 's ontains the entire F and edges prT , rT sT , tTw or prT , rT tT , sT v. However,it is easy to see that, as they are parallel, the role of edges rTw

1 and rTw
2 an be `exhanged' insuh a way that the total number of Mi's with prT , rTw

1 ∈ Mi is equal to the number of Nj 's with
prT , rT tT , sT v ∈ Nj . This makes possible to pair these b◦i -mathings and `glue' them together to get kx(e)
b-mathings of G ontaining the edge e. A b-mathing obtained by gluing an Mi with prT , rTw

1 ∈ Miand an Nj with prT , rT tT , sT v ∈ Nj ontains eTvw and eTuw from ET ; a b-mathing obtained by gluing an
Mi with prT , rTw

2 ∈ Mi and an Nj with prT , rT sT , tTw ∈ Nj ontains eTvw and eTuv from ET . This anbe done for eah edge e ∈ δ(K) \ (F ∪ ET).Similarly, for eah edge e ∈ F there are exatly k(1 − x(e)) Mi's and Nj 's that does not ontain e.Notie that these ontain all edges in δ(pi)− e and none in δ(K)− (F ∪ET). Again, pair and glue thesetogether to get b-mathings of G not ontaining e.The number of Mi's with lT ∈ Mi or rTw
1, rTw

2 ∈ Mi for some T ∈ T is equal to the numberof Nj 's with rT sT , rT tT ∈ Nj . The idea is that a b-mathing obtained by gluing an Mi with lT ∈ Miand an Nj with rT sT , rT tT ∈ Nj ontains eTvw from ET ; a b-mathing obtained by gluing an Mi with
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rTw

1, rTw
2 ∈ Mi and an Nj with rT sT , rT tT ∈ Nj ontains eTuv and eTuw from ET . However, we haveto pair these mathings together arefully. Note, that T ◦

2 onsists of triangles disjoint from K. It mayhappen that there is a forbidden triangle T ′ ∈ T suh that VT ′ ⊆ K for what a triangle T ∈ T has
|VT ∩ VT ′ | = 2. In this ase, we are not allowed to pair an Mi and an Nj together if lT ∈ Mi andthe two remaining edges of T ′ not ontained by T are in Nj . We an avoid this unless the sum of theoe�ients of these Nj 's is more than 1− x◦1(lT ) = x(ET )− 1. Consider a onvex ombination in whihthe sum of the oe�ients of b◦2-mathings ontaining the edges of T ′ di�erent from eT is minimal. Ifthis value is positive then there is no Nj ontaining none of these two edges. But this implies that
x(ET ′) > 2(x(ET ) − 1) + (1 − (x(ET ) − 1)) + x(eT ) = x(ET ) + x(eT ) ≥ 2, a ontradition. The lastinequality follows from Proposition 6.5.6.So the pairing an be done. However, it is left to prove that the b-mathings thus arising are also
T -free.Lemma 6.6.10. The b-mathings thus obtained are T -free.Proof. The only triangles possibly ontained in one of the b-mathings ould be those in T − (T ◦

1 ∪T ◦
2 ).Moreover, by the above, a bad triangle should have nodes both in K and K̄.Due to the onstrution, a triangle T ∈ T is not ontained in the b-mathings thus obtained. Also,a T with ET ∩ ET 6= ∅ is not ontained by (6.1), (6.2) and Proposition 6.6.9. Assume that T shares noedge with triangles in T.If |ET ∩ F | = 0 then eah Mi ontains at most one of T 's edges going between K and K̄ as

|Mi ∩ (δ(K) \ (F ∪ET))| ≤ 1, hene T is not ontained by the b-mathings.Let VT = {r, s, t}. Reall that (K,F,T) is suh that either T 6= ∅ or it is independent from L. Thefollowing proposition will be useful.Proposition 6.6.11. There is no tight even tri-omb (Z,H,R) in G with Z 6= ∅.Proof. Assume to the ontrary that (Z,H,R) is a tight even pair, that is, x(E[Z])+x(H)+
∑

T∈R x(ET ) =
b(Z)+|H|+3|R|

2 . By 0 < x < 1, this immediately implies H = δ(Z) = ∅, whih is only possible if Z = V as
G is onneted. But x(E) = b(V )

2 means that x is a b-fator, a ontradition.We distinguish the following ases.Case 1: |ET ∩ F | = 1, |VT ∩K| = 1Assume that VT ∩ K = r and rt ∈ F . Let u be the third neighbour of r, if exists. If u ∈ K then
x(E[K− r])+x(F − rt+ ru)+

∑

T∈T x(ET ) > x(E[K])+x(F )+
∑

T∈T x(ET )−1 while b(K− r)+ |F −
rt+ ru|+3|T| = b(K)+ |F |+3|T|−2. Hene (K− r, F − rt+ ru,T) would violate (iii), a ontradition.If u ∈ K̄ and ru ∈ F then x(E[K − r]) + x(F − rt − ru) +

∑

T∈T x(ET ) > x(E[K]) + x(F ) +
∑

T∈T x(ET )−2 while b(K− r)+ |F − rt− ru|+3|T| = b(K)+ |F |+3|T|−4. Hene (K− r, F \ δ(r),T)would violate (iii), a ontradition.If u ∈ K̄ and ru 6∈ F or r has no third neighbour then x(E[K − r]) + x(F − rt) +
∑

T∈T x(ET ) >

x(E[K])+x(F )+
∑

T∈T x(ET )−1 while b(K−r)+ |F−rt|+3|T| = b(K)+ |F |+3|T|−3, a ontradition



94 6. Polyhedral desriptionsas (K − r, F − rt,T) is an even tri-omb that would violate (iii) whih is not possible.Case 2: |ET ∩ F | = 1, |VT ∩K| = 2Assume that K ∩ VT = {r, s} and rt ∈ F . Let u be the third neighbour of s, if exists. If u ∈ Kthen x(E[K − s]) + x(F + su+ rs) +
∑

T∈T x(ET ) = x(E[K]) + x(F ) +
∑

T∈T x(ET ) while b(K − s) +

|F + su+ rs|+3|T| = b(K) + |F |+3|T|. Hene (K − s, F + su+ rs,T) is also tight and its tightness isidential to that of the original tri-omb. However, |K| dereased, ontraditing the minimality of K.If u ∈ K̄ and su ∈ F then x(E[K − s]) + x(F − su + rs) +
∑

T∈T x(ET ) > x(E[K]) + x(F ) +
∑

T∈T x(ET )−1 while b(K−s)+|F−su+rs|+3|T| = b(K)+|F |+3|T|−2. Hene (K−s, F−su+rs,T)would violate (iii), a ontradition.If u ∈ K̄ and su 6∈ F or s has no third neighbour then x(E[K − s]) + x(F ) +
∑

T∈T x(ET ) >

x(E[K])+x(F )+
∑

T∈T x(ET )−1 while b(K−s)+ |F |+3|T| = b(K)+ |F |+3|T|−2. Hene (K−s, F,T)would violate (iii), a ontradition.Case 3: |ET ∩ F | = 2, |VT ∩K| = 1Assume that VT ∩ K = r and rs, rt ∈ F . Let u be the third neighbour of r, if exists. If u ∈
K then x(E[K − r]) + x(F − rs − rt) +

∑

T∈T x(ET ) ≥ x(E[K]) + x(F ) +
∑

T∈T x(ET ) − 2 while
b(K − r) + |F − rs − rt|+ 3|T| ≤ b(K) + |F | + 3|T| − 4. Hene we must have equality everywhere, so
x(δ(r)) = 2 and (K − r, F − rs− rt,T) is tight. The tightness of (K − r, F − rs− rt,T) is idential tothat of the original tri-omb. However, |K| dereased, ontraditing the minimality of K.If u ∈ K̄ and ru ∈ F then x(E[K − r]) + x(F − rs− rt− ru) +

∑

T∈T x(ET ) ≥ x(E[K]) + x(F ) +
∑

T∈T x(ET ) − 2 while b(K − r) + |F − rs − rt − ru| + 3|T| = b(K) + |F | + 3|T| − 5. We must haveequality everywhere as otherwise (K − s, F − rs− rt− ru,T) would be an even tri-omb violating (iii).That is, x(δ(r)) = 2 and (K − s, F − rs − rt − ru,T) is tight. Note that |K| 6= 1 as otherwise T 6= ∅or the tri-omb is not independent from L. Hene (K − s, F − rs− rt− ru,T) is a tight even tri-ombwith K − s 6= ∅, ontraditing Proposition 6.6.11.If u ∈ K̄ and ru 6∈ F or r has no third neighbour then x(E[K−r])+x(F −rs−rt)+
∑

T∈T x(ET ) >

x(E[K]) +x(F )+
∑

T∈T x(ET )− 2 while b(K − r)+ |F − rs− rt|+3|T| = b(K)+ |F |+3|T| − 4. Hene
(K − r, F − rs− rt,T) would violate (iii), a ontradition.Case 4: |ET ∩ F | = 2, |VT ∩K| = 2Assume that K ∩ VT = {r, s} and rt, st ∈ F . Let u be the third neighbour of r, if exists. If u ∈ K̄and ru ∈ F then x(E[K − r]) + x(F − ru− rt) +

∑

T∈T x(ET ) ≥ x(E[K]) + x(F ) +
∑

T∈T x(ET ) − 2while b(K − r)+ |F − ru− rt|+3|T| = b(K)+ |F |+3|T| − 4. Hene x(δ(r)) = 2, (K − r, F − ru− rt,T)is also tight and is independent from L if the original tri-omb was so (note that K − r 6= ∅). However,
|K| dereased, ontraditing the minimality of K.If u ∈ K̄ and ru 6∈ F or r has no third neighbour then x(E[K−r])+x(F −rt+rs)+

∑

T∈T x(ET ) >

x(E[K]) +x(F )+
∑

T∈T x(ET )− 1 while b(K − r)+ |F − rt+ rs|+3|T| = b(K)+ |F |+3|T| − 2. Hene
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(K − r, F − rt+ rs,T) would violate (iii), a ontradition.The same an be told about the third neighbour of s denoted by v, if exists. So the only remainingase is when both u, v ∈ K. Then x(E[K − r − s]) + x(F − rs − rt + ru + sv) +

∑

T∈T x(ET ) >

x(E[K])+x(F )+
∑

T∈T x(ET )−2 while b(K−r−s)+|F−rs−rt+ru+sv|+3|T| = b(K)+|F |+3|T|−4.Hene (K − r − s, F − rs− rt+ ru+ sv,T) would violate (iii), a ontradition.By Lemma 6.6.10, the b-mathings onstruted above altogether yield x as a onvex ombination of
T -free b-mathings of G, a ontradition. Hene x is indeed ontained in the onvex ombination of theinidene vetors of T -free b-mathings, �nishing the proof.6.7 Proof of Lemma 6.5.8The validity of (6.1) and (6.2) an be heked easily in both ases. We disuss the seond partseparately for K and K̄.(I) Shrinking (K̄, F,T), whih is of Type 1:We use the notation of De�nition 6.5.5. (i) learly holds for edges di�erent from pq and not ontainedin δ(K) ∩ ET. For the rest of the edges the required inequalities follow from Proposition 6.5.6. As anexample, we show this for pq. We have

x(F ) +
∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≤ |F |+ 2|T|+ |T| = |F |+ 3|T|,that is, x◦(pq) ≥ 0. On the other hand,
x(F ) +

∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≥ |F |+ 2|T|+ |T| − 1 = |F |+ 3|T| − 1by Proposition 6.5.6, so x◦(pq) ≤ 1.The validity of (ii) is straightforward for nodes di�erent from q. However, the tightness of thetri-omb implies
x◦(δ̇(q)) = x◦(pq) + x(δ(K) \ (F ∪ET))

= |F |+ 3|T| − x(F )−
∑

T∈T

x(ET )−
∑

T∈T

x(eT ) + x(δ(K) \ (F ∪ ET))

= 2x(E[K]) + x(F ) +
∑

T∈T

x(ET ) + 1− b(K)

−
∑

T∈T

x(eT ) + x(δ(K) \ (F ∪ ET))

= 2x(E[K]) + x(δ(K)) + 1− b(K)

≤ 1

= b◦(q).

