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Notation

Undirected graphs

G=(V,E) An undirected graph G on node set V' with edge set E.
H=(V(H),E(H)) A subgraph H of G with node set V(H) and edge set E(H).
G=(ST;E) A bipartite graph with colour classes S and T" and edge set E.
G[X] The subgraph of G induced by X C V.

G-X GIV\ X] for X CV and G’ = (V,E\ X) for X C E.

E[X] The set of edges induced by X C V.

E[X,Y] The set of edges between X —Y and YV — X.

dc(X) The set of edges having exactly one end in X C V.

50(1)) Family of edges incident to v € V' in which loops are included twice.
L(v) The set of loops at v € V.

0(X) The set of loops induced by X C V.

da(v) = |0g(v)| = [6c(v)| + 2/¢(v)| for v € V.

da(X) = |0g(X)| for X CV,|X| > 2.

da(X,Y) = |E[X,Y]].

da(X,Y) The number of edges between X NY and V — (X UY).
iq(X) The number of edges with both endnodes in X.

Io(X) The set of edges with both endnodes in X.

eq(X) The number of edges with at least one endnode in X.

G The complement of G.

K, Complete graph on n nodes.

K Complete graph with colour classes having sizes s and ¢, respectively.
hir(X) = Y ex dr ()

Ia(X) The set of nodes in V' — X adjacent to X.

(G,w) A graph G with weight function w : £ — R.

Directed graphs

D= (V,A) A directed graph (shortly, digraph) on node set V' with edge set A.
t(a),h(a) The tail and head of arc a, respectively.

op(X) The number of edges entering X C V.

AP(X) The set of edges entering X C C.

p(X) The number of edges leaving X C V.

A%H(X) The set of edges leaving X C V.

p(X,Y) The number of directed edges from X —Y to YV — X.

dD(X7Y) :5D(X7Y)+5D(Y7X)

Ap(u,v) The maximum number of edge-disjoint directed paths from wu to v.

(
kp(r,v) The maximum number of internally node-disjoint directed paths from u to v.

vil



r—(X) The entrance of X, that is, {fv € X : Juvw e A, ueV — X}.

Matroids

M= (Srm) A matroid on ground set S with rank function 7.
cl(Z) The closure of Z C S.

Bi-sets

X =(Xo,X71) A biset X7 € Xp C V with outer member X and inner member X7.
Pa(V) =Po The set of all bi-sets on ground-set V.

Xny = (XoNYo,X;NYp) for X,V € Ps.

XUy = (XoUYp,X;UY7) for X, Y € Ps.

XCY This means Xp C Yp, X7 C Y7.

op(X) The number of edges entering bi-set X.

AP(X) The set of edges entering bi-set X.

p(X) The number of edges leaving bi-set X.

APH(X) The set of edges leaving bi-set X.

Restricted b-matchings

Vi The node set of subgraph K.

Eyx The edge set of subgraph K.

Va The set of nodes contained by subgraphs in K.

Egq The set of edges contained by subgraphs in &.

e, e’ End nodes of edge e € E.

eg; Edge of triangle T" between i and j (resp. t; and ¢;) if Vo = {u,v,w} (resp.
Vi = {t1,ta,t3}).

Ti The set of triangles in T 1-fitting K.

TE The set of triangles in T 2-fitting K.

Tk = 7}% U 7}%

det (K, F,%) — (LK) + [F] + 3T])] — (2(BIK)) + 2(F) + Ypeg 2(Er)).

F, Set of non self-loop edges in F' incident to w.

Miscellaneous

Zy, Ry The sets of non-negative integers and reals.

X —v = X \ {v} for a set X and single element v.

X+ = X U{v} for a set X and single element v.

b(U) =Y pepr b(v) for a function b: V - Rand U C V.

T <y x =y and z # y for a partial order <.

Instead of ‘G’ and ‘D’ we sometimes use the above notations with subscripts denoting a subset of
edges. In such a case the quantity in question has to be computed by considering only the subset showed

by the subscript.
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Chapter 1

Introduction

Two families of problems are considered in the thesis the first of which is arborescence packing.
An arborescence is a directed tree with a root in which the edges are directed ‘away’ from the root
node (sometimes this is called an out-arborescence in the literature; in an in-arborescence the edges are
directed ‘toward’ the root node). The packing problem consists of finding disjoint copies of arborescences
satisfying certain conditions. The motivation of these problems comes from real-life applications such
as survivable network or evacuation plan design. A cornerstone in graph theory is Edmonds’ theorem
characterizing the existence of k edge-disjoint spanning arborescences rooted at the same root node
in a directed graph [34]. In fact, Edmonds proved a stronger version of his result in which branchings
are considered instead of arborescences. This result implied great many extensions, but the condition
requiring the branchings to be spanning was not weakened for almost three decades. The reason for that
is that even a slight modification of the spanning constraint may result in difficult problems, as was
shown in [10].

In 2008, Kamiyama, Katoh and Takizawa gave a surprising extension of Edmonds’ theorem in which
arborescences spanning only nodes that are reachable from the given root nodes are considered [82].
In [6], we showed that the abstract theorem of Szeg6 on covering intersecting families can be extended
to bi-set systems and proved that the theorem of Kamiyama et al. is a special case of our result.

Another approach to extend Edmonds result is due to Colussi, Conforti and Zambelli who introduced
the notion of strongly edge-disjoint arborescences [18]. They conjectured the existence of k spanning
arborescences under more strict restrictions than that of Edmonds’ theorem. For the very special case
when two arborescences are needed the conjecture has been verified. We extended the notion of strongly
edge-disjointness in [13] and showed that the conjecture is also true for two dicycle-disjoint arborescences,
while gave a disproof of the conjecture in general.

In some applications not only out-arborescences but also in-arborescences are needed. Unfortunately,
even the problem of finding an in- and an out-arborescence with the same root node that are disjoint
is NP-complete. However, for acyclic digraphs the problem becomes tractable as in this special case
both the set of in- and out-arborescences form a matroid on the edges. In [11], we gave a linear time
algorithm for finding a pair of disjoint in- and out-arborescences in an acyclic digraph. Chapter 2 gives
an overview of the above mentioned results.

Chapter 3 reveals the connection between the problem of packing arborescences and covering in-
tersecting bi-set families. The introduction of bi-sets made it possible to give a simpler proof for the
theorem of Kamiyama et al. and the very special bi-set families appearing in the proof turned out to be
really useful. We extended Schrijver’s strongly polynomial time algorithm [114] for packing branchings

under capacity restrictions [10]. The usage of bi-sets here is essential; the running time could not be



9 1. Introduction

bounded without the deep understanding of the structure of bi-set families in question. We also gave a

polyhedral description of arborescence-packable digraphs based on bi-sets.

The second part of the thesis deals with algorithmic and polyhedral aspects of restricted b-matchings.
The motivation of the problem comes from node-connectivity augmentation. It is an easy observation,
that the problem of increasing the node-connectivity of an undirected graph on n nodes from n — 4 to
n — 3 is equivalent to finding a maximum 2-matching in the complement of the graph not containing a
cycle of length 4. This latter problem is called the square-free 2-matching problem, and was the starting

point of our investigations as discussed in Chapter 4.

Much is known about square-free 2-matchings, although the mentioned problem in general is still
unsolved. For a list IC of forbidden subgraphs, a K-free b-matching is a b-matching containing no member
if K. Here K may contain concrete subgraphs of a digraph D by defining their node and edge sets, or may
be given by describing a class of graphs in general. As the most important special cases, the Cy-free or
C<j-free 2-matching problems ask for a 2-matching with maximum size not containing cycles of length
k or at most k, respectively. Clearly, these problems can be considered as relaxations of the Hamiltonian
cycle problem and so are well investigated. Unfortunately, we can not go to far with the values of k:
the problems are NP-hard when k > 5 as was shown by Papadimitriou (see eg. [22]). From the positive
side of results, Hartvigsen [59] gave an augmenting path algorithm for the case k& = 3. Hence only the

Cy-free and C'<y-free 2-matching problems are left open.

The weighted versions of these problems can be defined in a straightforward manner. However, there
is a firm difference in complexity between the unweighted and the weighted versions: the weighted square-
free 2-matching problem is NP-hard even in bipartite graphs and 0 — 1 weights [87]. This difference will

be important when we would like to give a polyhedral description of the corresponding polytopes.

The problems becomes significantly easier if the graph is subcubic, that is, each node has degree
at most three. Note that this is the case in the node-connectivity augmentation problem if an (n — 4)-
connected graph is given and one would like to increase its node-connectivity to n — 3. In [12], we gave
a polynomial time algorithm for the square-free 2-matching problem in subcubic graphs and for the
case of node-induced weight functions as well. It is worth mentioning that the problem of increasing the
node-connectivity of a graph by one was solved in general by Végh [129]. Algorithms for the weighted
Cs-free 2-matching (also called triangle-free 2-matching) problem in subcubic graphs were given by
Hartvigsen and Li [62], and Kobayashi [88]. However, the problem for k¥ = 3 in general graphs with
arbitrary weights is still open.

As a triangle and a square can be considered as a K3 and a Kj o, respectively, the C'<y-free 2-
matching problem admits a natural generalization. The K- and Ky -free t-matching problem asks for
a subgraph with maximum size not containing a K;; or a K;; as a subgraph. The problem was first
considered in bipartite graphs [41,103]. In [14], we extended the algorithm of [12] to K and Ky ;-free
t-matchings in degree bounded graphs. The degree bound is essential here, the problem is still open for
general graphs.

The polyhedral descriptions of the corresponding polytopes are also of interest, forming the topic of
Chapter 6. By the NP-hardness result of Kiraly [86], we may not expect a ‘nice’ description for the C<-
free or C'y-free 2-matching polytopes for £ > 4, where ‘nice’ means that we can separate the inequalities

appearing in the description. Hartvigsen and Li gave a polyhedral description of the triangle-free 2-factor



polytope for subcubic simple graphs in [62]. They also showed that, somewhat surprisingly, triangle-free
2-matchings in subcubic graphs admit a more complicated description. This is a strange phenomenon
as results on b-matchings and b-factors are typically can be derived from each other. They also proposed
a description of the triangle-free 2-matching polytope and gave a sketch of the proof, which was finally
published in [63]. The proof is quite difficult and complicated, but provides an algorithm for finding
a maximum triangle-free 2-matching in a subcubic graph. In [7], based on the description proposed
in [62], we gave another proof of this result. Our motivation was to find a simpler, clearer proof, but to
be honest it finally grew into something rather complicated.

Considering the above, a natural question arises: what can we say about the maximum size or
polyhedral description of a triangle-free subgraph, that is, if the upper bound b on the nodes is left
out. Yannakakis showed [136] that the problem in general is NP-complete, hence we may not expect a
nice polyhedral description again. Conforti et al. proved that the problem remains NP-complete even
in chordal graphs, but given a fixed upper bound on the maximum size of a clique in the graph the
problem becomes polynomially solvable [19,20].

Determining the maximum size of a triangle-free subgraph is equivalent to determine the minimum
size of an edge-set covering each triangle at least once. In 1981, Tuza proposed the following con-
jecture [127]: Given a simple undirected graph G, let v(G) denote the maximum number of pairwise
edge-disjoint triangles, while 7(G) denote the minimum number of edges covering each triangles in G.
Then 7(G) < 2v(G). It is easy to see that the inequality holds with 3 instead of 2. The conjecture has
been verified for various classes of graphs, but is still unsolved in general. The first non-trivial bound
was given by Haxell [64], who proved that the inequality is true with factor (3 — %)

The problem can be generalized in two sense: weights on the edges might be given, and -looking at
a triangle as a clique again- a clique version of the conjecture can be formalized. In [8], we proposed
an extension of Tuza’s conjecture combining these ideas, and proved a fractional weakening of the
conjecture which can be considered as a generalization of Krivelevich’s result. Our approach uses the
notion of Turdn numbers, and basically builds on the so-called splitting property of maximal antichains.

The rest of the thesis is organized as follows. In the remaining part of this chapter, in Sections 1.1-
1.5, we give a short overview of the definitions and results that form the background of our work.
Chapters 2 and 3 can be considered as a continuation of the work started in [6]; we present here the
results of [10,11,13] on packing arborescences, and show its connection to covering intersecting bi-set
families. Chapter 4 introduces the second main topic of the thesis and presents the algorithm and
the min-max result of [12] for the square-free 2-matching problem in subcubic graphs. This result is
then further generalized to K;;- and K; i-free t-matchings in degree bounded graphs in Chapter 5,
which contains the results of [14]. Chapter 6 presents the most technical part of the thesis based on [7].
Through the example of b-factors we introduce a new shrinking operation which is then extended to
give a complete description of the triangle-free 2-matching polytope of subcubic graphs. This part of
the thesis contains many technical computations; the most of them is left to the end of the chapter.
Finally, Chapter 7 contains the result of [8]. It introduces the notion of shadow systems and verifies
that a special class of maximal antichains has the splitting property. This result is then used to give
an upper bound on a weighted version of the Turdn number and to prove a fractional weakening of a

weighted extension of Tuza’s conjecture to clique packing.



4 1. Introduction

1.1 Packing arborescences

Let D = (V,A) be a directed graph with designated root-node r. An arborescence is a directed
tree in which every node is reachable from a given root node. We sometimes identify an arborescence
(U, F) with its edge-set F' and will say that the arborescence F' spans U. An arborescence F' with root
node r is called an r-arborescence. We call D rooted k-edge-connected if for each v € V, there
exist k edge-disjoint directed paths from r to v. By Menger’s theorem, this is equivalent to o(X) > k
whenever ) € X C V —r. A fundamental theorem on packing arborescences is due to Edmonds who
gave a characterization of the existence of k edge-disjoint spanning arborescences rooted at the same
node [34].

Theorem 1.1.1 (Edmonds’ theorem, weak form). Let D = (V, A) be a digraph with root r. D has k

edge-disjoint spanning r-arborescences if and only if D is rooted k-edge-connected.

This result inspired great many extensions in the last three decades. Edmonds actually proved his
theorem in a stronger form where the goal was packing k edge-disjoint branchings of given root-sets. A
branching is a directed forest in which the in-degree of each node is at most one. The set of nodes of
in-degree 0 is called the root-set of the branching. Note that a branching with root-set R is the union
of |R| node-disjoint arborescences (where an arborescence may consist of a single node and no edge but
we always assume that an arborescence has at least one node). For a digraph D = (V, A) and root-set
) € R CV abranching (V, B) is called a spanning R-branching of D if its root-set is R. In particular,

if R is a singleton consisting of an element r, then a spanning branching is a spanning r-arborescence.

Theorem 1.1.2 (Edmonds’ theorem, strong form L.). In a digraph D = (V, A), let R = {R1,..., Ry}
be a family of k non-empty (not necessarily disjoint or distinct) subsets of V.. There are k edge-disjoint

spanning branchings of D with root-sets Ry, ..., Ry, respectively, if and only if
op(X)>p(X) forall) c X CV (1.1)
where p(X) denotes the number of root-sets R; disjoint from X.