(iv) and (v) remain valid for triangles in T ◦ as the same inequalities were true in the original graph.So it remains to show that (iii) is indeed satis�ed in G◦. Choose an odd tri-omb (Z,H,R) of G◦ with
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(def(Z,H,R), |Z̄ ∪ {p, q}|, |H|) lexiographially maximal. Our aim is to show that def(Z,H,R) ≤ 0,whih would prove (iii) for all odd tri-ombs.Clearly, an even tri-omb has de�ieny at most 0 inG◦. Hene if we �nd an even tri-omb (Z ′,H ′,R′)with def(Z,H,R) ≤ def(Z ′,H ′,R′) then we are done. So assume that there is no suh even tri-omb.Proposition 6.7.1. Let v ∈ Z be a node with ℓ(v) = ∅, b◦(v) = d◦(v)− 1 and v 6∈ V ◦

R.(a) If x◦(δ̇(v)) = b◦(v) and v 6= p, q, then δ(Z)v ⊆ H and |E◦[v, Z − v]| ≥ 2.(b) If v = p and δ(Z)p \H 6= ∅ then Hp = ∅.() If v 6= p, q and b◦(v) = d◦(v)− 1 = 1 then δ(Z)v = ∅.Proof. (a) The onditions on v imply that for any two edges e, f ∈ δ(v) we have x◦(e) + x◦(f) ≥ 1. If
|δ(Z)v \H| ≥ 2 then the addition of two of these edges to H would result in a lexiographially largerodd tri-omb, a ontradition.Assume that |δ(Z)v \ H| = 1. De�ne Z ′ = Z − v, H ′ = (H \ Hv) ∪ E◦[v, Z − v]. The tri-omb
(Z ′,H ′,R) thus arising is odd and with de�ienydef(Z ′,H ′,R) = def(Z,H,R) − x◦(Hv) +

b◦(v)+|Hv |−|E◦[v,Z−v]|
2

= def(Z,H,R) − x◦(Hv) +
b◦(v)+|Hv |−d◦(v)+|Hv |+1

2

= def(Z,H,R) − x◦(Hv) + |Hv|.That is, the de�ieny is not dereased and |Z \ {p, q}| dereased by 1, a ontradition.So |δ(Z)v \H| = 0. Assume that |E[v, Z − v]| = 1. Then (Z − v,H \Hv,R) is an odd tri-omb withthe same de�ieny as (Z,H,R) but has larger |Z \ {p, q}| value, a ontradition.(b) The omputation of part (a) shows that in ase of Hp 6= ∅ the de�ieny of the tri-omb wouldstritly derease for the tri-omb (Z − p, (H \Hp) ∪ E◦[p, Z − p],R) as x > 0.() The deletion of v from Z dereases x◦(E◦[Z]) + x◦(H) +
∑

T∈R x◦(E◦
T ) by at most 1 while

⌊12(b◦(Z)+ |H|+3|R|)⌋ always dereases by 1 unless |Hv| = 0. If |δ(Z)v | = 2 then the deletion of v from
Z gives an even tri-omb with de�ieny not smaller than that of the original tri-omb; if |δ(Z)v | = 1then the deletion of v from Z and the addition of the other edge inident to v to H would result in alexiographially larger tri-omb, a ontradition.Proposition 6.7.1 indiate the following simple but useful observation.Corollary 6.7.2. Let T ∈ T be a triangle with VT = {u, v, w}, VT ∩K = {u, v}. Then exatly one ofthe followings hold.1. p, rT , sT , tT , u, v /∈ Z;2. p /∈ Z, rT , sT , tT , u, v ∈ Z, prT ∈ H and the third neighbours of u and v -if exist- are in Z;3. p ∈ Z, rT , sT , tT , u, v /∈ Z;4. p, rT , sT , tT , u, v ∈ Z and the third neighbours of u and v -if exist- are in Z;5. p, rT , sT , u ∈ Z, tT , v /∈ Z, rT tT ∈ H and the third neighbour of u -if exist- is in Z;



6.7. Proof of Lemma 6.5.8 976. p, rT , tT , v ∈ Z, sT , u /∈ Z, rT sT ∈ H and the third neighbour of v -if exist- is in Z.Proof. Assume �rst that p /∈ Z. If rT ∈ Z then (a) implies that both sT , tT ∈ Z and prT ∈ H. However,() further implies u, v ∈ Z, and so their third neighbours are in Z.If rT /∈ Z then neither sT , tT and so nor u, v are by ().The proof of the ases when p ∈ Z goes in a similar way.Corollary 6.7.2 redues the number of ases to be heked. Let Ti = {T ∈ T : T satis�es i. ofCorollary 6.7.2}. From now on, let K ′ = V ◦ \ {p, q}.Case 1: p, q 6∈ ZBy Corollary 6.7.2, eah T ∈ T is of Type 1 or 2. Let Z ′ = Z,H ′ = H \{prT : T ∈ T2},R′ = R∪T2.It is easy to hek that the tri-omb (Z ′,H ′,R′) is odd, hene satisfy (iii) of (P8) in the original graph.However, both sides of (iii) remains unhanged when onsidering (Z,H,R) instead in G◦, hene thevalidity of (iii) follows from the same inequality for (Z ′,H ′,R′) in the original graph.Case 2: p, q ∈ ZWe prove Case 2 with the help of Case 1. First of all note that |Hp| ≥ |δ(Z)p| − 1. To prove this,assume that |δ(Z)p \H| ≥ 2. We have x◦(δ̇(p)) = |F |+ |T|, and the degree of p is |F |+ |T|+ 1. Heneany two edges inident to p must have x◦ value together at least 1. The addition of two of these edgesto H would result in a lexiographially larger tri-omb, a ontradition.We distinguish two subases.Subase 2.1: δ(Z)p = HpIf |Hq| ≥ 1 then let F1 = Hp, F2 = δ(p) \ (F1 + pq). Take Z ′ = Z ∩K ′, H ′ = (H \ (F1 ∪Hq)) ∪ F2.Then
x◦(E◦[Z]) + x◦(H) +

∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq)

+ x◦(E◦[q, Z ′]) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z)−1−|F |−|T|+|H|−|F1|+|F2|−1+3|R|
2 ⌋

+ x◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) + x◦(F1)

= ⌊ b◦(Z)+|H|+3|R|
2 ⌋ − |F1| − 1 + x◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋,as x◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) ≤ x◦(δ(q)) ≤ 1. This implies def(Z,H,R) ≤ 0.Now assume that |Hq| = 0. If Z = {p, q} then R = ∅ and H = δ(p)−pq. Hene x◦(E◦[Z])+x◦(H) =

x◦(δ(p)) = |F |+ |T| ≤ ⌊ |F |+|T|+1+|F |+|T|
2 ⌋ = ⌊ b◦(p)+b◦(q)+|H|

2 ⌋, so (iii) holds.So assume that Z 6= {p, q} and let Z ′ = Z ∩ K ′. De�ne F ′ = δ(p) − pq. It is easy to see that thetightness of (K,F,T) implies the tightness of (K ′, F ′). Using this and that (iii) holds if Z = {p, q}, we



98 6. Polyhedral desriptionshave the following
x◦(E◦[K ′]) + x◦(F ′) + x◦(E◦[Z]) + x◦(H) +

∑

T∈R

x◦(E◦
T )

= x◦(E◦[K ′ \ Z]) + x◦(E◦[Z \K ′]) + x◦(H) +
∑

T∈R

x◦(E◦
T ) + x◦(F ′)

+ 2x◦(E◦[Z ′]) + x◦(E◦[K ′ \ Z ′, Z ′]) + x◦(E◦[{p, q}, Z ′])

≤ ⌊ b◦(K ′\Z)+|H|+3|R|
2 ⌋+ ⌊ b◦(Z\K ′)+|F ′|

2 ⌋+ 2x◦(E◦[Z ′]) + x◦(δ(Z ′))

= b◦(K ′)+|F ′|−1
2 + b◦(Z)+|H|+3|R|−1

2 − b◦(Z ′) + 2x◦(E◦[Z ′]) + x◦(δ(Z ′))

≤ b◦(K ′)+|F ′|−1
2 + b◦(Z)+|H|+3|R|−1

2 .The tightness of (K ′, F ′) implies def(Z,H,R) ≤ 0. In the proof we used that (K ′ \ Z,H,R) and
(Z\K ′, F ′) are also odd. This an be seen by b◦(K ′\Z)+|H|+3|R| = b◦(K ′)−b◦(Z)+1+|F ′|+|H|+|R|whih is odd as (K ′, F ′) and (Z,H,R) are odd, and b◦(Z \K ′) + |F ′| = 1 + 2|F ′|.Subase 2.2: |δ(Z)p| = |Hp|+ 1By Proposition 6.7.1, Hp = ∅. Let δ(Z)p = f and F2 = δ(p) − f . Take Z ′ = Z ∩ K ′, H ′ =

(H \ δ(q)) ∪ F2. Then
x◦(E◦[Z]) + x◦(H) +

∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

= ⌊ b◦(Z)−1−|F |−|T|+|H|+|F2|+3|R|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

= ⌊ b◦(Z)+|H|+3|R|
2 ⌋ − 1 + x◦(pq) + x◦(E◦[q, Z ′])) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋,as x◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) ≤ x◦(δ̇(q)) ≤ 1. This implies def(Z,H,R) ≤ 0.Case 3: p ∈ Z, q 6∈ ZIf pq ∈ H, then add q to Z and delete Hq - inluding pq - from H. We have previously seen that thetri-omb (Z ′,H ′,R) thus obtained satis�es (iii), so

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T )− x◦(E◦[q, Z]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋

≤ ⌊ b◦(Z)+1+|H|−1+3|R|
2 ⌋

= ⌊ b◦(Z)+|H|+3|R|
2 ⌋.This implies def(Z,H,R) ≤ 0.If pq 6∈ H, then �rst onsider the ase when δ(Z)p \ (Hp + pq) 6= ∅. Let f be an edge in this set.



6.7. Proof of Lemma 6.5.8 99De�ne again Z ′ = Z + q, delete Hq from H and add f to it. For the new tri-omb (Z ′,H ′,R), we have
x◦(E◦[Z]) + x◦(H) +

∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(Hq)− x◦(E◦[q, Z])− x◦(f)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋ − x◦(pq)− x◦(f)

≤ ⌊ b◦(Z)+1+|H|+3|R|
2 ⌋ − 1

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋.For the seond last inequality, we used Corollary 6.5.7 (x◦(δ̇(p)) = |F | + |T|, and the degree of p is

|F | + |T| + 1, hene pq and f , two edges inident to p must have x◦ value together at least 1). Thisimplies def(Z,H,R) ≤ 0.If δ(Z)p \ (Hp + pq) = ∅, then let F1 = Hp − pq, F2 = δ(p) \ (H + pq). De�ne Z ′ = Z − p,
H ′ = (H \ F1) ∪ F2. Note that (Z ′,H ′,R) is odd sine b◦(Z ′) + |H ′|+ |R| = b◦(Z) + |H| − |F | − |T| −
|F1|+ |F2|+ |R| = b◦(Z) + |H|+ |R| − 2|F1|. Hene

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(F1)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(F1)

≤ ⌊ b◦(Z)−|F |−|T|+|H|−|F1|+|F2|+3|R|
2 ⌋+ x◦(F1)

≤ ⌊ b◦(Z)+|H|−2|F1|+3|R|
2 ⌋+ x◦(F1)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋.This implies def(Z,H,R) ≤ 0.Case 4: p 6∈ Z, q ∈ ZIf Hq 6= ∅, then delete q from Z and Hq from H. Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(E◦[q, Z − q]) + x◦(H ′) + x◦(Hq) +
∑

T∈R

x◦(E◦
T )

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(δ(q))

≤ ⌊ b◦(Z)−1+|H|−1+3|R|
2 ⌋+ 1

= ⌊ b◦(Z)+|H|+3|R|
2 ⌋.This implies def(Z,H,R) ≤ 0.If Hq = ∅, then �rst onsider the ase when E◦[p, Z− q]\H 6= ∅. Let f be an edge in this set. Delete
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q from Z and take H ′ = H + f . Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(E◦[q, Z − q])− x◦(f)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(E◦[q, Z − q])− x◦(f)

≤ ⌊ b◦(Z)−1+|H|+1+3|R|
2 ⌋+ x◦(δ̇(q))− x◦(pq)− x◦(f)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋by Corollary 6.5.7. This implies def(Z,H,R) ≤ 0.If E◦[p, Z − q] \ H = ∅ then let F1 = Hp − pq and F2 = δ(p) \ (H + pq). De�ne Z ′ = Z + p and

H ′ = (H \ F1) ∪ F2. For the tri-omb (Z ′,H ′,R)

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦
1 [Z

′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T )− x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋ − x◦(pq)− x◦(F2)

= ⌊ b◦(Z)+|F |+|H|−|F1|+|F2|+3|R|
2 ⌋ − x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋+ |F2| − x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋by Proposition 6.5.7. This implies def(Z,H,R) ≤ 0.(II) Shrinking (K,F,T), whih is of Type 2:The veri�ation of (i), (ii), (iv) and (v) goes in the same way as in the previous ase. Choose anodd tri-omb (Z,H,R) of G◦ with (def(Z,H,R), |Z̄ ∪ {p, q}|, |H|) lexiographially maximal. We startagain with some tehnial propositions. These are only easy observations but they greatly help us toredue the number of ases to be heked.Again, an even tri-omb has de�ieny at most 0 in G◦. Hene if we �nd an even tri-omb (Z ′,H ′,R′)with def(Z,H,R) ≤ def(Z ′,H ′,R′) then we are done. So assume that there is no suh even tri-omb.Proposition 6.7.3. Let T ∈ T with VT = {u, v, w}, VT ∩K = {u, v}. Then x(eTuv) + x(eTuw) ≥ 1 and

x(eTuv) + x(eTvw) ≥ 1.Proof. Assume that one of the mentioned sums, say x(eTuv) + x(eTuw), is stritly less than 1. Then
(K,F + eTvw,T− T ) violates (iii), a ontradition.Proposition 6.7.4. Let T ∈ T with VT = {u, v, w}, VT ∩K = {u, v}. If both p,w 6∈ Z then rT 6∈ Z.Proof. If |HrT | ≥ 2 then for the tri-omb (Z − rT ,H \HrT ,R) the left side of (iii) (P8) dereases byat most 2 while the right dereases by 2, whih means that the new tri-omb has no smaller de�ienyand is either lexiographially larger or it is even, both leading to a ontradition.If |HrT | = 0 then the left side of (iii) dereases by x◦(lT ) < 1 while the right dereases by 1, aontradition.
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1 then the left side of (iii) dereases by x◦(lT ) + x◦(rTw

1) = 2 − x(eTuv) − x(eTuw) −
x(eTvw) + x(eTuw) = 2 − x(eTuv) − x(eTvw) ≤ 1 by Proposition6.7.3 while the right side dereases by 1, so
(Z−rT ,H\HrT ,R) is an even tri-omb with de�ieny no smaller than that of (Z,H,R), a ontradition.The other ase when HrT = rTw

2 leads to a ontradition similarly.If HrT = prT then the left side of (iii) dereases by x◦(lT ) + x◦(prT ) = 2 − x(eTuv) − x(eTuw) −
x(eTvw) + 2x(eTuv) + x(eTuw) + x(eTvw) − 2 = x(eTuv) ≤ 1, hene (Z − rT ,H \HrT ,R) is an even tri-ombwith de�ieny no smaller than that of (Z,H,R), a ontradition.Proposition 6.7.5. Let T ∈ T with VT = {u, v, w}, VT ∩K = {u, v}. If p,w ∈ Z then rT ∈ Z.Proof. If |HrT | ≥ 2 then for the tri-omb (Z + rT ,H \HrT ,R) the left side of (iii) stritly inreases by
x > 0 while the right does not hange, whih means that the new tri-omb has larger de�ieny. So itis either a lexiographially larger odd tri-omb or it is even, both leading to a ontradition.If |HrT | = 0 then the left side of (iii) inreases by x◦(δ(rT )) = x(ET ) ≥ 1 while the right inreaseby 1, a ontradition again.IfHrT = rTw

1 then the left side of (iii) inreases by x◦(lT )+x◦(rTw
2)+x◦(prT ) = x(eTuv)+x(eTvw) ≥

1 by Proposition6.7.3 while the right side inreases by 1, so (Z + rT ,H \HrT ,R) is an even tri-ombwith de�ieny no smaller than that of (Z,H,R), a ontradition. The other ase when HrT = rTw
2leads to a ontradition similarly.If HrT = prT then the left side of (iii) inreases by x◦(lT )+x◦(rTw

1)+x◦(rTw
2) = 2−x(eTuv) > 1 as

x < 1, hene (Z+ rT ,H \HrT ,R) is an even tri-omb with de�ieny no smaller than that of (Z,H,R),a ontradition.Proposition 6.7.6. Let T ∈ T with VT = {u, v, w}, VT ∩ K = {u, v}. If p 6∈ Z but w, rT ∈ Z then
prT /∈ H.Proof. Let wz = δ(w) \ET , if exists. If prT ∈ H and z ∈ Z then (Z − rT −w,H − prT +wz,R), whileif prT ∈ H and z 6∈ Z then (Z − rT − w,H \ {prT , wz},R) has de�ieny at most def(Z,H,R) andsmaller |Z|, a ontradition.Propositions 6.7.4, 6.7.5 and 6.7.6 imply the following.Corollary 6.7.7. Let T ∈ T be a triangle with VT = {u, v, w}, VT ∩K = {w}. Then exatly one of thefollowings hold.1. p, rT , w /∈ Z;2. p, rT /∈ Z, w ∈ Z;3. p /∈ Z, rT , w ∈ Z and prT ∈ H;4. p, rT , wT ∈ Z;

5. p, rT ∈ Z, w /∈ Z;6. p ∈ Z, rT , w /∈ Z and prT ∈ H;7. p ∈ Z, rT , w /∈ Z and prT /∈ H.Let Ti = {T ∈ T : T satis�es i. of Corollary 6.7.7}. From now on, for a forbidden triangle T ∈ Tlet VT = {uT , vT , wT } with uT , vT ∈ K.Case 1: p, q 6∈ Z



102 6. Polyhedral desriptionsBy Propositions 6.7.4 and 6.7.6, if rT ∈ Z for some triangle T ∈ T then T ∈ T3. Let Z ′ = Z \ {rT :

T ∈ T3}, H ′ = H \ {prT : T ∈ T3} ∪ {uTwT , vTwT : T ∈ T3}. It is easy to hek that the tri-omb
(Z ′,H ′,R) is odd, hene satisfy (iii) of (P8) in the original graph. However, both sides of (iii) remainsunhanged when onsidering (Z,H,R) instead in G◦, hene the validity of (iii) follows from the sameinequality for (Z ′,H ′,R′) in the original graph.Case 2: p, q ∈ ZProposition 6.7.5 implies T = T4 ∪ T5 ∪ T6 ∪ T7. However, |T7| ≤ 1. Indeed, x◦(δ̇(p)) = |F | + |T|,and the degree of p is |F |+ |T|+1, so any two edges inident to p must have x◦ value together at least 1.If |δ(Z)p \Hp| ≥ 2, then the addition of two edges from this set to H would not derease the de�ienyof the tri-omb, not inrease |Z| but inrease |H|, a ontradition.If T7 = ∅ then let S = K ∪ (Z ∩ K̄), I = {uTwT : rTw

1
T ∈ H} ∪ {vTwT : rTw

2
T ∈ H} ∪ (H ∩ E)and P = R ∪ T6. Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x(E[S]) + x(I) +
∑

T∈P

x(ET )− x(E[K]) + x◦(pq) +
∑

T∈T1∪T2∪T3

x(eT ))− 2|T6|

= x(E[S]) + x(I) +
∑

T∈P

x(ET )− x(E[K]) + |F |+ 3|T|

− x(F )−
∑

T∈T

x(ET )− 2|T6|

≤ ⌊ b(S)+|I|+3|P|
2 ⌋ − b(K)−|F |−3|T|−1

2 − 2|T6|
= b(K)+b◦(Z)−1−|F |−|T|−2|T4∪T5|+|H|−|T6|+3|R|+3|T6|−1

2 − b(K)−|F |−3|T|−1
2 − 2|T6|

= b◦(Z)+|H|+3|R|−1
2 − |T4 ∪ T5 ∪ T6|+ |T|

= b◦(Z)+|H|+3|R|−1
2 .This implies def(Z,H,R) ≤ 0.If |T7| = 1 then take Z ′ = Z ∩ (K̄ ∪ {rT : T ∈ T}), F2 = {prT : T ∈ T5} and H ′ = (H \Hq) ∪ F2.Thus

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|−|F ◦|−1+|F2|
2 ⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋ − 1 + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2 ⌋.This implies def(Z,H,R) ≤ 0.Case 3: p 6∈ Z, q ∈ Z The proof of this ase, by using the above propositions, goes exatly the sameway as in ase (I)/3.