Observe that in the special case of Theorem 1.1.2 when each root-set R; is a singleton consisting of
the same node r, we are back at Theorem 1.1.1. Conversely, when the R;’s are singletons (which may or
may not be distinct), then Theorem 1.1.2 easily follows from Theorem 1.1.1. However, for general R;’s
no reduction is known.

Theorem 1.1.2 can be reformulated as follows.

Theorem 1.1.3 (Edmonds’ theorem, strong form II.). Let D = (V, A) be a digraph whose node set is
partitioned into a root-set R = {ry,...,r} (of distinct roots) and a terminal set T. Suppose that no
edge of D enters any node of R. There are k disjoint arborescences Fi, ..., Fy in D so that F; is rooted
at r; and spans T +1r; for each i =1,... k if and only if op(X) > |R — X| for every subset X C'V for
which X N'T # ().

Indeed, this follows easily by applying Theorem 1.1.2 to the subgraph D’ of D induced by T with
choice R; = {v : there is an edge mv € A} (i = 1,...,k). The same construction shows the reverse

implication, too.



1.1. Packing arborescences 5

The following proper extension of Theorem 1.1.3 was derived in [9] with the help of a theorem of

Frank and Tardos [46] on covering supermodular functions by digraphs.

Theorem 1.1.4 (Frank and Tardos). Let D = (V, A) be a digraph whose node set is partitioned into
a root-set R ={ry,...,rq} and a terminal set T'. Suppose that no edge of D enters any node of R. Let
m: R — Z4 be a function and let k = m(R). There are k disjoint arborescences in D so that m(r) of

them are rooted at r and spanning T + r for each v € R if and only if
op(X) > m(R — X) for every subset X CV for which X NT # (. (1.2)

One way to extend Edmonds’ theorems is to decrease the size of the node sets spanned by the
arborescences in question. However, it is not easy to find such a generalization as one can easily run into
difficult questions. In Section 2.1, we show that a variant of Theorem 1.1.4 and even an apparently slight
weakening of the reachability conditions result in NP-complete problems (Theorems 2.1.6 and 2.1.7).

In 2009, Kamiyama, Katoh and Takizawa [82| were able to find a surprising new proper extension

of Edmonds’ strong theorem which implies Theorem 1.1.4 as well.

Theorem 1.1.5 (Kamiyama, Katoh and Takizawa). Let D = (V, A) be a digraph and R = {ry,...,rx} C
V' a list of k (possibly not distinct) root-nodes. Let S; denote the set of nodes reachable from r;. There

are edge-disjoint r;-arborescences F; spanning S; for i =1,....k if and only if
op(Z) > p1(Z) for every subset Z C'V (1.3)
where p1(Z) denotes the number of sets S; for which S; N Z # (0 and r; & Z.

The original proof of Theorem 1.1.5 is more complicated than that of Theorem 1.1.2 due to the fact
that the corresponding set function p; in the theorem is no more supermodular. Based on Theorem 1.1.5,
Fujishige [48] found a further extension. For two disjoint subsets X and Y of V' of a digraph D = (V, A),
we say that Y is reachable from X if there is a directed path in D whose first node is in X and last
node is in Y. We call a subset U of nodes convex if there is no node v in V'\ U so that U is reachable

from v and v is reachable from U.

Theorem 1.1.6 (Fujishige). Let D = (V, A) be a directed graph and let R = {rq,...,rp} CV be a list
of k (possibly not distinct) root-nodes. Let U; C V' be convex sets with r; € U;. There are edge-disjoint

ri-arborescences F; spanning U; fori=1,...,k if and only if
op(Z) > p1(Z) for every subset Z C'V (1.4)
where p1(Z) denotes the number of sets U;’s for which U;NZ # () and r; & Z.

Note that the set of nodes reachable from an r; form a convex set, hence Theorem 1.1.5 immediately
follows from Theorem 1.1.6. It has been showed recently in [84] that these results are in fact equivalent.

In [32], Edmonds’ theorems was extended in another direction. Let D = (V, A) be a digraph, M =
(S,7r1) a matroid on ground set S with rank function rpq and 7 : S — V a (not necessarily injective)
map. For Z C S the closure of Z is denoted by ¢1(Z), that is, c1(Z) ={s € S: rm(Z+s) =rm(Z)}.
A triple (D, S, 7) is called a digraph with roots. The map 7 is called M-independent if 771(v) is
independent in M for each v € V. For X C V, Sx denotes 7~ 1(X).
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A digraph with roots (D, S, 7) is called M-connected, if

o(X) > rm(S) —rm(Sx) (1.5)

holds for each () # X C V.
An M-basic packing of arborescences in (D, S, 7) is aset {F1,. .., Fig} of pairwise edge-disjoint
(not necessarily spanning) arborescences in D such that F; has root at w(s;) for i = 1,...,|S| and the

set {s; € S: v e V(Fj)} forms a base of M for each v € V. The result of [32] is the following.

Theorem 1.1.7 (Gevigney, Nguyen and Szigeti). Let (D,S,7) be a digraph with roots and M be a
matroid on S. There exists an M-basic packing of arborescences in (D, S,7) if and only if 7 is M-

independent and (D, S, m) is M-connected.

Theorem 1.1.2 can be easily derived from Theorem 1.1.7. Indeed, let R = {Ry,..., Ry} be a family
of k non-empty (not necessarily disjoint or distinct) subsets of V. Define S = Jzcz R to be a multiset
in which each v € V' is included as many times as the number of R;’s containing v, and let 7(v) = v. If
we take the partition matroid M on S in which a set Z C S is independent if and only if |[ZNR;| <1
for 1 <1¢ < k, then an M-basic packing of arborescences corresponds to a collection of edge-disjoint
spanning R;-arborescences and vice versa. Note that 7 is clearly M-independent and (1.1) is equivalent
to (1.5), hence Edmonds’ result follows from that of Szigeti et al.

It is a natural question that whether there is a common generalization of Theorems 1.1.5 and 1.1.7.
In [84], Cs. Kiraly gave a common extension of these theorems. Using the notation of [84], we call an
R-branching maximal if it spans all the nodes that are reachable from R in D. For non-empty sets
X, Y CV,let Z — X denote that X and Z are disjoint and X is reachable from Z. Let P(X) =
XUu{veV\X: v X} Aset {F,...,F|g} of pairwise edge-disjoint arborescences is called a
maximal M-independent packing of arborescences if F; has root 7(s;) for i = 1,...,|S|, the set
{s; € S: v e V(F;)} is independent in M and [{s; € S: v &€ V(F))}| = rm(Spw))-

Theorem 1.1.8 (Cs. Kiraly). Let (D, S, n) be a digraph with roots and M be a matroid on S with rank
function rxq. There exists a mazimal M-independent packing of arborescences in (D, S, m) if and only
if ™ is M-independent and

o(X) > rm(Spx)) — rm(Sx) (1.6)

holds for each X C V.

A natural idea is to reformulate Edmonds’ theorem to the node-connected case. Let D and r denote
a digraph and a root-node as previously, then D is called rooted k-node-connected (or rooted k-
connected, for short) if there exist k internally node-disjoint directed paths from r to v for each v € V/
, that is, any two of the paths have only r and v in common. The maximum number of node-disjoint
r — v paths is denoted by x(r,v). For an r-arborescence F, a node u is an F-ancestor of another node
v if there is a directed path from u to v in F'. We denote this unique path by F'(u,v). For example, the
root is the F-ancestor of all other nodes. The maximum number of edge-disjoint » — v paths is denoted
by A(r,v). We say that a node w dominates a node v if every path from r to v includes w. We denote
the set of nodes dominating v by dom(v). Clearly, r and v are in dom(v).

Note that two r-arborescences Fy and Fy are edge-disjoint if and only if for each v € V' the two

paths Fj(r,v) and Fy(r,v) are edge-disjoint. That gives the idea of the following definition: we call two
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spanning r-arborescences F; and F, independent if Fi(r,v) and Fs(r,v) are internally node-disjoint
for each v € V.

As a node-disjoint counterpart of Edmonds’ theorem, Frank conjectured that in a rooted k-connected
graph there exist k independent arborescences (see eg. [112]). The case k = 2 was verified by Whitty [135],
but for £ > 3 the statement does not hold as was shown by Huck [73]. However, Huck also proved that
the conjecture is true for simple acyclic graphs [74] and verified it for planar multigraphs except for a
few values of k [75].

Theorem 1.1.9.

(i) (Whitty) Let D = (V, A) be a digraph with root r. D has two independent spanning r-arborescences
if and only if D is rooted 2-connected.

(ii) (Huck) Let D = (V, A) be an acyclic digraph with root r such that D — r is simple. D has k

independent spanning r-arborescences if and only if D is rooted k-connected.

(111) (Huck) Let D = (V, A) be a directed multigraph with root r and k € {1,2} U {6,7,8,...} such that
D is planar if k > 6. D has k independent spanning r-arborescences if and only if D is rooted

k-connected.

In [18], Colussi, Conforti and Zambelli introduced another type of disjointness concerning arbores-
cences, which put slightly stronger restrictions on the paths than edge-disjointness. In a digraph we call
two arcs symmetric if they share the same endnodes but have opposite orientations. Two edge-disjoint
arborescences Fi, I rooted at r are called strongly edge-disjoint if the paths Fi(r,v), Fy(r,v) do
not contain a pair of symmetric arcs. In [18], the following strengthening of Edmonds’ theorem was

proposed.

Conjecture 1.1.10 (Colussi, Conforti, Zambelli). Let D = (V, A) be a digraph with root r. D has k

strongly edge-disjoint spanning r-arborescences if and only if D is rooted k-edge-connected.

For k = 2, the conjecture was verified in [18]. As Colussi et al. note, the motivation of the problem
is the following. It is easy to see that a similar statement holds for strongly edge-disjoint directed s — ¢
paths. Hence the conjecture, if it were true, could be considered as a common generalization of Edmonds’
disjoint arborescences theorem and Menger’s theorem. Note that the arborescences in the conjecture
are allowed to contain pairs of symmetric arcs, only the paths in question are required not to do so. In
Section 2.2 we give a generalization of the case k = 2 (Theorem 2.2.8) and show that the conjecture
does not hold for & > 3 (Section 2.2.3). As a side result, we get a new proof of a theorem of Georgiadis
and Tarjan [55].

Let now D = (V, A) be a digraph without loops, but D may have parallel arcs. We assume that
D is weakly connected, i.e., [V| — 1 < |A| holds. For each a € A, we denote by t(a) and h(a) the
tail and the head of a, respectively. From now on we distinguish two types of arborescences: in- and
out-arborescences. An r-out-arborescence is just the same as an r-arborescence defined earlier, that
is, it is a directed tree in which the edges are directed away from the root node r. An r-in-arborescence
is a directed tree in which the edges are directed toward the root node r, so the reversal of its edges

results in an out-arborescence.
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The problem of finding k£ arc-disjoint spanning r-out-arborescences for a given root r € V is very
important not only from the theoretical viewpoint but also from practical viewpoints, and it has been
extensively studied. It is known [15,52,101, 122, 124] that this problem can be solved in polynomial
time, and several extensions have been considered in [9,48,82]. However, in many situations, we have
to simultaneously consider not only an in-arborescence but also an out-arborescence. For example, in
evacuation situations, an in-arborescence represents roads which refugees use. On the other hand, an
out-arborescence represents roads used by emergency vehicles. Unfortunately, it is known [5]| that the
problem of finding a pair of arc-disjoint spanning ri-in-arborescence and rs-out-arborescence for given
roots 71,79 € V is NP-complete even if 71 = ry. As a special case, it is only known [5] that this problem
in a tournament can be solved in polynomial time. In Section 2.3, we consider this problem in a directed

acyclic graph and we give a linear time algorithm for solving it (Theorem 2.3.1).

1.2 Covering intersecting bi-set systems

Sub- and supermodular set functions are known to be useful tools in graph optimization but in the
last fifteen years it turned out that several results can be extended to functions defined on pairs of sets
or on bi-sets. Given a ground-set V', we call a pair X = (Xp, X7) of subsets a bi-set if X; C Xp CV
where X is the outer member and X7 is the inner member of X. By a bi-set function we mean
a function defined on the set of bi-sets of V. We will tacitly identify a bi-set X = (X, X) for which
Xo = X7 with the set X1 and hence bi-set functions may be considered as straight generalizations of set
functions. The set of all bi-sets on ground-set V' is denoted by P2(V') = Ps. The intersection N and the
union U of bi-sets is defined in a straightforward manner: for X, Y € Py let XNY := (XpoNYo, X;NY7),
XUY = (XoUY0,XrUYr). We write X C Y if Xp C Yo, X; C Y7 and this relation is a partial
order on P,. Accordingly, when X C Y or Y C X, we call X and Y comparable. A family of
pairwise comparable bi-sets is called a chain. Two bi-sets X and Y are independent if X;NY; =0 or
V = Xo UYo. A set of bi-sets is independent if its members are pairwise independent. We call a set of
bi-sets a ring-family if it is closed under taking union and intersection. Two bi-sets are intersecting if
X1NY; # 0 and properly intersecting if, in addition, they are not comparable. Note that XpUYp =V
is allowed for two intersecting bi-sets. In particular, two sets X and Y are properly intersecting if none
of XNY, X —Y,Y — X is empty. A family of bi-sets is called laminar if it has no two properly
intersecting members. A family F of bi-sets is intersecting if both the union and the intersection of
any two intersecting members of F belong to F. In particular, a family £ of subsets is intersecting
if XNY,XUY € £ whenever X,Y € £ and X NY # (). A laminar family of bi-sets is obviously
intersecting. Two bi-sets are crossing if X;NY7 # () and Xp UYp # V and properly crossing if they
are not comparable. A bi-set (Xp, X7) is trivial if X; = () or Xp = V. We will assume throughout
Chapter 3 that the bi-set functions in question are integer-valued and that their value on trivial bi-sets
is always zero. In particular, set functions are also integer-valued and zero on the empty set and on the
ground-set.

A directed edge enters or covers X if its head is in X; and its tail is outside Xp. The set of
edges entering a bi-set X is denoted by A%(X) = A™(X). An edge set covers a family of bi-sets if

it covers each member of the family. For a bi-set function p, a digraph D = (V, A) is said to cover p
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if op(X) > p(X) for every X € Po(V) where pp(X) denotes the number of edges of D covering X.
For a vector z : A — R, let 0,(X) := Z[z(a) : a € A,a covers X|. A vector z : A — R covers p if
0:(X) > p(X) for every X € Py(V).

A bi-set function p is said to satisfy the supermodular inequality on X,Y € Py if

p(X) +p(Y) <p(XNY) +p(XUY). (1.7)

If the reverse inequality holds, we speak of the submodular inequality. p is said to be fully supermod-
ular or supermodular if it satisfies the supermodular inequality for every pair of bi-sets X, Y. If (1.7)
holds for intersecting (resp. crossing) pairs, we speak of intersecting (resp. crossing) supermodular
functions. Analogous notions can be introduced for submodular functions. Sometimes (1.7) is required
only for pairs with p(X) > 0 and p(Y) > 0 in which case we speak of positively supermodular func-
tions. Positively intersecting or crossing supermodular functions are defined analogously. A typical way
to construct a positively supermodular function is replacing each negative value of a fully supermodular

function by zero. An easy example for a submodular bi-set function is the in-degree function.
Proposition 1.2.1. The in-degree function op on Ps is submodular.

There is another line of extending Theorem 1.1.1 in which, rather than working directly with ar-
borescences, one considers disjoint edge-coverings of certain families of sets or bi-sets. In [40], Frank

proved the following.

Theorem 1.2.2 (Frank). Let D = (V, A) be a digraph and F an intersecting family of subsets of V. It
is possible to partition A into k coverings of F if and only if the in-degree of every member of F is at

least k.

Obviously, when F consists of every non-empty subset of V —r, we obtain the weak form of Edmonds’
theorem. A disadvantage of Theorem 1.2.2 is that it does not imply the strong version of Edmonds’

theorem. The following result of Szegd [120], however, overcame this difficulty.

Theorem 1.2.3 (Szegs). Let Fi,...,Fy be intersecting families of subsets of nodes of a digraph D =
(V, A) with the following mized intersection property:

XeF, YEF, XNY#0 = XNY € F/NF.

Then A can be partitioned into k subsets Ay, ..., A such that A; covers F; for eachi=1,... k if and
only if op(X) > p1(X) for all non-empty X C V where p1(X) denotes the number of F;’s containing
X.

However, Theorem 1.2.3 does not imply Theorem 1.1.5. In [9], we derived an extension of Szeg@’s
theorem to bi-set families.

The bi-set families F7i, ..., Fy said to satisfy the mixed intersection property if
XeF, YeF, XinYr#0 = XNY € F;NF.

For a bi-set X, let po(X) denote the number of indices i for which F; contains X. For X € F;, Y € Fj,
the inclusion X C Y implies X = X NY € F; and hence ps is monotone non-increasing in the sense
that X C Y, pa(X) > 0 and p2(Y) > 0 imply pa(X) > pa(Y).
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Theorem 1.2.4. Bérczi and Frank Let D = (V, A) be a digraph and Fi,. .., Fy be intersecting families
of bi-sets on ground set V' satisfying the mized intersection property. The edges of D can be partitioned
into k subsets Aq,..., A such that A; covers F; for each i = 1,...,k if and only if

op(X) > pa(X) for every bi-set X.

The proof of Theorem 1.2.4 went along the same line as Lovész’ original proof for Edmonds’ theorem

and was based on the following property.

Lemma 1.2.5. If po(X) > 0, po(Y) > 0 and X;NY7 # 0, then pa(X)+p2(Y) < p2(XNY) +p2(XUY).
Moreover, if there is an F; for which X NY € F; and X, Y & F;, then strict inequality holds.

Using Theorem 1.2.4, we give a new proof of Theorem 1.1.6 in Section 3.1. The application of bi-sets
gives a new insight into the structure of convex sets. By using the special bi-set families appearing in the
proof, we are able to give a strongly polynomial time algorithm for finding rooted branchings spanning
given convex sets under edge capacity constraints (Theorem 3.2.2). We also give a polyhedral description
of arborescence packable subgraphs based on a connection with bi-set families (Lemma 3.3.5), and prove

that the corresponding system of inequalities is TDI (Theorem 3.3.7).

1.3 Restricted b-matchings

Let G = (V, E) be an undirected graph and let b : V' — Z, be an upper bound on the nodes. An
edge set F' C F'is called a b-matching if dp(v), the number of edges in F' incident to v, is at most b(v)
for each node v. This is often called simple b-matching in the literature, since multiple copies of the
same edge are not allowed. If not stated otherwise, all b-matchings considered will be simple throughout
Sections 1.3-1.4 and Chapters 4-6. For some integer ¢t > 2, by a t-matching we mean a b-matching with
b(v) =t for every v € V. A closely related concept is b-factor, where instead of dr(v) < b(v) strictly
dr(v) = b(v) is required.

Let K be a list of forbidden subgraphs. The node-set and the edge-set of a subgraph K € K are
denoted by Vix and Ef, respectively. By a K-free b-matching we mean a b-matching not containing
any member of K. The maximum K-free b-matching problem asks for a K-free b-matching in G with
maximum size (that is, a K-free b-matching F' C E with maximum cardinality).

The most important special cases of K-free b-matchings are the so-called C<y-free and Cy-free 2-
matching problems. A 2-matching M is Cy-free if it contains no cycle of length k, and it is C<j-free-free
if it contains no cycle of length k or less. The motivation of these problems is twofold. On the one hand,
they have been studied as relaxations of the Hamiltonian cycle problem. The case k£ < 2 is exactly the
classical simple 2-matching problem, which can be solved efficiently. Papadimitriou showed that the
problems are NP-hard when k& > 5 [22], and Hartvigsen [59] gave an augmenting path algorithm for the
case k = 3. The Cy-free and C<4-free 2-matching problems are left open.

The other motivation comes from undirected node-connectivity augmentation. For an integer k,
a graph (resp. digraph) is k-connected if it contains more than k£ nodes and it remains connected
(resp. strongly connected) when we delete at most k& — 1 nodes from the graph (resp. digraph). The

k-connectivity augmentation problem is the following: make a given graph or digraph k-connected by
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adding a minimum number of new edges. Concerning the directed case, Frank and Jordan gave a min-
max formula and also an algorithm relying on the ellipsoid method for finding the minimum [43]. In [44],
they also provided a combinatorial algorithm to make a (k—1)-connected digraph k-connected. However,
their algorithm is polynomial only for fixed k’s, that is, the running time is polynomial in the size of the
digraph but exponential in k. Végh and Benczur gave a combinatorial algorithm for the general case

whose running time is polynomial also in & [130].

There are only partial results for the undirected case. The solution is trivial when k = 1. Eswaran
and Tarjan solved the problem for k£ = 2 in [38], while Watanabe and Nakamura found a characterization
for the case of k = 3 [132]. Later, Hsu and Ramachandran |71,72]| gave linear time algorithms for both of
these problems. For k = 4, a polynomial algorithm was developed by Hsu [70]. It is also known that near-
optimal solutions can be found in polynomial time for every k, see [76,77|. In [78], Jackson and Jordan
gave an algorithm which provides an optimal solution in polynomial time for every fixed k. If the size of
an optimal solution is large compared to k, their algorithm is polynomial for all k. They also obtained
a min-max formula for this special case, and completely solved the problem for a new family of graphs
called k-independence free graphs. However, the complexity of the node-connectivity augmentation

problem is still open, and it is certainly one of the most interesting unsolved questions in this area.

An interesting special case consists of increasing the connectivity by one, that is, when the starting
graph is already (k — 1)-connected. We call this problem the k-connectivity augmentation by one
problem. Hsu gave an almost linear time algorithm to increase the connectivity from three to four
in [115]. Hence a linear time algorithm for & = 1,2,3, an almost linear time algorithm for k¥ = 4 and
a polynomial time algorithm provided by [78] for fixed k are at hand. A polynomial time algorithm
was given when the graph has a certain condition [100], and approximation algorithms are proposed

in [80,81]. The general case was solved by Végh [129], see later.
On the other hand, values of k close to n are also of interest. If £ = n — 1, then the graph should

be simply extended to a complete graph and the answer is trivial since every augmenting set consists
of the edges of G where G denotes the complement of G. An easy argument shows that a graph G is
(n—2)-connected if and only if each node has degree at most one in G. This implies that for k = n—2 the
k-connectivity augmentation problem is equivalent to finding a maximum matching in the complement
of the graph. It can be verified that a graph G is (n — 3)-connected if and only if the edge set of G
is a Cy-free 2-matching, also called a square-free 2-matching. Moreover, an obvious but important
observation is that if G is (n — 4)-connected then its complement G is a subcubic graph (i.e. each node
has degree at most three). Therefore, the (n — 3)-connectivity augmentation by one problem can be

reduced to the problem of finding a square-free 2-matching of maximum size in a subcubic graph.

The main result of Chapter 4 is a polynomial time algorithm for the square-free 2-matching problem
in simple subcubic graphs (Theorem 4.3.1), which leads to a polynomial time algorithm for the (n —
3)-connectivity augmentation problem (Theorem 4.3.2). Our algorithm is based on the theorem that
square-free 2-matchings in a simple subcubic graph have a matroid-like structure called a jump system
(Theorem 4.3.3). With the aid of known results on jump systems, we show that some optimization
problems are also solvable in polynomial time. We also give a faster algorithm for the square-free 2-

matching problem in simple subcubic graphs, which runs in O(n%) time (Theorem 4.3.9).

We also discuss the weighted versions of the problems. Given a (k — 1)-connected graph G = (V, E)
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and a weight function w : E — R, where E is the complement of E, the weighted k-connectivity
augmentation by one problem is the problem of finding a set of edges of minimum total weight
that should be added to the original graph to obtain a simple k-connected graph. This problem is
known to be NP-hard for fixed k& > 2 [38]. A 2-approximation algorithm is given for & = 3 [4], and
also a 3-approximation algorithm exists for k = 4,5 [27]. For an arbitrary k, an algorithm with the
approximation ratio 2(1 + & + -+ 4 ) is given in [111], and further improvement is given in [109].
See [97] for an overview of the known results.

Of course the weighted (n — 3)-connectivity augmentation by one problem can be reduced to the
problem of finding a square-free 2-matching maximizing the total weight of its edges, which we call
the weighted square-free 2-matching problem. Z. Kirdly proved that the weighted square-free 2-
matching problem in bipartite graphs is NP-hard even for 0 — 1 weights [87]. This problem is, however,
polynomially solvable in bipartite graphs if the weight function is node-induced on every square [103,121].
For a subgraph H = (V(H), E(H)) of G, we say that w is node-induced on H if there exists a function
g V(H) — R such that w(e) = mg(u) + mg(v) for every edge e = uwv € E(H). We show that the
weighted square-free 2-matching problem in simple subcubic graphs can be solved in polynomial time if
the weight function is node-induced on every square (Theorem 4.6.1), whereas the problem is NP-hard
for general weights (Theorem 4.5.1). In our algorithm for the weighted problem, we use the theory of M-
concave (M-convex) functions on constant-parity jump systems introduced by Murota [107]. Hartvigsen
and Li [62], and Kobayashi [88] gave polynomial time algorithms for the weighted Cs-free 2-matching
problem in subcubic graphs with an arbitrary weight function. However, the problem for k£ = 3 in general

graphs with arbitrary weights is still open.

Let us now consider the special case of Cy-free 2-matchings in bipartite graphs. This problem was
solved by Hartvigsen [60,61] and Kiraly [86]. A generalization of the problem to maximum K -free t-
matchings in bipartite graphs was given by Frank [41] who observed that this is a special case of covering
positively crossing supermodular functions on set pairs, solved by Frank and Jordan in [43]. Makai [103]
generalized Frank’s theorem for the case when a list IC of forbidden K;,’s is given (that is, a t-matching
may contain K;;’s not in K.) He gave a min-max formula based on a polyhedral description for the
minimum cost version for node-induced cost functions. Pap [110] gave a further generalization of the
maximum cardinality version for excluded complete bipartite subgraphs and developed a simple, purely
combinatorial algorithm. For node induced cost functions, such an algorithm was given by Takazawa [121]

for K ;-free t-matching.

The Cj-free 2-matching problem admits two natural generalizations. The first one is K ;-free t-
matchings considered in Chapter 5, while the second is ¢-matchings containing no complete bipartite
graph K,; with a +b = t + 2. This latter problem is equivalent to connectivity augmentation for
k =n—t—1. The complexity of connectivity augmentation for general k is yet open, while connectivity
augmentation by one, that is, when the input graph is already (k— 1)-connected was solved in [129] (this
corresponds to the case when the graph contains no K, with a+b =t + 3, in particular, d(v) <t+1).

Let K be a set consisting of K;;’s, complete bipartite subgraphs of G on two colour classes of size
t, and K;y1’s, complete subgraphs of G on ¢ 4+ 1 nodes. We give a min-max formula (Theorem 5.1.4)
on the size of K-free b-matchings and a polynomial time algorithm (Section 5.4) for finding one with

maximum size under the assumptions that for any K € K and any node v of K,
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Vi spans no parallel edges (1.8)
b(v) =t (1.9)
dg(v) <t+1. (1.10)

Note that this is a generalization of the maximum Cj3-free, Cs-free and C<y-free 2-matching prob-
lems in subcubic graphs. Among our assumptions, (1.8) and (1.9) may be considered as natural ones
as they hold for the maximum Kj-free t-matching problem in a simple graph. We exclude parallel
edges on the node sets of members of K in order to avoid having two different K;;’s on the same two
colour classes or two K;1’s on the same ground set. However, the degree bound (1.10) is a restrictive
assumption and dissipates essential difficulties. Our proof strongly relies on this and the theorem cannot
be straightforwardly generalized as it can be shown by using the example in Chapter 6 of [129]. The
proof and algorithm use the contraction technique of [87], [110] and [12]. The contribution of Chapter 5
on the one hand is the extension of this technique for ¢ > 2 and forbidding K;1’s as well, while on the

other hand the argument is significantly simpler than the argument in Chapter 4.

Kobayashi and Yin considered the problem of finding a maximum ¢-matching not containing H as a
subgraph for a fixed graph H, called the H-free t-matching problem [95]. They generalized the results
of [14] by solving the case when H is a t-regular complete partite graph. They also showed that the

problem is NP-complete when H is a connected t-regular graph that is not complete partite.

It is worth mentioning that the polynomial solvability of the above problems seems to show a strong
connection with jump systems. In [119], Szab6 proved that for a list IC of forbidden K;; and Ky
subgraphs the degree sequences of K-free t-matchings form a jump system in any graph. Concerning
bipartite graphs, Kobayashi and Takazawa showed [92] that the degree sequences of C<-free 2-matchings
do not always form a jump system for k > 6. These results are consistent with the polynomial solvability
of the C<j-free 2-matching problem, even when restricting it to bipartite graphs. Similar results are
known about even factors due to [91]. Although Szab¢’s result suggests that finding a maximum K-free
t-matching should be solvable in polynomial time for a list K of forbidden K;; and K, subgraphs,
the problem is still open. Concluding the above, jump systems and M-concave (M-convex) functions are
understood as a natural framework of efficiently solvable problems. Besides studies of these structures
themselves [89,102,107,116], their relation to efficiently solvable combinatorial optimization problems
has been revealed (see [2,29,88,90,93,94,107,119]). The results of Chapters 4 and 5 present such

examples and enforces the importance of these structures.

1.4 Polyhedral descriptions

A cornerstone of matching theory is Edmonds’ [33] description of the perfect matching polytope,

the convex hull of incidence vectors of perfect matchings of a graph G = (V, E).
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Theorem 1.4.1 (Edmonds). The perfect matching polytope is determined by

(1) Te > 0 (eGE),
o(v)) =1 (veV), (Py)
K)>1 (K CV,|K| odd).