6.8. Proof of Lemma 6.6.8 103Case 4: p ∈ Z, q 6∈ Z The proof of this ase, by using the above propositions, goes exatly the sameway as in ase (I)/4.6.8 Proof of Lemma 6.6.8Take a maximal independent set of tight equalities of form (ii), and extend this to a maximalindependent set with bad equalities of type (IV) with |K| = 1, and then with equalities of type (V). Let
L denote the set of equalities thus obtained.Claim 6.8.1. There is no bad pair (K,F ) independent from L.Proof. In the proof we will use Proposition 6.5.6 several times without mentioning it.Assume that (K,F ) is of type (I) independent from L. First of all, b(K) ≥ |F | − 1 as otherwise
x(E[K])+x(F ) = ⌊12(b(K)+ |F |)⌋ ≤ |F |− 2, ontraditing x(F ) ≥ |F |− 1. If b(K) = |F |− 1 then from
x(E[K]) + x(F ) = |F | − 1 we get x(E[K]) = 0 and x(F ) = b(K) whih in turn implies E[K] = ∅ and
F = δ(K), so x(δ(v)) = b(v) for eah v ∈ K. But this is a ontradition as (K,F ) is supposed to beindependent from equalities of form (ii). Observe that b(K) = |F | is not possible as (K,F ) is an oddpair.Assume that (K,F ) is a bad pair of type (II), so K = {v}, F ⊆ δ(v), ℓ(v) = ∅ and b(v) = |F | + 1.Then the tightness of (v, F ) means x(F ) = |F |, whih is only possible if F = ∅ by x < 1, ontraditingindependene.Assume that (K,F ) is a bad pair of type (III) independent from L and let K = {u, v}. Let C be theset of parallel edges between u and v. As b(u) + b(v) = |Fu|+ |Fv|+1, either b(u) ≤ |Fu| or b(v) ≤ |Fv|,say the �rst one. In this ase x(C) + x(Fu) ≤ b(u) ≤ |Fu|, so x(C) + x(Fu) + x(Fv) ≤ |Fu|+ |Fv|. Here
Fv = ∅, otherwise even strit inequality holds by x(Fv) < |Fv |, ontraditing the tightness of (K,F ). Bythe tightness of the pair, x(C)+x(Fu) = |Fu|. We assumed that b(u) ≤ |Fu|, so b(u) = |Fu| and b(v) = 1implying δ(u) \ (C ∪ Fu) = ∅. But then the tightness of the pair (K,F ) is equivalent to x(δ̇(u)) = b(u),ontraditing linear independene.Assume now that (K,F ) is of type (IV) independent from L with |K| ≥ 2. It an be seen similarly tothe earlier ases that b(K̄) ≥ |F |−1 must hold. If b(K̄) = |F |−1 then x(E[K̄ ])+x(δ(K)\F ) = 0, hene
E[K̄] = ∅ and δ(K) = F . So we have x(E) = x(E[K])+x(δ(K)) = x(E[K])+x(F ) = 1

2(b(K)+|F |−1) =
1
2b(V ). That is, x is in fat a b-fator, a ontradition.If b(K̄) = |F | then x(E) ≥ x(E[K]) + x(F ) + x(E[K̄]) = 1

2(b(K) + |F | − 1) + x(E[K̄ ]) = ⌊12b(V )⌋+
x(E[K̄]). But x(E) ≤ ⌊12b(V )⌋ so E[K̄] = ∅ and also δ(K) = F . That means that K̄ onsists of isolatednodes v1, ..., vk and δ(K) = F = δ(v1) ∪ ... ∪ δ(vk). Let Fi = δ(vi). We laim that b(vi) = |Fi| foreah i. Indeed, otherwise there is an i with b(vi) ≥ |Fi|+ 1 > d(vi), ontraditing Proposition 6.6.6. So
b(vi) = |Fi| for eah i. Then (K ∪{v1, ..., vk−1}, Fk) is also tight, and the tightness of (K,F ) is identialto the tightness of this pair, a ontradition.Now assume that (K,F ) is a bad pair of type ((VI) independent from L and let K̄ = {u, v}. As
b(u) + b(v) = |Fu| + |Fv| + 1, either b(u) ≤ |Fu| or b(v) ≤ |Fv |, say the �rst one. By Proposition 6.6.7,
(K + v, Fu) is also tight and δ̇(v) \ F = ∅, hene the tightness of (K,F ) is equivalent to the tightnessof (K + v, Fu), ontraditing linear independene.



104 6. Polyhedral desriptionsClaim 6.8.1 implies that an upper bound for |L| is also an upper bound for the maximum numberof independent bad onstraints. Hene it su�es to bound |L|. We say that a bad onstraint in Lorresponds to a node v ∈ V if it is either of type x(δ̇(v)) = b(v), or of type (IV) or (V) with K̄ = {v}.We give a bound on the number of bad onstraints in L orresponding to a node v ∈ V .Proposition 6.8.2. If (K,F ) is in L then (K,F ′) 6∈ L for F ′ ⊂ F .Proof. Assume indiretly that (K,F ′) is in L for some F ′ ⊂ F . Then x(F \ F ′) = |F\F ′|
2 from what

F ′ = ∅, |F | = 2, x(F ) = 1 follow by Propositions 6.5.6 and 6.6.2. But then eah node is saturated in Kand (K,F ′) = (K, ∅) is not independent from equalities of form (ii).Claim 6.8.3. If x(δ̇(v)) = b(v) then there is no bad onstraint of type (IV) or (V) in L orrespondingto v.Proof. Let v be suh that x(δ̇(v)) = b(v) and x(E[K])) + x(F ) = b(K)+|F |−1
2 for some F ⊆ δ(K) where

K = V − v. Reall that ℓ(v) = ∅.Assume �rst that b(v) ≤ |F |. By Proposition 6.6.7, δ̇(v) \ F = ∅. Hene x(δ̇(v)) = b(v) is identialto x(F ) = |F |, a ontradition.Assume now that b(v) = |F | + 1. As x(δ(v)) = b(v) = |F | + 1 and x(F ) ≤ |F |, x(δ(v) \ F ) ≥ 1must hold. Hene we have x(E) = x(E[K]) + x(F ) + x(δ(v) \F ) ≥ b(K)+|F |−1
2 +1 = b(V )

2 , whih is onlypossible if x is a b-fator, a ontradition.Observe that if there is a bad onstraint of type (IV) orresponding to v then this onstraint isunique, namely (V − v, δ(v)). Moreover, there is no bad onstraint of type (V) orresponding to v byProposition 6.8.2.Claim 6.8.4. For eah v ∈ V , there is at most one bad onstraint of type (V) in L orresponding to v.Proof. Assume that v is suh that x(E[K])) + x(F1) =
b(K)+|F1|−1

2 and x(E[K])) + x(F2) =
b(K)+|F2|−1

2for di�erent F1, F2 ⊆ δ(K) where K = V − v.Proposition 6.8.5. |F1| = |F2|.Proof. Assume to the ontrary that |F1| > |F2|. (F1 \ F2) ⊆ F1 hene x(F1 \ F2) ≥ |F1 \ F2| − 1. Onthe other hand, (F1 \ F2) ⊆ (δ(K) \ F2), hene x(F1 \ F2) ≤ 1. These imply |F1 \ F2| ≤ 2. By parityarguments, F2 ⊆ F1, ontraditing Proposition 6.8.2.Proposition 6.8.6. |F1 ∩ F2| = 0.Proof. Assume that F1 ∩ F2 = F 6= ∅. From the tightness of (K,F1) and (K,F2) we get 2x(E[K]) +

2x(F ) + x(F1△F2) = b(K) + |F | + |F1△F2|
2 − 1 ≥ b(K) + |F |. On the other hand, we know that

2x(E[K]) + x(δ(K)) ≤ b(K) and x(F ) < |F | implying 2x(E[K]) + 2x(F ) + x(δ(K) \ F ) < b(K) + |F |,a ontradition.Proposition 6.8.7. |F1| = |F2| = 1



6.8. Proof of Lemma 6.6.8 105Proof. By Proposition 6.5.6, x(F1) ≤ 1 as F1 ⊆ δ(K) \ F2, hene |F1| ≤ 2 by the same proposition.Assume that |F1| = 2. From the tightness of (K,F1) and (K,F2) we get
2x(E[K]) + x(F1) + x(F2) = b(K) + 1.On the other hand, we know that 2x(E[K]) + x(δ(K)) ≤ b(K), a ontradition.Let F1 = f1, F2 = f2. Clearly, x(f1) = x(f2).Proposition 6.8.8. δ(v) = {f1, f2}Proof. We have x(E[K])+x(f1) =

1
2b(K) and x(E[K])+x(f2) =

1
2b(K), so 2x(E[K])+x(f1)+x(f2) =

b(K). That means that eah node is saturated in K by the x-values on E[K] and {f1, f2}, hene thereis no edge f ∈ δ(K) \ {f1, f2} by Proposition 6.6.2.Proposition 6.8.8 implies that there are at most two bad onstraints of type (V) in L orrespondingto a node. Assume that v is a node with two suh onstraints. The proof of Proposition 6.8.8 impliesthat all the other nodes are saturated by x, hene v is unique with this property by Claim 6.8.3.We laim that T = ∅. Indeed, assume �rst that there is a forbidden triangle T ∈ T ontaining v. Let
f1 = vu and f2 = vw be the two edges inident to v. Both u and w have degree 3 as they are saturatedand x < 1. Let e1 = δ(u) \ET and e2 = δ(w) \ET . It is easy to see that x(e1) = x(e2) > x(f1) = x(f2).Also, x(ei) > 1

2 by x < 1, the previous observation and x(ei) + x(fi) + x(uw) = 2.Edges e1, e2, uw do not form the edge-set of a forbidden triangle T ′ as otherwise x(ET ) + x(ET ′) =

x(δ(u)) + x(δ(w)) = 4, hene both T and T ′ are tight, a ontradition.Delete the edges uv, uw from G, shrink u and w in a single node z with b(z) = 2 and add a new edge
vz to the graph with x(vz) = 2 − x(e1) − x(e2). Let G′, b′,T ′, x′ denote the lexiographially smallerproblem thus arising. An easy ase-heking shows that x′ satis�es (P8) in G′ with b′ and T ′ hene itis a onvex ombination of T ′-free b′-mathings of G′. This onvex ombination an be extended to theoriginal problem in a straightforward manner thus giving x, a ontradition.Proposition 6.8.9. There is no triangle T ∈ T whose nodes are all saturated.Proof. Assume that x(δ(v)) = 2 for eah v ∈ VT for some T ∈ T . Reall that VT does not span paralleledges by Proposition 6.6.1. Then 2x(ET ) + x(δ(VT )) = 6, and so x(ET ) + x(δ(VT )) ≥ 5 − 2 = 4. Onthe other hand, (VT , δ(VT )) is an odd pair, so x(ET ) + x(δ(VT )) ≤ ⌊6+3

2 ⌋) = 4. Hene we have equalityeverywhere, implying x(ET ) = 2, a ontradition.By Claim 6.8.9, there is no T ∈ T with VT ⊆ V −v either. Let f1 = vu and f2 = vw be the two edgesinident to v. Delete v from G and add a new edge between u and w with x-value x(f1) = x(f2) = C.Let G′, x′ denote the graph and vetor thus arising.Proposition 6.8.10. x′ satis�es (P8) in G′.Proof. It only su�es to verify (iii). Assume that there is an odd pair (Z,H) with Z ⊆ V − v,H ⊆
δ(Z) \ {f1, f2} violating (iii) in G′. It is easy to see that u,w ∈ Z must hold otherwise there would bea violating pair in the original problem, too. That means that x(E[Z]) + x(H) > b(Z)+|H|−1

2 − C. Inother words, as eah node di�erent from v is saturated, b(Z)−x(E[Z])−x(δ(Z) \H) > b(Z)+|H|−1
2 −C,



106 6. Polyhedral desriptionsso x(E[Z]) + x(δ(Z) \ H) < b(Z)−|H|+1
2 + C. If (Z,H) is odd then (V \ (Z + v),H) is also odd and

x(E[V \ (Z + v)]) + x(H) ≤ (V \(Z+v))+|H|−1
2 . Summing up these we get x(E) < b(V −v)

2 + C.As both (V − v, f1) and (Vv , f2) are tight, 2x(E[V − v]) + x({f1, f2}) = b(V − v), that is, 2x(E) =

b(V − v) + 2C, a ontradition.As G′, x′ provides a lexiographially smaller problem, x′ is a onvex ombination of b-mathings (infat fators) of G′. These b-mathings easily extends to G giving x, a ontradition.Claims 6.8.1, 6.8.3 and 6.8.4 imply that |L| ≤ |V |, and we are done.6.9 Further remarksThe problem of giving a omplete desription of the triangle-free 2-mathing polytope of arbitrarygraphs is still open. As mentioned in Setion 1.4, assumption (6.1) is essential: Theorem 6.1.2 is falseif we remove the degree bound dG(v) ≤ 3 on nodes of forbidden triangles, as shown by the followingexample.
1 1

1221

2

1/2

1/21/2

1/2 1/21/21/2

1/2 1/2Figure 6.9: A ounterexample for the non-sububi aseThe values on the nodes and on the edges represent b and x, respetively, and T ontains the trianglein the enter. One may hek that x satis�es (P8) with total value 9
2 , but the maximum size of a T -free

b-mathings is 4, hene x is de�nitely not ontained in the T -free b-mathing polytope.In [58℄, Grötshel and Pulleyblank introdued a new lass of inequalities valid for the travelling sales-man polytope. This new lass, whih is alled lique tree inequalities, properly ontains various lassesof well known inequalities suh as blossom inequalities, subtour elimination onstraints, 2-mathingonstraints, Chvátal ombs or omb inequalities.An artiulation set of a graph G = (V,E) is minimal set of nodes whose deletion results in graphwith more onneted omponents that of G. A lique tree, aording to [58℄, is de�ned as follows.De�nition 6.9.1. A lique tree is a onneted graph C for whih the maximal liques satisfy thefollowing properties:1. The liques are partitioned into the sets of handles and teeth.2. No two teeth interset.3. No two handles interset.4. Eah tooth ontains at least two, at most n − 2 nodes, and at least one node belonging to nohandle.



6.9. Further remarks 1075. For eah handel, the number of teeth interseting it is odd and at least three.6. If a tooth T and a handle H have nonempty intersetion, then H ∩ T is an artiulation set of thelique tree.It follows from the de�nition that a lique tree indeed has a `tree-like struture', see Figure 6.10.

: handles: teeth
Figure 6.10: A lique treeGrötshel and Pulleyblank showed the following.Theorem 6.9.2 (Grötshel and Pulleyblank). Let C be a lique tree in Kn with handles H1, . . . ,Hrand teeth T1, . . . , Ts. Then the lique tree inequality

r
∑

i=1

x(E[Hi]) +
s
∑

j=1

x(E[Tj ]) ≤
r
∑

i=1

|Hi|+
s
∑

j=1

(|Tj | − tj)− s+1
2 (6.4)is valid with respet to the travelling salesman polytope, where tj denotes the number of handles inter-seting tooth Tj .In ase of triangle-free 2-mathings, those lique trees are interesting in whih the teeth are eithertriangles or single edges, see Figure 6.11.De�nition 6.9.3. A tri-lique tree is a onneted graph C satisfying the following properties:1. C is the union of subgraphs partitioned into two sets, handles and teeth.2. No two teeth interset.3. No two handles interset.4. Eah tooth is an edge or a triangle and ontains at least one node belonging to no handle.5. For eah handel, the number of teeth interseting it is odd and at least three.6. If a tooth T and a handle H have nonempty intersetion, then H ∩ T is an artiulation set of thelique tree.Using the same idea as in [58℄ the following an be proved.



108 6. Polyhedral desriptions

: handles : teethFigure 6.11: A lique tree for the C3-free 2-mathing aseTheorem 6.9.4. Let C be a tri-lique tree in a simple graph G with handles H1, . . . ,Hr and teeth
T1, . . . , Ts. Then the tri-lique tree inequality

r
∑

i=1

x(E[Hi]) +
s
∑

j=1

x(E[Tj ]) ≤
r
∑

i=1

|Hi|+
s
∑

j=1

(|Tj | − tj)− s+1
2 (6.5)is valid with respet to the triangle-free 2-mathing polytope, where tj denotes the number of handlesinterseting tooth Tj .It was also showed in [58℄ that the lique tree inequalities are faet-induing for the travellingsalesman polytope and almost always indue distint faets. Moreover, these inequalities -in some sense-an not be further generalized in a faet-induing manner. Hene it would be interesting to see whetherthe addition of these inequalities to the desription of the triangle-free 2-mathings in sububi graphswould give a omplete desription of the polytope in question for arbitrary graphs.



Chapter 7Splitting property via shadow systems
7.1 Shadow systemsThe main result of the hapter is the following theorem.Theorem 7.1.1. In the poset (Mk,≺), the maximal antihain Mk

k has the splitting property, that is,
Mk

k an be partitioned into disjoint sets A1 and A2 suh that U(A1) ∪ L(A2) = Mk.In Theorem 7.1.1, the required property of A1 ⊂ Mk
k is that for every vetor c ∈ Mk+1

k , A1 mustontain at least one shadow of A1. Generalizing this notion, for r < t we all A ⊆M r
k a (t, r; k)-shadowsystem, if for every olour vetor c ∈M t

k, A ontains at least one shadow of c. With this terminology,
A1 in Theorem 7.1.1 is a (k + 1, k; k)-shadow system.Consider a vetor s ∈ Zr

k. The olour pro�le a = M(s) ∈ M r
k an be naturally de�ned so that aiequals the number of i's in s for 1 ≤ i ≤ k. First of all we give a proof of Theorem 1.5.4 by using thefollowing.Theorem 7.1.2. For integers t > r, there exists a (t, r; t− 1)-shadow system At

r ⊆M r
t−1 so that if wepik a vetor s ∈ Zr

t−1 uniformly at random, then the probability of M(s) ∈ At
r equals ( r−1

t−1

)r−1.Proof of Theorem 1.5.4. Let us take a uniform random olouring with t− 1 olours of a ground set Vwith |V | = n nodes. Consider a (t, r; t− 1)-shadow system At
r ⊆M r

t−1 as in Theorem 7.1.2, and let the
r-uniform hypergraph (V, E) ontain those r-element subsets X whose olour pro�le is ontained in At

r.(An r-element set oloured by t− 1 olours naturally orresponds to a vetor in Zr
t−1.) The (t, r; t− 1)-shadow system property implies that every vetor c ∈ M t

t−1 has a shadow in At
r. Consequently, every

t-element subset of V has a subset in E , that is, E is a Turán (n, t, r)-system. Theorem 1.5.4 followssine the expeted size of E is ( r−1
t−1

)r−1(n
r

) by Theorem 7.1.2.In what follows, we give a proof of Theorem 7.1.2.Let x = (x1, . . . , xk) ∈Mk be a k-olour vetor. If xj = 0 and xj+1 6= 0 then x′ = (x1, . . . , xj−1, xj+1−
1, xj+2, . . . , xk) ∈Mk−1 is alled the redution of x at the jth position and is denoted by red[j](x)(indies are in a yli order, i.e. xk+1 refers to x1). A vetor with no zero entries is alled irreduible.Assume that a series of redution steps at positions j1, . . . , jt is applied on vetor x ∈Mk whih resultsin another vetor x′ ∈Mm where t = k −m. We de�ne the anestor anc(i) of a position 1 ≤ i ≤ m asthe original position of that entry in the starting vetor. Formally, these an be obtained by Proedure 2.The following proposition unravels an important property of the redution operation.109



110 7. Splitting property via shadow systemsProedure 2 Computing anc(i)1: Set anc(i) := i.2: Set q := t.3: while q > 0 do4: if jq > anc(i) then5: anc(i) := anc(i)6: else7: anc(i) := anc(i) + 18: end if9: q := q − 110: end while11: return anc(i)Proposition 7.1.3. Let x ∈Mk be a k-olour vetor. Assume that after some redution steps we obtainan irreduible vetor x′. Then x′ and the anestors of its positions are independent from the hoie ofthe redution steps.Proof. For a ontradition, assume there exists a k-olour vetor x ∈ Mk that an be redued to twovetors x′ and x′′ that are either di�erent or are idential but one of the positions has di�erent anestorsin them. Choose k as the minimum value where this may our; learly k > 2. By this minimal hoie,the two redution sequenes must di�er in the very �rst step. Assume the �rst sequene redues atposition j′ and the seond at position j′′, resulting in y′ = red[j′](x) and y′′ = red[j′′](x). W.l.o.g.assume j′ < j′′; then j′′ > j′ + 1 follows as we annot redue at position j′ if xj′+1 = 0. Considernow the redutions red[j′](y′′) and red[j′′ − 1](y′). These must be idential. Moreover, the anestorsof the positions in red[j′](y′′) and red[j′′ − 1](y′) also oinide. However, by the minimal hoie of
k, any redution sequene of y′ and y′′ must result in the same vetor z with the same anestors, aontradition.As an alternative proof, we an de�ne the following quantity. Let sum(j, k) =

∑k−1
i=j (xi − 1) whereindies are in yli order and sum(k, k) is de�ned as 0. Let xredi = max{0, xi+minj sum(j, i)}. Observethat the redution stops with an x′ whih is obtained from xred by deleting its zero entries. Moreover,the anestor of position i is just the position of the orresponding nonzero entry in xred.The irreduible vetor arising by applying a sequene of redutions on x is hene uniquely de�ned;it is alled the omplete redution of x and is denoted by red(x). The anestor of position i in aomplete redution is denoted by anc(i). Let us de�ne the rank of x, denoted by rk(x), as the lengthof the vetor red(x), and let

Ak := {x ∈Mk
k : rk(x) = 1}. (7.1)Note that reduing a vetor in Mk

k gives a vetor in Mk−1
k−1 and the only irreduible vetor in Mk

k is anall-one vetor (that is, all its entries are 1). Consequently, the omplete redution of any vetor in Mk
kis an all-one vetor of dimension m ≤ k, and x ∈ Ak if and only if m = 1. Theorem 7.1.1 follows by thenext lemma, showing that partitioning Mk

k to Ak and Mk
k \ Ak satis�es the splitting property.Lemma 7.1.4. Let Bk = Mk

k \ Ak. Then Mk = U(Ak) ∪ L(Bk).