Observe that the incidence vector of a perfect matching satisfies all these conditions. The theorem
yields that the set of vertices of the above polytope is identical to the set of incidence vectors of perfect
matchings.

A natural generalization of perfect matchings are b-factors, with 1-factors being perfect matchings.
Recall that b(K) = Y i b(v), while 5(v) denotes the family of edges incident to v € V, that is, any
loop at v occurs twice in 8(v). The set of loops at v € V is denoted by I(v). We call K C V, F C §(K)
a pair if F' does not contain loops (by notation, this only means restriction in case of |K| = 1). The
pair is odd if b(K) + |F| is odd. The b-factor polytope is the convex hull of the incidence vectors

of b-factors of G. In the same paper [33|, Edmonds gave the following characterization of the b-factor

polytope.

Theorem 1.4.2 (Edmonds). The b-factor polytope is determined by

() 0<a. <1 (e € E),
(i) 2(5(v)) = b(v) (vevV), (F2)
(idi) 2(6(K)\ F) — 2(F) > 1 — | F| (K, F) odd).

A polyhedral description of b-matchings can easily be derived from Theorem 1.4.2.

Theorem 1.4.3. The b-matching polytope is determined by

(1)0<z <1 (e € B),
(i) 2(3(v)) < b(v) (vev), (Ps)
(iii) 2(B[K)) + «(F) < | MEH (K, F) odd).

We refer the reader to Part III, in particular, Chapters 30-33 of Schrijver [114] for a detailed discussion
of b-matchings and b-factors.

Results on b-factors can be reduced to perfect matchings via a simple construction. Given a graph
G = (V, E), construct a new graph G’ = (V' E’) as follows. Introduce b(v) nodes for each node v € V.
For each edge e = wv € F, introduce two nodes pc ,, and pe ., an edge pe pe.», and edges connecting pe
to all b(u) copies of u and connecting pe ,, to all b(v) copies of v. It is not difficult to see that G’ contains
a perfect matching if and only if G contains a b-factor. Using this correspondence, results on matchings
can be extended to b-factors, including Theorem 1.4.2, which thus deduces from Theorem 1.4.1. To the
extent of our knowledge, all previous proofs of Theorem 1.4.3 used this correspondence.

An important subclass of b-factors are 2-factors, decompositions of a graph to disjoint union of cycles.
Hamiltonian cycles being 2-factors, it is a natural question looking at special 2-factors not containing
short cycles which led to the notion of C<p-free or Cj-free 2-matchings or factors. We have already

mentioned that determining the maximum size of such a subgraph is NP-complete for k > 5.
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Considering the maximum weight version of the Cj-free 2-factor problem, there is a firm difference
between triangle- and square-free 2-factors. Z. Kiraly showed [87] that finding a maximum weight square-
free 2-factor is NP-hard even in bipartite graphs with 0 — 1 weights. For subcubic graphs, polynomial
time algorithms were given by Hartvigsen and Li [62], and by Kobayashi [88] for the weighted Cs-free 2-
factor problem with an arbitrary weight function. The former result implies that we should not expect a
nice polyhedral description of the square-free 2-factor polytope. However, solvability of the triangle-free
case was a main motivation of our investigation.

Deciding the existence of a triangle-free 2-factor becomes significantly harder without assuming the
graph is subcubic. Yet if instead of (simple) 2-factors, we look at the problem of uncapacitated 2-
factors, when we are allowed to use two copies of the same edge, there exists a polyhedral description
for arbitrary graphs, given by Cornuéjols and Pulleyblank [23]. Let 7 be a set consisting of triangles
of G. The node-set and the edge-set of a triangle T' € T are denoted by Vp and Ep, respectively. An
(uncapacitated) 2-factor is called T-free if it contain at most two edges (counted by multiplicity) of

any member of 7. Cornuéjols and Pulleyblank proved the following.

Theorem 1.4.4 (Cornuéjols and Pulleyblank). The convex hull of characteristic vectors of T -free

uncapacitated 2-factors is determined by

(i) 0 <z, (e € B),
(44) x(é(v)) =2 (veV), (Py)
(111) z(Br) <2 (T eT).

Moreover, description (Py) is totally dual integral.

Returning to our subject, Hartvigsen and Li gave a polyhedral description of the triangle-free 2-factor

polytope for subcubic simple graphs [62].

Theorem 1.4.5 (Hartvigsen and Li). The T -free 2-factor polytope of a simple subcubic graph is deter-

maned by
(1) 0<z. <1 (e € B),
(1) x(6(v)) = (veV), (Ps)
(#i1) z(6(K)\ F) —xz(F) > 1 —|F| (K CV,F CH(K),|F| odd),
() x(BEr) =2 (T eT).

Their proof is based on shrinking triangles and on a variation of the Basic Polyhedral Theorem
of [21]. In the same paper, they gave a description of the T-free 2-matching polytope as well and gave
a sketch of the proof, which was published in its full version in [63].

As we have seen, the b-matching and b-factor polytopes have a similar description. Unexpectedly,
the same does not hold in the triangle-free case. We say that a triangle 7' 1-fits (resp. 2-fits) a set
K CVif|VpNK|=1 (resp. 2). The special edge of a triangle 7' 1-fitting (resp. 2-fitting) the set K
is the edge e € Ep having exactly 0 (resp. 2) endnodes in K, and is denoted by ep. Given a set T of
forbidden triangles, the set of triangles 1-fitting (resp. 2-fitting) K is denoted by T} (resp. 772) while
Tr stands for 7} U 7}%.
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Definition 1.4.6. (K, F,¥) is called a tri-comb of Type i if
1. KCV,FC§K),TCTE.
2. FNEz = 0.

3. The triangles in T are edge-disjoint.

A tri-comb is called odd if b(K) + |F| 4+ |¥| is odd. The deficiency of a tri-comb is defined as
def (K, F, %) = 2(E[K]) + 2(F) + Lpeg 2(Er) — [5(0(K) + |F| + 3|Z))].

—— tedgesin E[K]\ Ez and in 6(K) \ (F U Exg)
: edges in F

A: triangles in ¥

@ : a node and its b-value

Figure 1.1: Odd tri-combs of Type 1 and 2

The fundamental result of Hartvigsen and Li is the following (see [62,63]).

Theorem 1.4.7 (Hartvigsen and Li). The T -free 2-matching polytope of a simple subcubic graph is
determined by

(1) 0 <z <1 (e € ),
(73) z(6(v)) <2 (veV),
(iti) 2(E[K]) + 2(F) + Y peg z(Br) < | K|+ [ (K,F.S) odd  (Pg)

tri-comb of Type 2),
() z(Br) <2 (T eT).

Their proof is algorithmic and uses, in some sense, an Edmonds-style matching algorithm consisting
of clever triangle alteration and alternating forest growing. The algorithm alternates between a primal
and a dual phase, and a quite complex dual change is performed whenever no improvement is found
during the forest growing. The algorithm stops when the primal and dual solutions (that are feasible
throughout) satisfy complementary slackness.

We give new proofs of Theorems 1.4.5 and 1.4.7 in a slightly more general form (Theorems 6.1.1
and 6.1.2). Our proof is a natural extension of the proof of Theorem 1.4.1 given by Ardoz, Cunningham,
Edmonds, and Green-Krotki [3] and Schrijver [113]. It is based on a new shrinking operation that
hopefully could be extended to the non-subcubic case as well which is the sole remaining open problem

concerning triangle-free 2-matchings.



1.5. Splitting property 17

1.5 Splitting property

Let P = (P, <) be a finite partially ordered set. For a subset H C P, sets U(H) ={z € P: Jh €
H: z>h}and L(H) ={x € P: 3Jh € H: x = h} are called the upper and lower shadows of H,
respectively. An antichain A C P is maximal if and only if U/(A) U L(A) = P. We say that a maximal
antichain A has the splitting property if it can be partitioned into two disjoint parts A; U Ay = A
such that U(A;) U L(Ay) = P. This property was introduced and first studied by Ahlswede et al. [1].
They gave the following sufficient condition for the splitting property. A maximal antichain A C P is
called dense if it satisfies the following: whenever x < a < y for some a € A and x,y € P, there exists

an a’ € A\ {a} also satisfying x < @’ < y. They proved the following theorem.

Theorem 1.5.1 (Ahlswede, Erdds and Graham). Ewvery dense maximal antichain in a finite poset

satisfies the splitting property.

The poset P itself has the splitting property if every maximal antichain in P satisfies the splitting
property. The following negative result in [1| shows that this property is NP-hard to decide.

Theorem 1.5.2 (Ahlswede, Erd6s and Graham). It is NP-hard to decide whether a given poset P =
(P, <) has the splitting property.

On the other hand, Duffus and Sands [31]| gave a complete characterization of finite distributive

lattices with the splitting property.

Theorem 1.5.3 (Duffus and Sands). If P is a finite distributive lattice with the splitting property, then

it is either a Boolean lattice, or one of three other lattices.

We consider the poset of multisets of k colours. Formally, let us use the elements of the group Zj as
colours, denoted by {1,...,k}. We call the vectors Z; — Z k-colour vectors, and denote their set by
Mj,. We can define a natural partial ordering on My: for a,c € My, a < cif a; < ¢; for every ¢ € Zj, and
a # c. If a < ¢, we also say that a is a shadow of ¢. (My, <) is a distributive lattice, however, it is not

finite and therefore Theorem 1.5.3 is not applicable. Let

M ={x € M : in:r}
1€ELy,
denote the set of k-colour vectors whose coordinates sum up to r. The main result of Chapter 7 shows
the splitting property of this antichain for » = k£ (Theorem 7.1.1). It is easy to verify that M,’j is not
dense and therefore Theorem 1.5.1 does not imply our result. Indeed, take an arbitrary x € M lf*l and
let y3 =214+ 2 and y; = z; if i # 1. Then M,f contains exactly one element a with x < a < y.

For r <t < n, a Turdn (n,t,r)-system is an r-uniform hypergraph on n nodes such that every
t-element subset of the nodes spans at least one edge of the hypergraph. The Turdn number T'(n,t,r)
asks for the minimum size of such a family; determining the exact values is a problem posed by Pal
Turén [125]. The simplest case t = 3, r = 2 asks for the minimum number of edges of a graph such
that every subset of 3 nodes contains at least one edge. This is equivalent to determining the maximum
number of edges in a triangle free graph on n nodes, a problem solved by Mantel in 1907. The optimal

(n,3,2)-Turan system is the disjoint union of two cliques on node sets of size |5 | and [§].
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The limit ( )

. T(n,t,r
expresses the fraction of all r-element subsets needed for a Turdn (n,t,r)-system. No exact value is
known for any ¢ > r > 2 - in 1981, Pal Erdés offered a bounty of $500 for even a single special case and
$1000 for resolving the general case [36]. For surveys on Turan numbers, see [49,83,118|. De Caen [26]

gave the lower bound ¢(¢,7) > ﬁ The best currently known upper bound is due to Sidorenko [117].

r—1

Theorem 1.5.4 (Sidorenko). For any integers t > r,
tt,r) < (=1 (1.11)

We give a new interpretation of Sidorenko’s construction in terms of shadow systems, and reprove
the theorem using a combinatorial colouring result (Theorem 7.1.2).

We also introduce the natural weighted extension of Turdan numbers: we are given a nonnegative
weight function w on the r-element subsets of V', and let w* denote the total weight of all subsets. The
Turan weight T,,(n,t,r) is the minimum weight of a Turén (n,t,r)-system. Analogously to ¢(¢,r) we

may define
T’LU (n’ t? /r)

tw(t,r) = lim sup "
w

n—=00 gy
Somewhat surprisingly, we show that tw(t,r) = t(t,r), that is, the bound is not affected by the weight,
and the bound on tw(t,r) can be derived from Theorem 7.1.2 the same way as the bound on t(¢,r)
(Theorem 7.2.1).

The notion of weighted Turan numbers enables us to establish a connection between Turdn systems
and Tuza’s [127] famous conjecture asserting that in every graph the minimum number of edges covering
every triangle is at most twice the maximum number of pairwise edge-disjoint triangles. Finding a
minimum number of edges in a graph G = (V, E') covering every triangle is equivalent to computing the
weighted Turan number T, (n,3,2) with n = |V|, and w(e) = 1 if e € E and w(e) = 0 otherwise. We
propose a weighted hypergraphic version of Tuza’s conjecture (Conjecture 7.3.2), and prove its fractional
relaxation (Theorem 7.3.3). This extends the result of Krivelevich [99] on the fractional version of Tuza’s

original conjecture and also makes use of our construction on shadow systems.



Chapter 2

Packing arborescences

2.1 Extending Edmonds’ theorem

Let D = (V, A) be a digraph. We call a vector z : V. — {0,1,...,k} a root-vector if there are k
edge-disjoint spanning arborescences in D so that each node v is the root of z(v) arborescences. From

Edmonds’ theorem one easily gets the following characterization of root-vectors.

Theorem 2.1.1. Given a digraph D' = (V' A"), a vector z is a root-vector if and only if z(V') = k and
2(X) > k — op/(X) for every non-empty subset X C V.

Proof. The necessity of both conditions is evident. For the sufficiency, extend D’ with a node r and
z(v) parallel edges from r to v for each v € V. In the resulting digraph D the out-degree of r is exactly
k and op(X) = 2(X) + op/(X) > k holds for every non-empty X C V'. By Edmonds’ theorem, D
contains k edge-disjoint spanning arborescences of root r. Since dp(r) = k, each of these arborescences
must have exactly one edge leaving r and therefore their restrictions to A’ form k arborescences of D’

of root-vector z. O
For an intersecting supermodular function p with finite p(.5), let
B'(p) ={z e R : 2(S) = p(S), z(A) > p(A) for every A C S}.
This is called a base polyhedron. The following result appeared in an equivalent form in [45].

Theorem 2.1.2 (Frank and Tardos). Let p be an intersecting supermodular function for which p(S)
finite and let f: S — RU{—o0}, g: S — RU{occ} be two functions for which f < g.

(i) The polyhedron {x € B'(p) : f < x} is non-empty if and only if

f(S) < p(S) (2.1)
and .
F(Xo0) + > p(Xi) < p(S) (22)
=1

for every partition {Xo, X1,..., X}, (¢ > 1) of S in which only Xy may be empty.
(11) The polyhedron {x € B'(p) : x < g} is non-empty if and only if

9(X) > p(X) for every X C S. (2.3)

19
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(111) The base-polyhedron {x € B'(p) : f < x < g} is non-empty if and only if neither {x € B'(p) : f <
x} nor {x € B'(p) : x < g} is empty.

If, in addition, each of p, f and g is integer-valued, then the corresponding polyhedra are integral.

Let D = (V, A) be a digraph. Define the set function p by p(X) = k — op(X) for non-empty subsets
X. Then p is intersecting supermodular and Theorem 2.1.1 implies that the root vectors of D are exactly
the integral elements of the bases polyhedron B’(p). By combining this with Theorem 2.1.2, one arrives
at the following result appeared in [39,104].

Theorem 2.1.3 (Cai, Frank). In a digraph D = (V, A) there exist k edge-disjoint spanning arborescences
so that

(i) each node v is the root of at most g(v) of them if and only if

t

> op(Xi) = k(t —1) (2.4)

i=1

holds for every subpartition {X1,..., X} of V, and
9(X) >k —op(X) (2.5)
for every ) C X CV;

(ii) each node v is the root of at least f(v) of them if and only if f(V) < k and

> on(Xi) = k(t — 1) + f(Xo) (2.6)
i=1

holds for every partition {Xo, X1,..., Xt} of V for which t > 1 and only Xy may be empty;

(iii) each node v is the root of at least f(v) and at most g(v) of them if and only if the lower bound

problem and the upper bound problem have separately solutions.
Two interesting special cases are as follows.

Corollary 2.1.4. A digraph D = (V, A) includes k edge-disjoint spanning arborescences (with no re-

t
striction on their roots) if and only if ZQD(XZ') > k(t — 1) for every subpartition {X1,...,X;} of
i=1

V.

Corollary 2.1.5. A digraph D = (V, A) includes k edge-disjoint spanning arborescences whose roots are
¢

distinct if and only if | X| > k — op(X) holds for every non-empty subset X CV set and Z op(X;) >
i=1
k(t — 1) for every subpartition {Xi,...,X:} of V.

Theorem 2.1.3 characterized root-vectors satisfying upper and lower bounds. One may be interested
in a possible generalization for the framework described in Theorem 1.1.4. We show that this problem
is NP-complete. Indeed, let D = (V, A) be a digraph whose node set is partitioned into a root-set
R ={r1,...,ry} and a terminal set T". Suppose that no edge of D enters any node of R.
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Theorem 2.1.6. The problem of deciding whether there are k disjoint arborescences so that they are

rooted at distinct nodes in R and each of them spans T is NP-complete.

Proof. Let T be a set with even cardinality and let R = {R1,..., R;} be subsets of T" so that |R;| > 2
fori=1,...,q. It is well-known that the problem of deciding whether T can be covered with & members
of R is NP-complete. Let Dr be a directed graph on 7" with ¢op,.(Z) =k —1foreach Z C T, |Z] =1
or |Z| =|T|—1and ¢p,(Z) > k otherwise. Such a graph can be constructed easily as follows. Take the
same directed Hamilton cycle on the nodes k — 2 times, then add the arcs v, il to the graph for each
i=0,...,|T| —1 where vy,... ,vjr|—1 denote the nodes according to their order around the cycle (the
indices are meant modulo |T'|). The arising digraph satisfies the in-degree conditions.

Extend the graph with R = {ry,...,r,} and with a new arc r;v for each v € R;. Let r;,,...,r;, € R
be a set of distinct root-nodes. Edmonds’ disjoint branchings theorem implies that there are edge-disjoint
ri-arborescences F; spanning r; + T for i = iy,..., i if and only if op,.(Z) > p(Z) foreach ) Cc Z C T
where p(Z) denotes the number of R;’s (with ¢ € {i1,...,i;}) disjoint from Z. For a subset Z with
|Z| > 2 the inequality holds automatically because of the structure of D7 and |R;| > 2. Hence one only
has to care about sets containing a single node and so the existence of the arborescences is equivalent
to cover T' with ;... , R;, .
The observation above means that 71" can be covered with k members of R if and only if the digraph

includes k arborescences rooted at different nodes in R. O

A natural idea to extend Edmonds’ results would be to somehow decrease the set of nodes to be
spanned by the arborescences. However, as the following theorem shows, one may easily face difficult

questions if doing so.

Theorem 2.1.7. Let D = (V, A) be a digraph with uy,ug,v1,v2 € V and let Uy =V, Uy =V —wvy. The
problem of finding two edge-disjoint arborescences rooted at uy,us and spanning Uy, Us, respectively, is
NP-complete.

Proof. Let D' be a digraph with wuq,us,v1,v2 € V. It is well-known that the problem of finding edge-
disjoint uyvy and usvy paths is NP-complete. We may suppose that the in-degree of v; and vy is one.
Let D denote the graph arising from D’ by adding arcs v1v and vov to A for each v € V' except for the
arc vav1. Clearly, there are edge-disjoint directed uiv; and ugve paths in D’ if and only if there are two

arborescences Fi, Fo in D such that Fj; is rooted at u; and spans Uj. O

2.2 Dicycle-disjoint arborescences

2.2.1 Disjoint Steiner-arborescences

For a digraph D = (V 4 r, A) with root r and terminal set 7' C V', an r-arborescence spanning T is
called a Steiner-arborescence. Two Steiner-arborescences F; and F3 are called edge-independent if
the paths Fi (r,t), F5(r, t) are edge-disjoint for every terminal ¢ € T'. Independent Steiner-arborescences
can be defined in a straightforward manner. Note that paths corresponding to non-terminal nodes are

allowed to violate the disjointness condition hence the arborescences are not necessarily edge-disjoint.
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Z. Kiraly asked [85] whether the existence of k edge-independent Steiner-arborescences is ensured by
A(r,t) > k for each t € T'. As Frank’s conjecture on independent arborescences would follow from such
a result, Huck’s counterexample shows that k = 2 is the only case when this statement may hold. The
following example shows that even acyclicity is not satisfactory for the existence of edge-independent

Steiner-arborescences [98].

Theorem 2.2.1 (Kovécs). There is an acyclic graph for which there are three internally node-disjoint

paths to all of the terminals but there are no three edge-independent Steiner-arborescences.

Proof. The terminal set of the example consists of two nodes t1,t (see Figure 2.1). It can be easily
checked that three edge-disjoint paths can be chosen only one way for both terminals but these cannot

be partitioned into three arborescences. O

Figure 2.1: An example without three edge-independent Steiner-arborescences

Concerning the case when k = 2, the following theorem appeared in [98].

Theorem 2.2.2 (Kovacs). Let D = (V + r, A) be a digraph with root r, terminal set T C V and

A(r,t) > 2 for each t € T. Then there exist two edge-independent Steiner-arborescences.

The node-independent version of the theorem is also of interest. However, the result of Georgiadis

and Tarjan in [55] is a generalization of Theorem 1.1.9 (i).

Theorem 2.2.3 (Georgiadis and Tarjan). Let D = (V 4+ r, A) be a digraph with root r, terminal set

T CV and k(r,t) > 2 for each t € T. Then there exists two independent Steiner-arborescences.

In fact, it can be showed that Theorems 2.2.2 and 2.2.3 are equivalent. The proof of Theorem 2.2.3
in [55] uses the properties of depth-first search (DFS) to find the two arborescences in question. Whitty’s

proof of Theorem 1.1.9 (i) is based on the following special ordering of the nodes.

Lemma 2.2.4. Let D = (V +r, A) be a digraph with root r and k(r,v) > 2 for each v € V.. There is
an ordering r = vg, V1, ..., U, Untr1 = 1 of the nodes so that, for each v; € V', there is an edge vpv; with

h < and an edge viv; with i < j.



2.2. Dicycle-disjoint arborescences 23

This very special ordering proved to be useful. Huck’s proof for Theorem 1.1.9 (ii) is based on the

following lemma which is a variant of Lemma 2.2.4 for acyclic graphs.

Lemma 2.2.5. Let D = (V +r, A) be a simple acyclic graph with o(r) = 0 and o(v) > 1 for each v € V.
There is an ordering o : V +1r — 7Z of the nodes and an r-arborescence I such that for each uv € A, we

have uwv € F if and only if o(u) < o(v), that is, the set of edges going forward is exactly F.

With the help of Lemma 2.2.4 and using the idea of the proof of Theorem 2.2.2, the following

ordering of the nodes immediately shows the existence of proper Steiner-arborescences [98].

Theorem 2.2.6 (Kovacs). Let D = (V+r, A) be a digraph with root r, o(v) = \(r,v) < 2 for eachv € V
and assume that the set of nodes with in-degree 1 is stable. Then there exists an ordering vo, vi, ..., Upt1
of the nodes for which

(i) vo = Vpy1 =T
(ii) Cutting nodes appear twice, other nodes appear once.
(11i) Entering edges of nodes with in-degree 1 appear twice, other edges appear once.

(iv) For a cutting node p, if v; = v; = p and i < j then there is an edge entering v; from the left and
there is an edge entering v from the right, and all the copies of nodes cut by p from r lie between
them.

(v) For every non-cutting node v, there is an edge entering v from the left and one from the right.

(vi) If Fy and Fy denote the sets of edges going forward and backward, respectively, then Fy and Fy are

independent Steiner-arborescences with terminal set T = {v € V : A(r,v) = 2}.

The most important consequence of the existence of the above ordering is the following. Note, that
each non-cutting node appears only once in the ordering. This observation immediately implies the

following theorem, which was also proved in [55].

Theorem 2.2.7 (Georgiadis and Tarjan, Kovacs). Let D = (V, A) be a digraph with root r. There exist
two arborescences Iy and Fy such that for each v € V. —r, the paths Fy(r,v) and Fa(r,v) intersect only
at the nodes of dom(v).

This theorem is the base of our proof for a slight generalization of Conjecture 1.1.10 when k = 2.

2.2.2 A generalization

Note that a pair of symmetric arcs can be considered as a directed cycle. This gives the idea of the
following definition. Let D = (V 4 r, A) be a digraph with root r and terminal set 77 C V. We call
two edge-independent Steiner-arborescences F; and Fb dicycle-disjoint if for each ¢ € T the union
Fy(r,t) U Fy(r,t) does not contain a directed cycle. The motivation of this definition is the following: if
T =V and the arborescences are dicycle-disjoint then they are also strongly edge-disjoint.

The following theorem generalizes the theorem of Colussi, Conforti and Zambelli for k = 2.
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Theorem 2.2.8. Let D = (V, A) be a directed graph with root r and terminal set T. There exist two
dicycle-disjoint Steiner-arborescences if and only if X(r,t) > 2 for each t € T.

Proof. The necessity is clear, we prove sufficiency. Consider the arborescences provided by Theorem 2.2.7.
We claim that these arborescences are dicycle-disjoint.

Assume indirectly that there is a node ¢ € T such that the union of the paths Fy(r,t) and Fy(r,t)
contains a directed cycle. Let r = x1,29,...,2, =t and r = y1,¥2,...,y, = t denote the nodes along
these paths. As the union of the paths contains a cycle, there are indices i1, 42, j1, j2 such that z;, = y;,,
T, = yj, and i1 < iz, j1 < jo. Let x;;, = y;, = w and x;, = y;, = 2. The choice of F7 and F, implies
w, z € dom(t). Now consider the graph G — z. Then the union Fj(r,w) U F(w,t) contains a path from
r to ¢, which contradicts to z € dom(t). O

2.2.3 Disproof of Conjecture 1.1.10 for k£ > 3

We give a counterexample for k = 3 based on a graph given by Huck [73], for other values a similar
construction works. Let D be the graph of Figure 2.2. It is easy to check that D is rooted 3-edge-
connected. The set of nodes in V — r is partitioned into three blocks By, By and Bs. There is one arc
from r to B;, and there are two arcs from B; to B;11 for each i (the indices are meant modulo 3 plus
1) such that together they form two directed cycles of length three. The edges of these triangles are
denoted by eq2, €23, €31 and fi9, fa3, f31, respectively (see Figure 2.2).

Assume that there exist three strongly edge-disjoint arborescences FY, F» and F3. Clearly, each F;
contains an edge from 7 to one of the blocks, say F; contains the one that goes to B;, and it uses exactly
one of e;;+1 and f;; 41 and the same holds for e;;1;49 and f;+1;42- Also, at least one of the arborescences
has to use the pair e;;11, fit1ir2 OF fiir1, €ir1ir2. Assume that Fy does so. But that implies that F; and
F5 can not be strongly edge-disjoint as they have to share a symmetric pair in By that they use when

going to Bs, so for any node v € Bg the paths Fj(r,v) and Fy(r,v) contain a pair of symmetric arcs.

Figure 2.2: Counterexample for Conjecture 1.1.10
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2.2.4 Further remarks

Edmonds’ theorem gives a characterization of the existence of k edge-disjoint arborescences. On the
other hand, we have seen that the analogue statement about independent arborescences does not hold.
The notion of strongly edge-disjointness somehow lies between these two types of disjointness, but, as
we showed, the conditions of Edmonds’ theorem do not ensure the existence of such arborescences. So a
natural idea is to turn to the other ‘extremity’ concerning the necessary conditions, and formulate the

following conjecture.

Conjecture 2.2.9. Let D = (V +r, A) be a digraph with root v and assume that x(r,v) > k for each

v € V. Then there exist k dicycle-disjoint arborescences.

2.3 In- and out arborescences

The aim of this section is to prove the following theorem.

Theorem 2.3.1. Given a directed acyclic graph D = (V, A) with roots r1,r9 € V, we can discern the
existence of a pair of arc-disjoint spanning ri-in-arborescence and ro-out-arborescence, and find such

arborescences if they exist, in O(|A|) time.

2.3.1 An associated bipartite graph

We define a bipartite graph Gp = (X,Y; F) associated with our problem for a directed acyclic graph
D = (V, A), and we show that our problem in D is equivalent to the problem of finding a matching that
covers all nodes of Y in Gp. In the sequel, we assume without loss of generality that dp(r;) = 0 and
op(r2) = 0 holds. Note that if dp(ry) # 0 or pp(ra2) # 0 holds, there exists no feasible solution since D
is acyclic.

Define a bipartite graph Gp = (X,Y; E)) with two node sets X and Y and an edge set E between
X and Y as follows.

(i) Node set X is given by X = {z(a) | a € A}, where |X| = |A]|.
(ii) Node set Y consists of two disjoint sets Y+ and Y~ given by Y+ = {yT(v) | v € V' \ {r1}} and
Y= ={y (v) [veV\{r}}
(iii) For each a € A, we have two edges in E: one connects x(a) and y*(¢(a)) and the other connects
x(a) and y~ (h(a)). That is, E = {(z(a),y" (t(a))) | a € Ay U{(x(a),y (h(a))) | a € A}.

For example, for a directed graph D in Figure 2.3 (a) the bipartite graph Gp becomes the one as
illustrated in Figure 2.3 (b).

Here we introduce notations to be used in the subsequent arguments (see Figure 2.4). For each
e € E, let Ox(e) (resp. dy (e)) be the endpoint of e belonging to X (resp. Y). For each e € E, we denote
by p(e) the edge ¢’ € E with e # ¢’ and dx(e) = dx(€’). Notice that since dg,, (z) = 2 holds for each
x € X by the definition of Gp, p(e) is uniquely determined for each e € E.

Now we are ready to show the equivalence between our problem for D and the problem of finding a

matching in Gp which covers all nodes of Y.
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y (r1) oy (v) y(v) yT(r2)

z(er) z(e2) w(es) z(es) x(es)
(b)
Figure 2.3: (a) An input directed graph D. (b) The bipartite graph Gp associated with D.

Ox (e)
Figure 2.4: An illustration of notations.