7.1. Shadow systems 111The proof needs one more operation. For x = (x1, . . . , xk) ∈Mk we all x′ = (x1, x2, . . . , xj−1, 0, xj+

1, xj+1, . . . , xk) ∈ Mk+1 the extension of x at the jth position and denote it by ext[j](x). Theextension an be onsidered as a reverse ounterpart of the redution. However, there are no restritionson the elements of x in this ase and applying ext does not modify the result of red, namely red(x) =red(ext[j](x)).Proof of Lemma 7.1.4. We have to show that (a) for every c ∈ Mk+1
k , Ak ontains a shadow of c, thatis, Ak is a (k + 1, k; k)-shadow system; and (b) for every d ∈Mk−1

k , there exists a b ∈ Bk suh that d isa shadow of b.Both statements are proved by indution on k. For k = 2, A2 = {(2, 0), (0, 2)} and B2 = {(1, 1)},and both statements learly hold. Assume both (a) and (b) hold for all values stritly less than k.For (a), onsider an arbitrary vetor c ∈Mk+1
k . We distinguish two ases.Case 1. c is irreduible, that is, every entry is stritly positive.Sine the sum of the elements of c is k + 1, this is only possible if for some 1 ≤ p ≤ k, cp = 2 and

ci = 1 for 1 ≤ i ≤ k, i 6= p. Consider the vetor a ∈ Mk
k with ap = 2, ap+1 = 0, ai = 1 for every otherindex i. Then a is a shadow of c and it is easy to verify that rk(a) = 1, that is, a ∈ Ak as required.Case 2. There exists an index i with ci = 0, ci+1 6= 0.Let c′ = red[i](c) ∈ Mk

k−1. By indution, there exists an a′ ∈ Ak−1
k−1 that is a shadow of c′. Let

a = ext[i](a′) ∈ Mk
k . Then rk(a) = rk(a′) = 1, and therefore a ∈ Ak. Now a is a shadow of c,ompleting the proof.Let us now turn to statement (b). Consider an arbitrary olour vetor d ∈Mk−1

k . Sine the sum of theelements of d is k−1, there is an index 1 ≤ i ≤ k suh that di = 0 and di+1 6= 0. Let d′ = red[i](d) whihis in Mk−2
k−1 . By indution, there exists a b′ ∈ Bk−1 suh that d′ is a shadow of b′. Let b = ext[i](b′) ∈Mk

k .Sine red(b) = red(b′), it follows that b ∈ Bk, as required.The onstrution of the (t, r; t − 1)-shadow system in Theorem 7.1.2 is also based on Ak. We �rstneed to de�ne some further operations. For a vetor x ∈ Zr
k, we obtain the vetor x′ = δx ∈ Zr

k byinreasing every oordinate by 1: x′i = xi + 1. We all δ the k-shifting operator; the j'th power isdenoted by δj . Clearly δk is the identity but δjx 6= x for 0 < j < k. The set {x, δx, δ2x, . . . , δk−1x} isalled the k-orbit of x. Being in the same k-orbit de�nes an equivalene relation on Zr
k.The k-shifting operation indues a natural operation on the olour vetors in M r

k . For a ∈ M r
k , let

a′ = ∆a ∈M r
k be the vetor with a′i = ai−1 (with indies modulo k, i.e. a′1 = ak). We all ∆ the ylishifting operator. Clearly, M(δx) = ∆M(x) for every x ∈ Zr

k (reall that M(x) denotes the olourpro�le of x). Again, {a,∆a,∆2a, . . . ,∆k−1a} de�nes the yli orbits of M r
k , and being in the sameorbit is again an equivalene relation. However, note that ∆ja = a may our even for j < k. (Forexample, let k = 4, r = 4, j = 2, a = (2020).) If a and b are on the same yli orbits, then so are red(a)and red(b). We denote the yli orbit of an a ∈ M r

k by CO(a). The above notions are illustrated onFigure 7.1.Remark 7.1.5. It is worth mentioning that in Lemma 7.1.4, both sets Ak and Bk are losed under theoperation ∆.
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Z2
3 M2

3 3-orbits of Z2
3 yli orbits of M2

3

(1, 1) (2, 0, 0) {(1, 1), (2, 2), (3, 3)} {(2, 0, 0), (0, 2, 0), (0, 0, 2)}
(1, 2) (0, 2, 0) {(1, 2), (2, 3), (3, 1)} {(1, 1, 0), (0, 1, 1), (1, 0, 1)}
(1, 3) (0, 0, 2) {(1, 3), (2, 1), (3, 2)}
(2, 1) (1, 1, 0)

(2, 2) (1, 0, 1)

(2, 3) (0, 1, 1)

(3, 1)

(3, 2)

(3, 3) Figure 7.1: The members and orbits of Z2
3 and M2

3 .We are ready to de�ne At
r as in Theorem 7.1.2. Consider Ar as in (7.1), and let a ∈ Ar. By de�nition,red(a) = (1). Let us all the anestor of this single element the tip of the vetor a. Let blow(a) ∈M r

t−1denote the vetor arising from a by inserting t− 1− r zeros just after the tip of a. De�ne
At

r :=
⋃

a∈Ar

CO(blow(a)). (SHA)For example, let r = 3, t = 5, and a = (2, 0, 1) ∈ A3. The tip of a is the �rst element, and blow(a) =
(2, 0, 0, 0, 1). Finally, CO(blow(a)) = {(2, 0, 0, 0, 1), (1, 2, 0, 0, 0), (0, 1, 2, 0, 0), (0, 0, 1, 2, 0), (0, 0, 0, 1, 2)}.Also, note that if a′ ∈ CO(a), then CO(blow(a)) = CO(blow(a′)). Further, ∪a′∈CO(a)blow(a′) (

CO(blow(a)): in the above example, (0, 0, 0, 1, 2) is ontained in the latter set but not in the �rst.We show that At
r is a (t, r; t − 1)-shadow system satisfying the requirement of Theorem 7.1.2. Theshadow system property an be veri�ed using an argument almost idential to that in the proof ofLemma 7.1.4.Lemma 7.1.6. For integers t > r, At

r ⊆M r
t−1 de�ned by (SHA) is a (t, r; t− 1)-shadow system.Proof. The proof is by indution on r. For r = 2, A2 = {(2, 0), (0, 2)}, and for any t > r, At

2 ontainsthe vetors with one entry being 2 and all other entries 0. Every c ∈ M t
t−1 must ontain at least oneentry ≥ 2, and therefore it has a shadow in At

2. Assume we have proved the statement for all valuesstritly less than r and onsider an arbitrary olour vetor c ∈M t
t−1.Case 1. c is irreduible, that is, every entry is stritly positive.Sine the sum of the elements of c is t, this is only possible if for some 1 ≤ p ≤ t − 1, cp = 2 and

ci = 1 for 1 ≤ i ≤ t− 1, i 6= p. Consider the vetor a ∈M r
t−1 with

ai =



















2 if i = p,

0 if i = p+ 1, . . . , p + t− r,

1 otherwise,where we use the indexing ylially, i.e. t means 1. Clearly, a is a shadow of c, and a ∈ At
r sineremoving t− 1− r 0's after the 2, we obtain a′ = (1, . . . , 1, 2, 0, 1, . . . , 1) ∈ M r

r , and it is easy to verify
a′ ∈ Ar.



7.1. Shadow systems 113Case 2. There exists an index i with ci = 0, ci+1 6= 0.Let c′ = red[i](c) ∈ M t−1
t−2 . By indution, there exists an a′ ∈ Ar−1

t−2 that is a shadow of c′. Let
a = ext[i](a′) ∈M r

t−1. It is easy to verify a ∈ At
r. Now a is a shadow of c, ompleting the proof.The following lemma onsiders elements of Zr
t−1 instead of olour vetors, and gives the exat numberof those having their olour pro�le in At

r.Lemma 7.1.7. Let S ⊆ Zr
t−1 denote the set of vetors whose olour pro�le is in At

r. Then |S| =
(r − 1)r−1(t− 1).Before proving the lemma, let us derive Theorem 7.1.2 as a onsequene.Proof of Theorem 7.1.2. We show that At

r as de�ned by (SHA) satis�es the onditions. Lemma 7.1.6shows that it is a (t, r; t − 1)-shadow system. The total number of vetors in Zr
t−1 is (t − 1)r. Theprobability that a randomly piked s ∈ Zr

t−1 has its olour pro�le in At
r is |S|/(t − 1)r =

(

r−1
t−1

)r−1 byLemma 7.1.7 as required.By de�nition, At
r is losed under the operation ∆. While ertain yli orbits may be shorter than

t− 1, the next laim shows this annot be the ase for orbits ontained in At
r.Claim 7.1.8. If a ∈ At

r, then ∆ja 6= a for 0 < j < t− 1. Consequently, all yli orbits ontained in
At

r have size exatly t− 1.Proof. Every yli orbit in At
r an be obtained as CO(blow(a)) for some a ∈ Ar. It su�es to showthat for any 0 < j < t − 1, ∆jblow(a) 6= blow(a). For a ontradition, assume there exists suh a jand a for whih ∆jblow(a) = blow(a); let b = blow(a) and b′ = ∆jblow(a). Without loss of generality,assume the tip of a is its �rst element.As a ∈ Ar, it an be redued to (1), whih means that b an be redued to (0, . . . , 0) onsisting of

t − r − 1 zeros and the anestor of the ith zero is i. Reall that the omplete redution of b and theanestors of the elements of red(b) are uniquely de�ned by Proposition 7.1.3. By b′ = b, b′ also hasomplete redution (0, . . . , 0) onsisting of t− r− 1 zeros where the anestor of the ith zero is i. On theother hand, by b′ = ∆jb, the anestors of the elements of red(b′) are just the anestors of the elementsof red(b) shifted by j, a ontradition as 0 < j < t− 1.Proof of Lemma 7.1.7. The ardinality of Zr
r−1 is (r−1)r and the number of (r−1)-orbits is (r−1)r−1.Sine At

r is losed under ∆, it follows that S is losed under δ and is hene a union of (t − 1)-orbits.In what follows, we de�ne a bijetion ϕ between the (r − 1)-orbits of Zr
r−1 and the (t − 1)-orbits of S.Sine every (t− 1)-orbit has ardinality t− 1 by Lemma 7.1.7, this proves the lemma.Consider a olour vetor a ∈ M r

r−1. It is easy to verify that its omplete redution has one entrythat is 2 and all other entries are 1, that is red(a) = (1, . . . , 1, 2, 1, . . . , 1). Analogously as for elementsof Ar, we all the anestor of the entry 2 the tip of a. Clearly, the tip of ∆a is the tip of a plus one (ina yli sense).Take an arbitrary (r − 1)-orbit X in Zr
r−1. The olour pro�les of the vetors in X map to a yli-orbit T of M r

r−1. T must have an element a whose tip is the last ((r − 1)'st) oordinate; pik an s ∈ Xsuh that M(s) = a. Let us injet Zr−1 into Zt−1 by mapping i ∈ Zr−1 to i ∈ Zt−1 for 1 ≤ i ≤ r − 1,and let s̄ ∈ Zr
t−1 be the image of s under this mapping. Let us de�ne ϕ(X) as the (t− 1)-orbit of s̄ in
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Zr
t−1. In what follows, we verify that ϕ is a good bijetion.Well-de�ned.We �rst have to show that s̄ ∈ S, that is,M(s̄) ∈ At

r. Observe that ā = M(s̄) ∈M r
t−1an be obtained from a = M(s) ∈ M r

r−1 by adding t − r zero oordinates at the (r − 1)'st position.The vetor a an be redued to (1, 1, . . . , 1, 2); apply the same redution steps to s̄. This gives a vetor
b = (1, 1, . . . , 1, 2, 0, . . . , 0) (with t − r zeros at the end), whih an be further redued to (1) afterdeleting the last t− r − 1 zeros.Injetive. Assume indiretly that X1 and X2 are di�erent (r−1)-orbits of Zr

r−1, suh that ϕ(X1) =

ϕ(X2). For i = 1, 2, let Ti be the orresponding yli orbit, ai ∈ Ti the element with tip (r − 1) and
si ∈ Xi with M(si) = ai. De�ne si ∈ S by mapping Zr−1 to Zt−1 and ai ∈ M r

t−1 as the olour pro�leof si. Now s1 6= s2 are on di�erent (r− 1)-orbits but s1 6= s2 are on the same (t− 1)-orbit. That meansthat there is a j suh that s2 = δjs1, and so a2 = ∆ja1.We know that both a1 and a2 an be redued to (1, . . . , 1, 2, 0, . . . , 0) (with t− r zeros at the end)by applying the same redutions steps as for a1 and a2, and this vetor an be further redued to theall-zero (0, . . . , 0) vetor onsisting of t − r − 1 zeros where the anestor of the ith element is t − r.Again, the omplete redution of a vetor and the anestors of the elements of the redution are uniquelyde�ned by Proposition 7.1.3. We have seen that a1 and a2 has the same omplete redution. On theother hand, by a2 = ∆ja1, the anestors of the elements of red(a2) are just the anestors of the elementsof red(a1) shifted by j, a ontradition as 0 < j < t− 1.Surjetive. Consider any orbit Y of S, and let a ∈ At
r be the olour pro�le of an element s ∈ Y .We may hoose s suh that ar = . . . = at−1 = 0. This is sine a is a vetor in CO(blow(a0)) for some

a0 ∈ Ar, that is, we insert t− 1− r zeros after the tip of a0 and apply ∆j for some j. It is easy to verifythat the element of a0 following the tip must be 0 beause of rk(a0) = 1.Let us apply redution steps on a avoiding the last t− r zeros but reduing all others. It is easy toverify that this redues a to (1, . . . , 1, 2, 0, . . . , 0) (with t− r zeros at the end). Now let us map s ∈ Zr
t−1to s∗ ∈ Zr

r−1 by mapping i ∈ Zt−1 to i ∈ Zr−1 for 1 ≤ i ≤ r − 1 (this is well-de�ned as s does notontain olors r, . . . , t − 1 by ar = . . . = at−1 = 0). Observe that ϕ maps the orbit of s∗ to Y , provingthe laim.
7.1.1 Relation to Sidorenko's onstrutionSidorenko's onstrution is based on the following observation.Lemma 7.1.9. Let b1, . . . , bk be ylially ordered reals, and b = b1+...+bk

k
. Then there exists an index

m suh that
bm + . . .+ bm−s+1 ≥ sb ∀s = 1, . . . , k.The onstrution is as follows: Divide the n elements into t − 1 groups A1, A1, . . . , At−1. Let B bean r-element subset and bi = |B ∩Ai|. Then set B is inluded into the set system T if and only if there