Lemma 2.3.2. Given a directed acyclic graph D = (V, A) with roots ri,79 € V, there ezists a pair
of arc-disjoint spanning ri-in-arborescence Fy and ry-out-arborescence Fo if and only if there exists a
matching M in Gp = (X,Y; E) which covers all nodes of Y. Furthermore, we can construct a pair of
such Fy and Fy from a matching M in O(|A]) time.

Proof. Since it is not difficult to see the ‘only if’ part of the lemma, we show the ‘if’ part. Let M be
a matching in Gp which covers all nodes of Y. Let AT (resp. A~) be the set of arcs a € A such that
x(a) is connected with some node of Y'* (resp. Y ) by an edge of M. Let T (resp. T%) be the subgraph
(V, A") (resp. (V,A7)) of D. Since M covers all nodes of Y, |67, (v)| = 1 (resp. |or, (v)| = 1) holds for
each v € V\ {r1} (resp. V'\ {r2}). Thus, since D is acyclic, T} and T are a spanning r-in-arborescence
and a spanning re-out-arborescence, respectively. Furthermore, since M is a matching, AT and A~ are
disjoint, which implies 77 and T5 are arc-disjoint. This completes the proof of the ‘if’ part.

The latter half of the lemma immediately follows from the proof of the ‘if’ part. O

By Lemma 2.3.2, we can discern the existence of a pair of arc-disjoint spanning ri-in-arborescence
and ry-out-arborescence, and find such arborescences if they exist, by computing a maximum matching
of Gp. Hence, we can solve our problem in polynomial time by using bipartite-matching algorithms such
as in [69]. However, we show in the subsequent section that we can discern the existence of a matching

of Gp which covers all nodes of Y and find such a matching if one exists, in O(|A|) time.

2.3.2 A linear time algorithm

Our goal is to show the following theorem, which implies Theorem 2.3.1 by Lemma 2.3.2.

Theorem 2.3.3. Given a directed acyclic graph D = (V, A) with roots r1,r9 € V, we can discern the
existence of a matching in Gp = (X,Y; E) which covers all nodes of Y and find such a matching if one
exists, in O(|A|) time.
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In the subsequent arguments, we assume without loss of generality that dg, (y) > 1 holds for every
y € Y since if there exists a node y € Y with dg,, (y) = 0, there exists no solution. We divide the proof

into two parts corresponding to the following two cases.

Case 1: For every y € Y, dg, (y) > 2 holds.
Case 2: There exists y € Y with dg,(y) = 1.

We first show that in Case 1, there always exists a matching in Gp which covers all nodes of Y,
and we can find such a matching in O(|A|) time. Then, we show that in Case 2, we can discern the
existence of a matching in GGp which covers all nodes of Y, and reduce the problem to Case 1 if any

such matching exists, in O(|A|) time.

Case 1
We prove the following lemma for Case 1.

Lemma 2.3.4. Given a directed acyclic graph D = (V, A) with roots r1,r2 € V, if da,(y) > 2 holds
for every y €Y, there always exists a matching in Gp = (X,Y; E) which covers all nodes of Y, and we

can find one such matching in O(|A|) time.

Proof. Let Gp = (X U {s},Y;E) be the bipartite graph obtained from Gp by adding a new node s
and connecting edges between s and each odd-degree node y € Y (see Figure 2.5 (a)). It is easy to see
that |E| < |E| + |Y| = |E| + 2(]V| — 1). Furthermore, since dg,, () = 2 holds for every = € X, we have
|E| = 2|X| = 2|A|. Hence, |E| = O(|A|) holds, and our goal is to find a desired matching in O(|E))
time.

Since the sum of the degrees of all nodes © € X is even, the degree of s in Gp is even. This implies
that Gp is an Eulerian graph. Hence, G consists of several edge-disjoint cycles (see Figure 2.5 (b)),
which can be computed in O(|E|) time by using an algorithm for finding Eulerian walk (for a standard
algorithm, see [96]). Let M be the set of edges of Gp obtained from all the cycles by choosing every
other edges along the cycles (see Figure 2.5 (b)). Then every node v of Gp has %dép (v) edges in M
that are incident to v. It should be noted that for each odd degree node v in Gp we have dg _(v) > 4,
so that such a node v is incident to at least two edges in M. Hence, letting M = M N E, M satisfies the
following conditions. (Note that M is obtained by removing from M the edges incident to s in G D-)

A1l. M covers all nodes of Y.

A2. Fach z € X is covered by exactly one edge in M.

By Conditions Al. and A2., we can obtain a matching in G p which covers all nodes of Y by appropriately
removing edges from M. This completes the proof. O

Case 2

We show that in Case 2 we can discern the existence of a feasible solution of our problem and reduce
the problem to Case 1 if one exists, in O(]A|) time. This will complete the proof of Theorem 2.3.3.
The following lemma asserts that we can reduce Case 2 to Case 1 by greedily removing nodes with

degree one.
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z(e2)

Figure 2.5: (a) A bipartite graph Gp obtained from Gp in Figure 2.3 (b). (b) Cycles C;, Cs and Cs in
Gp. The set of dotted lines represents M.

Figure 2.6: Black nodes and dotted edges are removed from Gp.

Lemma 2.3.5. Suppose that we are given a directed acyclic graph D = (V, A) with roots r1,r9 € V, and
a node §j € Y with dg,(j) = 1, denoting by & € E the single edge incident to . Let Gp = (X,Y; E)
be the bipartite graph obtained from Gp = (X,Y; E) by removing nodes § and Ox(€) and edges € and
p(€) (see Figure 2.6). Then, there exists a matching M in Gp which covers all nodes of Y if and only

if there exists a matching M in Gp which covers all nodes of Y.

Proof. We first prove the ‘if’ part. Assume that there exists a matching M in G'p which covers all nodes

of Y. Then, we can construct a matching M in Gp which covers all nodes of Y by adding & to M.
Next we prove the ‘only if” part. Assume that there exists a matching M in Gp which covers all

nodes of Y. Since dg,, (y) = 1, € must be included in M, and p(€) is not included in M. Hence, we can

construct a matching M in Gp which covers all nodes of Y by removing & from M. O

By Lemma 2.3.5, we can describe the procedure in which we can discern the existence of a feasible

solution of our problem, and reduce the problem to Case 1 if one exists, in O(|A4|) time as in Procedure 1.

Procedure 1 Processing degree one nodes
1: Compute dg,(y) forall y € Y, and set Q = {y € Y | dg,, (y) = 1} and My = 0.

2: while Q # 0 do
3:  Choose y € Q. We denote by € the single edge incident to y. Put My < My U {é} and remove g

from @. Then, we remove nodes § and Jdx(€), and edges € and p(é) from Gp. Furthermore, if the
degree of dy (p(€)) in the updated Gp is equal to one, we add dy (p(€)) to Q; if it is equal to zero,
we remove Oy (p(€)) from Q.

4: end while

5: return Gp and M.

It should be noted that since () contains all nodes y € Y with dg,, (y) = 1 in each iteration of Step 3,
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the procedure is correct. Furthermore, we can easily see the following lemma, due to Lemma 2.3.5.

Lemma 2.3.6. Given a directed acyclic graph D = (V, A) with roots r1,79 € V, Procedure 1 always
terminates in O(|A|) time. Suppose that Procedure 1 returns a bipartite graph G’ = (X', Y'; E') and a
matching Mo. Then, we have dgr_ () =2 for every x € X' and der, (y) # 1 for every y € Y'. If there
exists a node y in G’y such that deD (y) = 0, then there does not exist a pair of arc-disjoint spanning ri-
in-arborescence and ro-out-arborescence. Otherwise we can construct a matching M in Gp which covers

all nodes of Y, from a matching M’ in G';, which covers all nodes of Y', by putting M < M’ U M.

A full description of our algorithm

We are now ready to describe a linear time algorithm for our problem.

1. If there exists y € Y with dg,,(y) = 1, apply Procedure 1 and let G, and My be the output of
Procedure 1. If there exists a node whose degree is equal to zero in G',, return NULL (there exists
no feasible solution). Otherwise, put Gp < G, and go to Step 2.

2. Find a matching M in Gp covering all nodes of Y as described in the proof of Lemma 2.3.4, and
put M <« M U M.

3. Using the matching M in Gp, compute a pair of arc-disjoint spanning ri-in-arborescence F; and

ro-out-arborescence Fy and return Fp and Fs.

It follows from Lemmas 2.3.4 and 2.3.6 that the above algorithm can find a matching in Gp which

covers all nodes of Y if one exists in O(|A|) time. This completes the proof of Theorem 2.3.3.

2.3.3 An extension to multiple roots

Now we consider the case where we have multiple roots for in-arborescences and out-arborescences,
respectively. Suppose that we are given a directed acyclic graph D = (V, A), two disjoint finite index
sets I and I, and a root r; € V for each ¢ € I U I, where we allow r; = r; for distinct 7, j. We assume
without loss of generality that 0p(r;) = 0 (resp. op(r;) = 0) holds for each i € I (resp. i € I3). Let Ry
(resp. R2) be the set {r; | i € I} (resp. {r; | i € I2}). Then we consider the problem of discerning the
existence of a set of arc-disjoint r;-in-arborescences F; (i € I1) and r;-out-arborescences F; (i € I3) such
that for each i € I (resp. i € I3) the node set of F; is (V' \ Ry) U {r;} (resp. (V \ R2) U{ri}).

In the same manner as in Section 2.3.1, we can see that there exist desired arborescences if and only
if there exists a matching which covers all nodes of Y in a bipartite graph Gp = (X,Y; F) defined as

follows.
(") Node set |X| is given by X = {z(a) | a € A}, where | X| = |A].

(i") Node set Y consists of disjoint sets Y, (i € I}) and Y, (i € I2). For each i € Iy (resp. i € I) ,
YT (resp. Y;7) is given by {y;"(v) | v € V' \ R} (reps., {y; (v) |v € V \ Ra}).

(iii") The edge set E consists of two sets ET and E~. For each a € A with h(a) ¢ Ry (resp. t(a) ¢ R»)
and i € I (resp. i € I3), we connect z(a) and y;" (t(a)) (resp. y; (h(a))) by an edge in ET (resp.
E~). For each a € A with h(a) € Ry (resp. t(a) € Ry), we connect x(a) and y; (t(a)) (resp.
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y; (h(a))) for i € I with h(a) = r; (resp. i € I with t(a) = ;). The edge sets E* and E~ contain

no other edge.

We can discern the existence of desired arborescences and find them if they exist, by computing a
maximum matching in Gp. However, notice that dg,(x) > 3 may hold for each € X, which is
different from the case of the problem of finding a pair of an in-arborescence and an out-arborescence. It
is left open whether we can find desired arborescences more efficiently than by using existing bipartite

matching algorithms.

2.3.4 Thomassen’s conjecture

As we have already mentioned, the problem of finding disjoint in- and out-arborescences for a given
root node is N P-complete. The following conjecture was proposed by Thomassen [123]. Recall that a
digraph D is k-edge-connected if x(u,v) > k for each u,v € V.

Conjecture 2.3.7 (Thomassen). There exists a value k so that in every k-edge-connected directed graph

D = (V, A) and for every node v € V, there are disjoint spanning in- and out-arborescences rooted at v.

It is known that Conjecture 2.3.7 is not true for k = 2, but it is still open for k = 3. Assume that
D = (V,A) is a directed graph and r € V is a designated root-node for which D — r is acyclic. Then
the existence of disjoint spanning in- and out-arborescences rooted at r can be decided easily with a
slight modification of the bipartite graph defined in 2.3.1.

Define a bipartite graph G = (VT UV, A; E) where VT and V™~ are two copies of V — r, each
node in A corresponds to an arc of D and E contains the edges av™ and au™ for each uv = a € A’ (if
u,v # r, in other case one of the edges is missing from F). Since D — r is acyclic, a matching covering
V*+ UV~ corresponds to a pair of disjoint spanning in- and out-arborescences, hence Hall’s theorem
gives a necessary and sufficient condition. However, as each node in A has degree at most 2, it is easy
to see that -for example- p(v),d(v) > 2 Vv € V — r ensures the existence of such arborescences in this
very special case.

Hence a natural idea would be the following. Leave out edges from a highly-edge-connected directed
graph in such a way that the resulting graph contains a node covering each directed cycle and every
other node has in- and out-degree at least 2. Then the above would imply the existence of disjoint in-
and out-arborescences rooted at r. Unfortunately this approach does not work in general. Take the same
directed cycle v1,...,v9; k times, do the same with another directed cycle w1, ..., ws. and finally add
the edges v9; _1wa; 1, wojve; for i = 1,..., k. The resulting digraph is clearly k-edge-connected. In order
to make each directed cycle going through the same node we have to completely cut through at least one
of the cycles by leaving out edges. Then in this cycle a node with in- or out-degree at most 1 certainly

appears.

2.4 Covering by arborescences

When can a digraph D = (V, A) be covered by k spanning arborescences of root 7?7 For any subset
X of nodes, let I'" (X) = {v € X: there is an edge uv € A for which u € V' \ X'} and call this set the
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entrance of X. That is, the entrance consists of the head nodes of edges entering X. The following

result of [131] may be considered as a covering counterpart of Edmonds’ disjoint arborescences theorem.

Theorem 2.4.1 (Vidyasankar). Let r be a root node of a digraph D = (V, A) so that no edge enters r.

It is possible to cover the edge set of D by k r-arborescences if and only if
o(v) <k for everyv eV —r (2.7)

and
k—o(X) <) [k—o(v):vel (X)] (2.8)

for every ) € X CV —r, where T'=(X) is the entrance of X.

Theorem 2.4.1 can be proved by using Edmonds’ weak theorem. One may be interested in a similar
covering counterpart of Theorems 1.1.5 and 1.1.6 as well. The following theorem from [10] shows that

such a generalization of Theorem 2.4.1 is indeed valid.

Theorem 2.4.2. Let D = (V, A) be a digraph and {ri,...,rx} = R C V be a set of (not necessary
distinct) root-nodes. Let U; C 'V be conver sets with r; € U;. The edge set A can be covered by r;-

arborescences I; not leaving U; if and only if
o(v) < p1(v) for each v eV (2.9)

and
pi(X) = o(X) < [p(v) —o(v) : veT™ (X)) (2.10)

for every O € X C V, where T~ (X) denotes the entrance of X and p1(X) denotes the number of sets
Ui;’s for which UyN X # 0 and r; ¢ X.

Proof. First we prove necessity. Suppose that there are k proper arborescences covering A. We may
suppose that F; spans U; for each i € {1,...,k}. Since an arborescence F; contains no edge entering v if
v =r; orv ¢ U;, and one edge entering v if v # r; and v € Uj;, the necessity of (2.9) follows immediately.

Necessity of (2.10) can be seen as follows. For each e € A let z(e) denote the number of arborescences
covering e minus 1. Then z > 0, moreover o,(X)+o(X) > p1(X) foreach ) € X C V and .(v)+o(v) =
p1(v) for each v € V. Since each edge entering X has its head in I'"(X), we have g,(X) < Z[Qz(v) :
v € I'"(X)] and these imply

prX) = o(X) € 0:(X) < [o:(v) : we I (X)] =) [p(v) —o(v) : veI(X)].

Now we turn to sufficiency. For every node v € V, give a copy of v to D denoted by v’. For a subset
X of V let X’ be the copy of X. Add p;(v) parallel edges from v to v', p1(v) — o(v) parallel edges from
v' to v, and finally p;(v) parallel edges from u to v’ for every edge uv € A. Let D’ denote the directed
graph thus arising.

If there exist F}, ..., F} disjoint arborescences in D’ such that F} is rooted at r; and F} is spanning
U; UU/ (where U/ denotes the copy of U;), then these determine k proper arborescences of D covering
A. Tt is easy to see that for every convex set X C V in D the union X U X’ C V UV’ is also convex in
D'
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In other case, by Fujishige’s theorem, there is a subset W of V' UV’ such that p/(W) > o/ (W) where
pPW)={ie{l,....k}: (U;UU)NW #0, r; ¢ W} and o' = ops. We define the following subsets
of W: X={veV:veW}hY={veV:v¢gW}land Z={ €W : v¢ W} We have

PV) <pi(X)+) [pi(v): o' € Z].

On the other hand

op (W) = o(X) + > [p1(v) —o(v): veY]+ ) [pi(v): v €T (X) = Y]+ [pi(v): v/ € Z].

The explanation of the second sum is that if v € 7 (X) — Y, then v/ € W also holds. Moreover, there
exists, since v is in the entrance, u ¢ W such that uv € A, hence there are p;(v) arcs from u to v'.

From these inequalities we get

p1(X) > o(X) + Y [p1(v) —ow): vEY]+ D [p1(v): vET(X) = Y]
> 0(X) + Y [p1(v) —o(v) : veT™ (X)),

contradicting condition (2.10). O

As we have seen, most of the theorems about packing arborescences admit a covering counterpart. It
would be natural to find such an extension corresponding to Theorem 1.1.8. A set {1, ..., Fig/} of -not
necessarily edge-disjoint- arborescences is called a capacitated maximal M-independent packing
of arborescences if F; has root m(s;) for i = 1,...,]5], the set {s; € S: v € V(F})} is independent
in M and [{s; € S: v € V(F}))} =rm(Sp))- We propose the following conjecture.

Conjecture 2.4.3. Let (D, S, ) be a digraph with roots and M be a matroid on S with rank func-
tion raq. It is possible to cover the edge set of D by a capacitated maximal M-independent packing of

arborescences if and only if
0(v) <rm(Spy) = TMm(Sy) for every v eV (2.11)

and

Tm(Spx)) —rm(Sx) — o(X) <
> [rm(Spw) — ru(Se) — o(v) 1 v € T (X))

for every 0 € X CV, where ' (X) is the entrance of X.

We only prove necessity.

Proof of necessity. Suppose that there exists a proper covering. Clearly, at most TM(SP(,,)) — rpm(Sy)
arborescences not rooted at v contain v, hence (2.11) follows.

Necessity of (2.12) can be seen as follows. For each e € A let z(e) denote the number of arborescences
covering e minus 1. Clearly, z > 0. As there exists a capacitated maximal M-independent packing of

arborescences, we have 0.(X) + o(X) > rm(Sp(x)) — rm(Sx) for each § € X C V' by Theorem 1.1.8.
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Moreover, 0.(v) + 0(v) = rm(Spw)) — 7m(Sy) for each v € V' by the maximality of the packing. Since
each edge entering X has its head in I'" (X)), we have g,(X) < Z[Qz(v) : v eI (X)] and these imply

rm(Sp(x)) = Tm(Sx) = o(X) < 0:(X)
<3 le:(v) s ve I (X)]
=Y [rm(Spw) = rm(Sy) —o(v) : v €T (X)].
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Chapter 3

Covering intersecting bi-set families

3.1 Proof of Theorem 1.1.6

We start this section by proving Fujishige’s theorem (Theorem 1.1.6) based on Theorem 1.2.4.

Proof of Theorem 1.1.6. If the node set of an arborescence F' of root r; intersects a subset Z C V —ry,
then F' contains an element entering Z. Therefore if the k edge-disjoint arborescences exist, then Z
admits as many entering edges as the number of sets U; for which Z NU; # () and r; € Z, that is, (1.4)
is indeed necessary.

Now we prove sufficiency. For brevity, we call a strongly connected component of D an atom. It is
known that the atoms form a partition of the node set of D and that there is a so-called topological
ordering of the atoms so that there is no edge from a later atom to an earlier one. By a subatom we
mean a subset of an atom. Clearly, a subset X C V is a subatom if and only if any two elements of X

are reachable in D from each other. The following observation is obvious from the definitions.
Proposition 3.1.1. If a subatom X intersects a conver set U, then X C U.

Define k bi-set families F; for ¢ = 1,..., k as follows. Let
Fi={(Xo,X1): XoCV —r;, X;=XoNU; #0, X is a subatom}. (3.1)

For each bi-set X, let po(X) denote the number of F;’s containing X. It follows immediately that F; is

an intersecting bi-set family.

Proposition 3.1.2. The bi-set families F; satisfy the mixed intersecting property.

Proof. Let X = (X0, X1) and Y = (Yo, Y7) be members of F; and Fj, respectively, and suppose that X
and Y are intersecting, that is, X;NY7 # (). By Proposition 3.1.1, we have that X; = XoNU; C U; NU;
and Y7 = Yo NU; C U; N Uj. This implies for sets Zp := Xp NYp and Z; := X; NY} that Zp NU; =
XoNnU;NYo = XoNU;NYpoNU;j = Zy and also ZpoNU; = XoNYoNU; = XoNU;NYoNU; = Z; from
which Z; CU;NU; and (Zo — Z;) N (U; UU;) = 0. Hence X NY = (Zop, Z1) € F;NFj, as required. [

Proposition 3.1.3. o(X) > pa(X) for each bi-set X.

Proof. Let q := p2(X) and suppose that X belongs to Fi, Fa,..., Fy. Let V' :=V — (U1 U...UU,) and
Z = XrU{v e V': Xy is reachable from v}.

Let e = uv be an edge of D entering the set Z. Then u cannot be in V' — Z for otherwise X; would
be reachable from u and then u should belong to Z. Therefore u is in (U3 U...UU,) — Z. Let U; be

35
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one of the sets Uy, ..., U, containing u. We claim that the head v of e must be in X;. For otherwise we
are in a contradiction with the hypothesis that U; is convex since v is reachable from U; (along the edge
uwv) and Uj; is also reachable from v since X; C U; is reachable from v.

It follows that the edge e entering the set Z also enters the bi-set X = (Xo, X7). Therefore o(X) >
0o(Z). By (1.4), we have o(Z) > p1(Z). It follows from the definition of Z that p1(Z) > g = p2(X), and
hence o(X) > pa(X) O

Therefore Theorem 1.2.4 applies and hence the edges of D can be partitioned into subsets A1, ..., Ax
so that A; covers F; forv=1,... k.

Proposition 3.1.4. Fach A; includes an r;-arborescence F; which spans U;.

Proof. If the requested arborescence does not exist for some 4, then there is a non-empty subset Z of
U; — r; so that A; contains no edge from U; — Z to Z. Consider a topological ordering of the atoms and
let @ be the earliest one intersecting Z. Since no edge leaving a later atom can enter (), no edge with
tail in Z enters Q.

Let Xp == (V-U;)U(ZNQ) and X1 := XpoNU;. Then X; = ZNQ is a subatom and X = (Xp, X1)
belongs to F;. Therefore there is an edge e = uv in A; which enters X. It follows that v € X; C Z and
that u € U; — X71. Since u is not in Z and not in V' — U, it must be in U; — Z, that is, e is an edge from
U; — Z to X1 C Z, contradicting the assumption that no such edge exists. O

O

It is worth mentioning that Theorem 1.2.4 has an equivalent form that uses T-intersecting families

instead of bi-sets [9]. For a subset T' of V| we call the set families F7,...,F; T-intersecting if
X, YeF, XNYNT+#0) = XNY,XUY € F,.
We say that Fi,...,Fy satisfy the mixed T-intersection property if
XeF,YeF;, XnNYNT#0 = XNY € F;NF.
Then the equivalent form is as follows.

Theorem 3.1.5. Let D = (V, A) be a digraph and T a subset of V' that contains the head of every edge
of D. Let Fi,...,Fr be T-intersecting families also satisfying the mized T -intersection property. Then
A can be partitioned into subsets Ay, ..., Ay so that A; covers F; if and only if o(X) > p(X) for each
non-empty subset X of V. where p(X) denotes the number of F;’s containing X .

3.2 The capacitated case

Fujishige’s theorem can also be reformulated in terms of root-sets and branchings.
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Theorem 3.2.1. Let D = (V, A) be a directed graph and let R = {R1,..., R} be a list of k (possibly
not distinct) root-sets. Let U; C V' be conver sets with R; C U;. There are edge-disjoint R;-branchings
B; spanning U; fori=1,... k if and only if

op(Z) > pi1(Z) for every subset Z CV (3.2)
where p1(Z) denotes the number of sets U;’s for which Uy Z # 0 and R; N Z = 0.

In [114] (pp. 920-921), Schrijver presented a strongly polynomial time algorithm to find maximum
number of r-arborescences under capacity restrictions. By following his approach, one can find disjoint
branchings satisfying the conditions of Theorem 3.2.1 in strongly polynomial time even in the more
general case when a demand function is given on the set of root-sets. The approach of [114] does not
work directly as it strongly relies on the supermodularity of the set function p(Z) = > [m(R;) : R; €
R, RN Z = ()]. Tt is easy to see that p; is no more supermodular (for that very reason the original

proof of Theorem 3.2.1 was far more complicated than the one Lovasz gave to Edmonds’ theorem).

Theorem 3.2.2. Let D = (V, A) be a digraph, g : A — Z a capacity function, R = {Ry,..., Ry} a list
of root-sets, U = {Uy, ..., Ui} a set of convexr sets with R; C U; and m : R — Z4 a demand function.
There is a strongly polynomial time algorithm that finds (if there exist) m(R) disjoint branchings so
that m(R;) of them are spanning U; with root-set R; and each edge e € A is contained in at most g(e)

branchings.
Proof. Define the bi-set function

x) { Sim(R): Ri€R, XiNR; =0, X; = XoNU] if X # 0 is a subatom,
b2 =

0 otherwise.

By replacing every arc a by g(a) parallel arcs, it follows from the proof of Theorem 1.1.6 using bi-sets

that (3.2) is equivalent to requiring that
04(X) > pa(X) for every bi-set X € Ps. (3.3)

The algorithm gradually increases the set of triples (R;,U;, m(R;)) during the algorithm, that is,
new root sets may appear and we always assign one of the convex sets to a newly appearing root-set.
We may assume that g and m are strictly positive everywhere and (3.3) is satisfied.

We are done if R; = U; for each triple so assume that, say, Ry C U;y. Let e = uv be an arc with

u € Ry, v € Uy \ Ry and define the following parameter.
p=min {g(e), m(Ry), min{og(Z) —p2(Z) : eenters Z, RyNZr #0or ZoNUy # Z1}}.  (34)
Proposition 3.2.3. The value of i can be determined in strongly polynomial time.

Proof. Let S denote the atom containing v. Delete those arcs of D that enter a node not in S. Note that
if e enters a bi-set Z with pa(Z) > 0 then g4(Z) does not change during this step. Extend the graph
with a new node vg, for each root set R; € R. Add the arcs vg,w for each R; € R and w € U; \ (S'\ R;)
with capacity m(R;). Moreover, add a source node s with outgoing arcs svg, with capacity m(R;) for
R; € R, and finally an arc su with infinite capacity. Let D' = (V' A’) and ¢’ denote the graph and

capacity function thus arising.
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Compute a maximum flow in D’ from s to v and let C' denote a minimum cut containing v. The
construction of D" implies that e enters C and if CNR; # 0 or CNU; # C NS then vy, € C may be
assumed. Hence for the bi-set Z = (Zp, Z7) = (C,C N S) we have

09 (Z) = 0g(Z) + Y [m(Ri): Ri € R, ZiNR; # 0 or Zo NUi; # Zj].
That is,
09 (Z) = 04(Z) = > [m(R;): Ri€R, ZINR; =0, ZoNU;=Zj]+ Y [m(R;): R;i € R]
= 0¢(Z) = p2(Z) + m(R).

Hence a minimum cut defines a bi-set Z such that e enters Z and p4(Z) — p2(Z) is minimal. To ensure
RiNZr#0or ZoNU; # Z;, we can run the maximum flow algorithm for each case when v is shrunk
together with a node in U; \ (S \ R;). The minimum of these values gives the minimum appearing in
(3.4). O

By Theorem 3.2.1, there is an arc e for which p is strictly positive. Delete (R, Uy, m(R;)) from the
set of triples, and add the triple (Ry,U;,m(R1) — p) instead if m(Ry) — p > 0. Moreover, delete the
triple (Ry 4+ v, U, m(Ry + v)) if exists and add the triple (R; 4+ v, Uy, m(Ry + v) + p) instead. Finally,
revise g(e) by g(e) — p. Due to the definition of u, the revised problem also meets (3.3) and we can
apply the basic step recursively.

Now we turn to the running time. First we consider phases when the minimum in (3.4) is taken on
g(e) or m(Ry). If the minimum is taken on g(e) for some arc e, then the number of arcs with positive
capacity decreases which may happen at most |A| times. Note that the set of (R;, U;, m(R;)) triples may
increase only in these phases. Otherwise, the minimum is taken on m(R;) meaning that (Ry, U, m(Ry))
gets out from the set of observed triples. The size of each root-set increases at most |V| times and the
set of triples may increase, according to the above, at most |A| times, hence the total number of phases
is bounded by (k + |A|)|V|.

It only remains to take into account those phases when the minimum is taken on min{g, (W) —
p1(W) : eenters W, Ry N W # ()}. The advantage of using bi-sets is that ps is positively intersecting
supermodular on P, (this can be seen similarly to Lemma 1.2.5). The collection C = {X € Pa: g4(X) =
p2(X) > 0} of tight bi-sets increases in the considered phases (g4(X) > 0 may be assumed, otherwise
the minimum in (3.4) is also taken on g(e) and such phases are already counted).

Let Co(a) = {Xo : X € C, aenters X} for an arbitrary a € A. However, |Co(a)] = {X € C :
a enters X }| holds for each a. Indeed, for an arbitrary set Zo containing v, there is at most one set
Z7 such that v € Zy and ps((Zo, Z1)) > 0. Namely, Z; must be a subatom and it must arise as the
intersection of Zp and the atom containing v. Hence for each Zp € Co(a) the corresponding inner set
Z1 is uniquely determined. This implies that if a bi-set X becomes tight during the revision step then
Xo ¢ Co(a) before the revision step as otherwise X € C, a contradiction.