7.2. Weighted Turán number 115is an index m suh that
s
∑

i=1

bm−i+1 ≥ s+ 1 ∀s = 1, . . . , r − 1, (7.2)where indies are meant in yli order, that is, bt = b1. It follows from Lemma 7.1.9 that T thusobtained is a Turán (n, t, r)-system.The following lemma shows the onnetion between Sidorenko's onstrution and that of At
r.Lemma 7.1.10. Assume that the n elements are divided into t−1 groups A1, A1, . . . , At−1. An r-elementsubset B is inluded into T if and only if (b1, . . . , bt−1) ∈ At

r.Proof. Consider a set B with b = (b1, . . . , bt−1) ∈ At
r. Then b ∈ CO(blow(a)) for some a ∈ Ar where Aris de�ned by (7.1), say b = ∆jblow(a). Let p be the tip of a and de�ne m = p+j. We laim that m and bsatis�es (7.2). Indiretly, assume that there is an 1 ≤ s ≤ r−1 violating (7.2), that is,∑s

i=1 bm−i+1 ≤ s.From s ≤ r − 1 and the de�nitions of b and m, ∑s
i=1 bm−i+1 =

∑s
i=1 ap−i+1. Choose s to be maximal.Then s < r− 1 as∑r−1

i=1 ap−i+1 = r. Indeed, a ∈ Ar so∑r
i=1 ap−i+1 = r, and a 6= (1, . . . , 1) as it an beredued to (1).Reall that a′ = red(a) is obtained from ared by deleting its zero entries, where aredi = max{0, ai +

minj sum(j, i)} and sum(j, k) =
∑k−1

i=j (ai − 1) (we de�ned sum(k, k) as 0). However, ∑s
i=1 ap−i+1 ≤ smeans that in fat ∑s

i=1 ap−i+1 = s, otherwise aredp = 0 ontraditing p being a tip. The maximalhoie of s implies ∑q
i=1 ap−s−i+1 ≥ q for 1 ≤ q ≤ r and ∑r−s

i=1 ap−s−i+1 = r − s > 0. Hene aredr−s > 0,ontraditing a ∈ Ar.Now take a B ∈ T and an index m satisfying (7.2). W.l.o.g. assume that m = r. That is,
∑s

i=1 br−i+1 ≥ s + 1 for 1 ≤ s ≤ r − 1. As ∑t−1
i=1 br−i+1 = r, we immediately have br+1 = . . . =

bt−1 = b1 = 0. Let a = (a1, . . . , ar) = (b1, . . . , br). Then ∑r
i=1 ar−i+1 = r and ∑s

i=1 ar−i+1 ≥ s + 1 for
1 ≤ s ≤ r − 1. We laim that a ∈ Ar. To see this, it su�es to show that aredp = 0 for p = 1, . . . , r − 1.Assume indiretly that aredp > 0 for some p. This implies ∑q

i=1 ap−i+1 ≥ q for 1 ≤ q ≤ r. We have
r =

∑r
i=1 ai =

∑p
i=1 ap−i+1 +

∑r−p
i=1 ar−i+1 ≥ p+ r − p+ 1 = r + 1, a ontradition.In the proof of Theorem 1.5.4, we took a uniform random olouring of the ground set with t − 1olours and showed that the expeted number of r-element subsets whose olour pro�le is ontained in

At
r is `small enough'. Sidorenko's onstrution takes a deterministi olouring instead with almost equalgroups, that is, ∣∣|Ai| − |Aj |

∣

∣ ≤ 1 for 1 ≤ i < j ≤ t− 1, and shows that for suh a olouring the numberof r-element subsets with olour pro�le in At
r does not exeeds the bound, thus proving (1.11).7.2 Weighted Turán numberReall the de�nition of the weighted Turán number tw(t, r) from the Introdution. The followingeasy observation shows that the presene of weights does not a�et the upper bound for tw(t, r).Theorem 7.2.1. For any integers t > r, we have tw(t, r) = t(t, r), and therefore tw(t, r) ≤

(

r−1
t−1

)r−1.Proof. Clearly, tw(t, r) ≥ t(t, r) as the unweighted Turán number orresponds to the speial ase w ≡ 1.To see the other diretion, take an arbitrary Turán (n, t, r)-system (without taking weights into aount).If we onsider the weight of this system in a random permutation of the elements, then the expeted



116 7. Splitting property via shadow systemsvalue of its weight is exatly T (n,t,r)

(nr)
· w∗, whih means that there exists a Turán (n, t, r)-system withweight at most that, ompleting the proof. The seond half follows by Theorem 1.5.4.Theorem 7.2.1 ensures the existene of a Turán (n, t, r)-system with `small' weight. However, it isstill not lear how to �nd and represent suh a system. For t = 3 and k = 2, Theorems 1.5.4 and 7.2.1imply that in a weighted graph, we an hoose a set of edges whose weight is at most the half of thetotal weight w∗ overing every triangle. Indeed, the most simple maximum ut algorithm delivers suhan edge set. Let us olour the nodes of the graph by two olours uniformly at random, and hoose theset of edges whose two endpoints reeive the same olour. Clearly, these edges must over every triangle.Sine every individual edge gets hosen by probability 1

2 , the expeted ost of the hosen edge set willbe w∗

2 .The proof of Theorem 1.5.4 using Theorem 7.1.2 presented in the Introdution also yields a simplerandomized algorithm for �nding an (n, t, r)-Turán system in question. We olour the nodes uniformlyat random by (t− 1)-olours, and hoose r-element subsets aording to their olour pro�les. Note thatwe must obtain a Turán system of ost at most ( r−1
t−1

)r−1
w∗ with probability at least (r−1

t−1

)r−1. Theonstrution of the (t, r; t− 1)-shadow system At
r in Theorem 7.1.2 will give a simple and e�ient wayto deide whether a olour vetor is ontained in At
r. Consequently, although the size of the onstrutionis O(nr), the olouring provides a simple linear representation.7.3 Tuza's onjetureAs outlined earlier, the minimum number of edges overing all of the triangles in an arbitrary graphis the weighted Turán number Tw(n, 3, 2) for we = 1 on the edges of the graph and we = 0 otherwise.Given an undireted graph G = (V,E), a set of pairwise edge-disjoint triangles is alled a trianglepaking, while a set of edges sharing an edge with all triangles is alled a triangle over. Let

ν(G) = maximum ardinality of a triangle paking in G,

τ(G) = minimum ardinality of a triangle over in G.Hene the unweighted Turán number T (n, 3, 2) is the same as τ(Kn). The problem of determiningthe exat values of ν(G) and τ(G) is showed to be NP-omplete by Holyer [68℄ and Yannakakis [136℄,respetively. Still, it would be interesting to give a onnetion between these parameters. Clearly, ν(G) ≤
τ(G) holds so a natural approah would be to give an upper bound for τ(G) as a funtion of ν(G).In [127℄, Tuza proposed the following onjeture.Conjeture 7.3.1 (Tuza). τ(G) ≤ 2ν(G) for any simple undireted graph G.It is worth mentioning that equality holds for in�nitely many graphs. Indeed, take any graph withall maximal two-onneted subgraphs isomorphi to either K2,K4 or K5. That is, if Conjeture 7.3.1 istrue then it is sharp.The onjeture has been proved for various lasses of graphs (see [24, 56, 65, 66, 67, 99, 128℄). The�rst nontrivial bound for general graphs was given by Haxell by proving that for any graph G, wehave τ(G) ≤ (3 − ε)ν(G), where ε > 3

23 [64℄. A frational weakening of the onjeture was given by



7.3. Tuza's onjeture 117Krivelevih [99℄ who showed that τ(G) ≤ 2τ∗(G) and ν∗(G) ≤ 2ν(G) where τ∗(G) and ν∗(G) stand forthe optimal frational solutions of the orresponding overing and paking problems, respetively.The problem of determining ν(G) and τ(G) an be generalized in two ways. In [37℄, Erd®s and Tuzaproposed a `lique version' of the original problem by onsidering the overing of omplete subgraphswith omplete subgraphs, while in [17℄ Chapuy et al. studied an edge-weighted version of the onjeture,and weighted analogues of results of Tuza, Krivelevih and Haxell were proved. Putting together thesetwo ideas, we formalize a more general version of the problem.For an (r − 1)-uniform simple hypergraph H = (V, E), an r-blok is a subset of r nodes spanning aomplete subhypergraph. The set of r-bloks is denoted by Br. A r-paking is a set of disjoint r-bloks,while an r-over is a set of hyperedges suh that eah r-blok spans at least one of them. Assume nowthat a weight funtion w : E → R+ is also given. A weighted r-paking is a family of - not neessarilydisjoint - r-bloks suh that eah hyperedge e is ontained in at most w(e) of them. For the weightedase, let
νw(H) = maximum ardinality of a weighted r-paking in H,

τw(H) = minimum weight of a r-over in H.Here νw(H) and τw(H) are alled weighted r-paking and weighted r-overing numbers, respe-tively. These parameters an be interpreted as optimal solutions to the following integer programs. Let
A be the hyperedge - r-blok inidene matrix of H, that is, Ae,R = 1 if e ∈ E is spanned by r-blok R,and 0 otherwise. Then

νw(H) = max{1 · x| Ax ≤ w, x ∈ ZBr
+ },

τw(H) = min{w · y| AT y ≥ 1, y ∈ ZE
+}.By relaxing the integrality onstraints we get the following primal-dual pair of linear programs.

ν∗w(H) = max{1 · x| Ax ≤ w, x ∈ RBr
+ },

τ∗w(H) = min{w · y| AT y ≥ 1, y ∈ RE
+},where ν∗w(H) and τ∗w(H) are alled the weighted frational r-paking and weighted frational

r-overing numbers, respetively. The linear programming duality theorem gives
νw(H) ≤ ν∗w(H) = τ∗w(H) ≤ τw(H).As a generalization of Tuza's, we propose the following onjeture.Conjeture 7.3.2. Let H = (V, E) be a simple (r − 1)-uniform hypergraph and w : E → R+ a weightfuntion. Then τw(H) ≤ ⌈ r+1

2 ⌉νw(H).Tuza's onjeture orresponds to the ase when r = 3, w ≡ 1 and H is a simple graph. Similarlyto the original onjeture, if Conjeture 7.3.2 is true then it is sharp. Indeed, let w ≡ 1 and takean (r − 1)-uniform omplete hypergraph H = (V, E) on r + 1 nodes. We laim that νw(H) = 1 and
τw(H) = ⌈ r+1

2 ⌉.It is easy to see that νw(H) = 1 as the graph has only r + 1 nodes, so any two r-bloks share r − 1nodes in ommon. As the graph is omplete, there is a hyperedge spanned by these nodes, so w ≡ 1implies that at most one r-blok is ontained in any weighted r-paking.



118 7. Splitting property via shadow systemsTo see τw(H) ≥ ⌈ r+1
2 ⌉ it su�es to show that for any set C of r-bloks with ardinality at most

⌈ r+1
2 ⌉ − 1 there exists a node v whih is ontained in all members of C. That would learly prove thelower bound as C does not over the r-blok H − v. Assume indiretly that there is no suh node, thatis, eah node is ontained in at most |C| − 1 of them. We have

∑

v∈V

|{e ∈ C : v ∈ e}| ≤ (r + 1)(|C| − 1).On the other hand,
∑

v∈V

|{e ∈ C : v ∈ e}| =
∑

e∈C

|e| = (r − 1)|C|.These together gives (r + 1)(|C| − 1) ≥ (r − 1)|C|, hene |C| ≥ ⌈ r+1
2 ⌉, a ontradition.It remains to show an r-over with ardinality ⌈ r+1

2 ⌉. Let V = {v1, . . . , vr+1} and C = {V \
{v2i−1, v2i}| i = 1, . . . , ⌈ r+1

2 ⌉} where indies are meant in yli order, so vr+2 = v1. Then for any
v ∈ V there is at least one e ∈ C not ontaining v. Hene C is an r-over as for any r-blok B there isan e ∈ C not ontaining V \B, thus e ⊆ B.Conjeture 7.3.2 is widely open. With the help of the shadow system appearing in Theorem 7.1.2,we prove a frational weakening of the onjeture whih an be onsidered as a weighted ounterpart ofKrivelevih's result.Theorem 7.3.3. Let H = (V, E) be a simple (r − 1)-uniform hypergraph and w : E → R+ a weightfuntion. Then τw(H) ≤ (r − 1)τ∗w(H).Proof. Suppose that the theorem does not hold and letH be a minimal ounterexample, that is, τw(H) >

(r − 1)τ∗w(H) but τw(H ′) ≤ (r − 1)τ∗w(H
′) for every proper subhypergraph H ′ of H. This implies thateah hyperedge e ∈ E is ontained in an r-blok as otherwise it ould be left out from H thus givinga smaller ounterexample. Take a pair of optimal solutions of the weighted frational r-paking and

r-over problems denoted by x∗ and y∗, respetively.Case 1. y∗e ≥ 1
r−1 for some e ∈ E .Let H ′ be the graph obtained by deleting the hyperedge e from H. Clearly, τw(H ′) ≥ τw(H)−w(e).On the other hand, z∗ is a frational r-over in H ′ where z∗(e′) = y∗(e′) for e′ 6= e. Hene τ∗w(H

′) ≤
τ∗w(H)− w(e)

r−1 . By the minimal hoie of H we get
τw(H) ≤ τw(H

′) + w(e) ≤ (r − 1)τ∗w(H
′) + w(e) ≤ (r − 1)τ∗w(H),a ontradition.Case 2. y∗e < 1

r−1 for eah e ∈ E .We laim that y∗e > 0 for eah e ∈ E . Indeed, an r-blok spans r di�erent hyperedges. If one of thesehyperedges had y∗ value 0 then the total y∗ sum on them would be stritly smaller than 1, ontraditingthe assumption that y∗ is a frational r-over. As mentioned earlier, eah hyperedge is spanned by oneof the r-bloks, hene the statement follows. By omplementary slakness, we have
∑

B∈Br
Bspans e

x∗(B) = w(e) for eah e ∈ E .



7.3. Tuza's onjeture 119That also implies that the exat value of the optimum for the frational problem an be omputed as
τ∗w(H) = ν∗w(H) =

∑

B∈Br

x∗(B) = 1
r

∑

e∈E

∑

B∈Br
B spans e

x∗(B) = 1
r

∑

e∈E

w(e) = 1
r
w∗.So it su�es to show that τw(H) ≤ r−1

r
w∗. We do the same as in the proof of Theorem 7.2.1: olour thenodes uniformly at random with the olours 1, . . . , r− 1 and de�ne the r-over as the set of hyperedges

e with olour pro�le in Ar
r−1 de�ned in (SHA). We have already seen that there exist a olouring of thenodes suh that the total weight of the overing is at most ( r−1

r

)r−1
w∗ ≤ r−1

r
w∗, and we are done.
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AbstratThe thesis has two main topis, the �rst of them is arboresene paking. We onsider extensions ofEdmonds' fundamental result on paking disjoint spanning arboresenes. The problem an be naturallygeneralized in two diretions: the edge-disjointness ondition may be strengthened, and the set of nodesspanned by the arboresenes may be dereased.
• We give a disproof of the onjeture of Colussi, Conforti and Zambelli on strongly edge-disjointarboresenes. For k = 2 the onjeture is true; we give its generalization for diyle-disjoint Steinerarboresenes.
• We present a linear time algorithm for �nding a pair of disjoint in- and out-arboresenes inan ayli digraph. Deiding the existene of suh arboresenes is NP-omplete in general. Ouralgorithm is based on a redution to bipartite mathing in an assoiated bipartite graph.
• We present a strongly polynomial time algorithm for �nding disjoint arboresenes spanning onvexsets under apaity onstraints. Our solution is based on the deep understanding of the onnetionbetween paking arboresenes and overing interseting bi-set families.
• We give a polyhedral desription of arboresene pakable subgraphs and prove that the system isTDI. The proof strongly relies on the speial interseting bi-set families appearing in the proof ofFujishige's theorem.The seond part of the thesis deals with restrited b-mathings, mainly with Ck-free k-mathings.It has been known that the Ck-free 2-mathing problem is NP-omplete for k ≥ 5. We onsider the

C3-free and the C4-free 2-mathing, and the Kt,t- and Kt+1-free t-mathing problems in graphs thatsatisfy ertain degree bounds.
• We give a min-max theorem and an algorithm for the square-free 2-mathing problem in sububigraphs.We show that the weighted version of the problem is NP-hard even in planar bipartite ubigraphs, but is polynomially solvable when the weight funtion is node-indued on eah square.
• We give a min-max theorem and an algorithm for the Kt,t- and Kt+1-free t-mathing problemin degree bounded graphs. Note that this problem is a generalization of the C3-free, C4-free and

C≤4-free 2-mathing problems.
• We give a desription of the triangle-free 2-mathing polytope of sububi graphs. The desrip-tion was onjetured by Hartvigsen and Li; the omplete proof appeared reently. We give anindependent proof of the result whih relies on a shrinking method.The last hapter examines arbitrary triangle-free subgraphs, that is, when the degree bound onthe nodes in the subgraph is omitted. The problem is approahed through shadow systems and Turánnumbers.
• We prove that the set of multisets with size k over a ground set with size also k has the so-alledsplitting property. From this, we show that a weighted extension of the Turán number admits thesame upper bounds as the unweighted one. We also prove a ombinatorial olouring theorem anda frational version of an extension of Tuza's onjeture to hypergraphs.The results are based on the papers [7℄, [8℄, [10℄, [11℄, [12℄, [13℄ and [14℄.
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ÖsszefoglalásAz értekezés két f® témával foglalkozik, melyek közül az els® a feny®k pakolásának kérdésköre. Aprobléma két irányban is általánosítható: egyrészt szigorítható a feny®kre vonatkozó éldiszjunktságimegkötés, másrészt a feny®k által feszített pontok halmaza is sz¶kíthet®.
• Megáfoljuk Colussi, Conforti és Zambelli er®sen éldiszjunkt feny®kre vonatkozó sejtését. A sejtésa k = 2 esetben igaz; ezt a zeredményt általánosítjuk irányított kördiszjunkt Steiner feny®kre.
• Lineáris idej¶ algoritmust adunk egy pár éldiszjunkt ki- és be-feny® megtalálására aiklikus grá-fokban. A kérdéses feny®k létezésének eldöntése általában NP-teljes probléma. Az általunk adottalgoritmus visszavezeti a problémát egy páros gráfban való maximális párosítás megkeresésére.
• Er®sen polinomiális algoritmust adunk adott konvex halmazokat feszít® éldiszjunkt feny®k meg-keresésére egy élkapaitásokkal rendelkez® gráfban. Megoldásunk a feny®-pakolások és a metsz®párhalmazrendszerek fedése közti szoros kapsolaton alapul.
• Megadjuk a feny®-pakolható részgráfok poliéderes leírását� és igazoljuk, hogy a kapott rendszerTDI. A bizonyítás a Fujishige tételének bizonyításában megjelen® speiális párhalmaz saládokszerkezetére épül.A dolgozat második része tiltott részgráfokat nem tartalmazó b-mathingekkel foglalkoznak, különöstekintettel a Ck-mentes 2-mathingekre. Ismert volt korábban, hogy a Ck-mentes 2-mathing problémaNP-teljes k ≥ 5 esetén. Mi a C3-mentes és C4-mentes 2-mathingek, illetve a Kt,t- és Kt+1-mentes

t-mathingek problémáját vizsgáljuk fokszámkorlátozott gráfokban.
• Min-max tételt és algoritmust adunk a négyszög-mentes 2-mathing feladatra szubkubikus gráfok-ban.Megmutatjuk, hogy a probléma súlyozott változata már síkbarajzolható páros kubikus gráfok-ban is NP-nehéz, ugyanakkor pont-indukált költségfüggvény esetén polinomiális algoritmus adható.
• Min-max tételt és algoritmust adunk a Kt,t- és Kt+1-mentes t-mathing feladatra fokszámkorláto-zott gráfokban. Ez a probléma könnyen láthatóan általánosítja a C3-mentes, a C4-mentes, illetvea C≤4-mentes 2-mathing problémákat.
• Megadjuk a szubkubikus gráfok háromszög-mentes 2-mathing poliéderének leírását. A leíró rend-szert Hartvigsen és Li sejtette meg; teljes bizonyítása nemrégiben jelent meg. Egy független bi-zonyítást adunk az említett leírás helyességére, mely egy új összehúzási m¶veleten alapul.Az utolsó fejezetben tetsz®leges háromszög-mentes részgráfokkal foglalkozik, azaz mikor a vizsgáltrészgráfokban a pontokra vonatkozó fokszámkorlátot elhagyjuk. A problémát más ismert területeketérintve közelítjük meg, mint például az árnyék-rendszerek, avagy a Turán-szám.
• Igazoljuk, hogy eg k méret¶ alaphalmazon értelmezett k elem¶ multihalmazok rendszere rendelkezikaz úgynevezett splitting tulajdonsággal. Ennek segítségével bizonyítunk egy kombinatorikus színezésitételt, melyb®l aztán a Tuza-sejtés egy hipergráfokra való általánosításának törtirányú gyengítésekövetkezik.A bemutatott eredmények a [7℄, [8℄, [10℄, [11℄, [12℄, [13℄ és [14℄ ikkekben jelentek meg.
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