The above immediately implies that if C increases then also Co(a) increases for some a € A. If an
edge a enters both X,Y € C, then 94(X NY) > 0 and g4(X UY) > 0. The submodularity of o, and
positively intersecting supermodularity of ps implies that Co(a) is a lattice family. As a lattice family

L is uniquely determined by the preorder defined as

s =t < each set in £ containing ¢ also contains s,



3.3. Polyhedral description 39

if £ increases then < decreases, which can happen at most |V |? times. Hence Co(a) increases at most
|V|? times for each a € A, and the number of phases is O(|A||V|?).

Concluding the above, the total number of phases is bounded by O((k + |A|)|V |+ |A||V|?), which is
dominated by O(k|V| + |A[|[V]?). O

3.3 Polyhedral description

Let D = (V, A) be a digraph, R = {r1,...,7r;} a set of root-nodes and U = {Uy,...,U} a set of
convex sets with r; € U; for each i. We say that the digraph is arborescence-packable (with respect
to U) if there are k disjoint arborescences F1, ..., F} so that Fj is an r;-arborescences spanning U;. Our
next goal is to describe the convex hull of the incidence vectors of arborescence-packable subgraphs of
D.

We may suppose that the root nodes ry,...,r, are distinct, each having exactly one leaving edge
and no entering ones. Let R = {ry,...,7} and T =V \ R, so U; N R = {r;} for each r; € R. For every
non-empty subset Z of T, let p1(Z) denote the number of roots r; for which Z N U; # ). In particular,
for every v € T, p1(v) is the number of roots r; for which v € U;.

Theorem 1.1.6 can be reformulated as follows.

Theorem 3.3.1. Let D = (V, A) be a digraph in which R is a set of k root-nodes so that the out-degree
and the in-degree of each root-node is one and zero, respectively. Let T = V \ R and for each root-
node r; let U; be a convex set for which U; " R = {r;}. Then D is arborescence-packable if and only if
o(Z) > p1(Z) for every subset Z C T.

Define k bi-set families F; for ¢ = 1,..., k as follows. Let
Fi={(X0,X1): XoCT, X;=XoNU; #0, X is a subatom}.

For each bi-set X, let po(X) denote the number of F;’s containing X. It follows immediately that F; is

an intersecting bi-set family.

Remark 3.3.2. Suppose that the out-degree of the root nodes in R may be larger than one. Let
U = {U,...,U;} be a set of convex sets so that U; N R = {r;} for each r; € R. Furthermore, let
m : R — Zy be a demand function on the root nodes so that m(R) = t. By Fujishige’s theorem,
there are ¢ disjoint arborescences so that r; is the root of m; arborescences spanning U; if and only if

o(Z) > p1(Z) for every subset Z C V where

pi(Z) = {m(r)l ri ¢ Z, ZNU; # 0}

In this case the bi-set families should be defined as follows. Let

Fl={(Xo0,X1): XoNnT #0, X;=XoNU;, 0 # X; CTisa subatom},

(2

wherei=1,...,kand j = 1,...,m(r;). It is easy to see that ]-'Z] is an intersecting bi-set family. However,
this form follows from Theorem 3.3.1 by an easy construction. Since the statements are simpler when

root nodes has out-degree one, we will use this special form when formulating our result.
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Before formulating our result, we prove two useful lemmas exhibiting an interrelation between sets

and bi-sets.

Lemma 3.3.3. For every bi-set X = (Xo, X7) there is a subset Z C T for which p1(Z) > pa(X) and
A7) C A™(X).

Proof. Let q := pa(X). If ¢ = 0, then Z := () will do. Suppose that ¢ > 1 and X belongs to Fi, Fa, ..., Fy.
Let V' := V\ (U1 U...UU,). We claim that the set Z := X;U{v € V' : X is reachable from v} satisfies
the properties required by the lemma.

One obviously has p1(Z) > q = p2(X) since Z intersects each of Uy, ..., U,. Consider now an edge
e = uv of D entering Z. The tail u of e cannot be in V' \ Z for otherwise X; would be reachable from
u and then u should belong to Z. Therefore v must be in (U3 U...UU,) \ Z. Let U; be one of the sets
Ui, ..., Uy containing u. Then the head v of e must be in Xy, for otherwise v is reachable from U; (along
the edge uv) and X is also reachable from v by the definition of Z but this contradicts the convexity
of U; since X C U;. Hence the edge e entering the set Z also enters the bi-set X = (Xp, X7). O

Lemma 3.3.4. For every subset Z C T, there are bi-sets X1, ..., X; so that Z[pg(Xj) =1, =
p1(2) and {A™(X;) : j =1,...,t} is a partition of A™(Z).

Proof. Let Cz := {C1,...,C}} denote the set of atoms of D intersecting Z and assume that its members
are arranged in a topological ordering, that is, no edge of D leaving a C; enters a C; for which i < j.
For each j =1,...,t, let X; = (X2, X}) where X),:= ZN (C1U...UC;) and X7 := Z N C;. We claim
that these bi-sets X satisfy the properties required by the lemma.

If an edge e = uv enters a bi-set X, then its head v is in Z N C}; while its tail « must be outside
Z by the property of the topological ordering, that is, e enters Z, too. This and the obvious fact that
{X} : j=1,...,t} forms a partition of Z imply {A™(X;): j=1,...,t} forms a partition of A™(Z).

Let Uz := {U € U : U intersects Z}. Note that |U/z| has been denoted by pi(Z) and recall that an

atom is either disjoint from or included by a convex set. For j =1,...,t, let
L{% :={U € Uz : jis the smallest subscript for which C; € Cz and C; C U}.

Some of the Z/{%’s may be empty but the non-empty ones form a partition of Uy. For each j =1,... ¢,

one has pa(X;) = |L{%| and hence

t

pi(Z) = Uz =1L =D pa(X),
=

j=1

as required. O

Consider the following two polyhedra.

Ry :={x € RY: 0<x, 0,(Z)>p1(Z) for every non-empty Z C T}, (3.5)
Ry:={zeR: 0 <z, 0,(X)> po(X) for every
non-trivial bi-set X = (Xp, X1) with Xo C T'}. (3.6)

Lemma 3.3.5. Ry = R».
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Proof. Suppose first that € R;. Let X be an arbitrary bi-set for which p(X) > 0. By Lemma 3.3.3
there is a subset Z C T for which p1(Z) > p2(X) and A™(Z) C A™(X). This and the non-negativity
of x imply that 0, (X) > 0,(Z) > p1(Z) > p2(X) from which = € Ry follows.

Second, suppose that x € Ry. Let Z be an arbitrary set for which p1(Z) > 0. By Lemma 3.3.4
there are bi-sets Xi,...,X; so that Z[pg(Xj) cj=1,...,t] =p1(Z) and {A™(X;):j=1,...,t}isa
partition of A™(Z). This and the non-negativity of x imply that 0,(Z) > Z[QI(X]') =11 >
p2(X;):j=1,...,t] = p1(Z) from which x € R; follows. O

The following result was proved in [42].

Theorem 3.3.6 (Frank and Jordén). Let D = (V,A) be a digraph and p a positively intersecting
supermodular bi-set function on V. Let g: A — Z, U{oo} be a capacity function on A so that p4(X) >
p(X) for every bi-set. The following linear system for x € Ry is totally dual integral (TDI):

{0 <z <g,0.(X) > p(X) for every bi-set X}.
From this we derive the following.

Theorem 3.3.7. The linear system written for x € R4
{0< < g, 0.(2) > pi(Z) for every non-empty Z T} (3.7)

is totally dual integral (TDI). In particular, the convex hull of arborescence-packable subgraphs of D is
equal to the following polyhedron:

{reRY: 0<z<1, 0,(2) > p1(Z) for every non-empty Z C T'}. (3.8)
Proof. By theorem 3.3.6, the system
{0 <z <g, 0:(X) > pa(X) for every bi-set X} (3.9)

is TDI. By Lemma 3.3.5, this and (3.7) define the same polyhedron.

We say that an inequality gx > 3 is an integer consequence of a inequality system Qx > p if there is
an integer vector y so that y@Q = ¢ and yp = . By elementary properties of TDI systems, it suffices to
show that each inequality from (3.9) is an integer combination of inequalities of (3.7). By Lemma 3.3.3,
for a bi-set X = (Xp, X[), there is a subset Z C T for which pi(Z) > p2(X) and A™(Z) C A™(X).
Therefore the inequality g,(X) > p2(X) is indeed a integer consequence of (3.7).

A general result of Edmonds and Giles [35] implies that the polyhedron defined by (3.8) is integral
and hence its vertices are 0—1 vectors. By Theorem 3.3.1, these vertices correspond to the arborescence-
packable subgraphs of D. O

3.4 Further remarks

Theorem 1.2.4 gives a common generalization of Szeg@’s theorem on covering intersecting set families
(Theorem 1.2.3) and the theorem of Fujishige on packing disjoint arborescences spanning convex sets
(Theorem 1.1.6). Unfortunately, it does not imply the result of Cs. Kiraly (Theorem 1.1.8), hence it
would be interesting to formulate a generalization of covering bi-set families using matroids.

We conjecture that some -maybe rather modified- variant of the following conjecture holds.
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Conjecture 3.4.1. Let D = (V,A) be a digraph, Fi,...,Fy be intersecting families of bi-sets on
ground set V' satisfying the mized intersection property, and M = ({1,...,k},ra1) be a matroid on
ground set {1,...,k} with rank function ryq. For a bi-set X, let Ix = {i : X € F;} and assume that
o(X) > rm(Ix) for each bi-set X with X; = Xo. Then there are sets I, C Ix for each bi-set X

satisfying the following conditions:
(1) the families F| = {X € F; : i € I} are intersecting and satisfy the mized intersection property;
(11) if Ix C Iy then I, N Ix C I’ ;

(iii) o(X) > |I%| for each bi-set X ;

(iv) |I| =rm(Ix) for each bi-set X with X1 = Xo.

The above conjecture, if it is true, would imply Theorem 1.1.8. Indeed, let (D, S, w) be a digraph
with roots and M be a matroid on S = {s1,...,s;} with rank function rx. Let U; be the set of nodes
reachable from 7(s;) in D. Define F; as in (3.1). It is easy to see that (1.6) implies o(X) > rp(Ix)
for each bi-set X with X; = Xp. By (i), (iii) and Theorem 1.2.4, the edge set can be partitioned in
k parts Aj,..., A, such that A; covers F/. Let U = (J{X; : i € I%}. The choice of the F;’s and
(ii) imply that U/ is convex for each i. However, without (iv) the choice I, = () would satisfy the
conditions. If we apply (iv) to non-trivial bi-sets consisting of a single node we get that each node v is
contained in rp¢({i¢ : v € U;}) members of the new convex sets. These together imply that A; contains
an arborescences spanning U/ for each i, and by (iv) these gives a maximal M-independent packing of

arborescences.
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Square-free 2-matchings

4.1 Connectivity and square-free 2-matchings

Let G = (V,E) be an undirected graph with node set V' and edge set E, and n and m denote
the number of nodes and the number of edges, respectively. A cycle C, which is denoted by C =
(v1,v2,...,77), is a subgraph consisting of distinct nodes vy, ..., v; and edges vivs, ..., (v;_1v;, vvy. For
a subgraph H of GG, the node set and the edge set of H are denoted by Vi and Ep, respectively. Recall
that for an integer k, we say that a graph G = (V, E) is k-connected if |V| > k+ 1 and G — X is
connected for every X C V with |X| < k — 1. The complement graph of G = (V, E) is the simple
graph G = (V, E) such that uv € E if and only if uv ¢ F for distinct u,v € V.

The degree of a node v € V' in G is the number of edges incident with v. The degree sequence
of an edge set F' C F is the vector dp € 7V such that dr(v) is the number of edges in F incident with
v. Note that if a self-loop e is incident with v, e is counted twice. We say that a graph G = (V, E) is
subcubic (resp. cubic) if dg(v) < 3 (resp. dg(v) = 3) for every v € V. An edge set M C F is said to
be a 2-matching (resp. 2-factor) if dy;(v) < 2 (resp. dps(v) = 2) for every v € V. In other words, a
2-matching is a node-disjoint collection of paths and cycles. For a simple undirected graph G = (V, E),
an edge set M C F is a square-free 2-matching if M is a 2-matching that contains no cycle of length
four as a subgraph.

We now look at the properties of the complement graphs of (n — t)-connected graphs.

Claim 4.1.1.

1. G is (n — 2)-connected if and only if G contains no K, s, that is, E is a matching.

2. G is (n — 3)-connected if and only if G contains neither K1 3 nor Ko, that is, E is a square-free

2-matching.

3. G is (n—4)-connected if and only if G contains neither K14 nor Ks 3, in particular G is subcubic.

Proof. By the definition of k-connectivity, for an integer ¢, a simple graph G = (V| E) is (n—t)-connected
if and only if G contains no complete bipartite graph with ¢+ 1 nodes. Since a graph has no K 4 if and

only if its maximum degree is at most d — 1, we obtain the results. O

In what follows, we deal with simple graphs when we consider the (n — 3)-connectivity augmentation
problem and the square-free 2-matching problem, and so we often omit to declare that the graph is

simple. Non-simple graphs appear only when we shrink graphs.

43
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Definition 4.1.2 (Shrinking a square). Let C' = (v1,v2,v3,v4) be a cycle of length four in G = (V, E).

Shrinking of C in G consists of the following operations:
e identify v; with v3, and denote the corresponding node by uq,
e identify vy with v4, and denote the corresponding node by wuo, and
e identify all edges between u; and wus.
In the obtained graph, the edge between u; and us corresponding to F¢ is called a square-edge.

Let C1,Cy,. .., Cy be node-disjoint cycles of length four, and let G° = (V°, E°) be the graph obtained
from G = (V, E) by shrinking C1,C5,...,C,. Note that G° might have self-loops and parallel edges,
whereas G does not. We also note that if GG is subcubic, G° is also subcubic. In a shrunk graph G°, a
square is a cycle of length four whose nodes are not incident to a square-edge. In other words, a cycle
in G° is a square if its corresponding edges in G form a cycle of length four. We say that an edge set in

a shrunk graph G° is square-free if it contains no square.

4.2 Jump systems

Let V' be a finite set. For u € V| we denote by x, the characteristic vector of u, with y,(u) =1
and y,(v) = 0 for v € V \ {u}. For 2,y € Z", a vector s € ZV is called an (z,y)-increment if
z(u) < y(u) and s = x,, for some u € V, or z(u) > y(u) and s = —y,, for some u € V.

A jump system, introduced by Bouchet and Cunningham [16], is defined as follows.

Definition 4.2.1 (Jump system). A nonempty set J C Z" is said to be a jump system if it satisfies

an exchange axiom, called the 2-step axiom:

For any z,y € J and for any (x,y)-increment s with = + s ¢ J, there exists an (z + s,y)-
increment ¢ such that x +s+t € J.

A set J C ZV is a constant-parity system if z(V) — y(V) is even for any z,y € .J. Here z(S) =
Y vegx(v) for x € 7V and S C V. For constant-parity jump systems, Geelen observed a stronger

exchange property:

(EXC) For any z,y € J and for any (z,y)-increment s, there exists an (x + s, y)-increment ¢ such

that t+s+teJandy—s—teJ.
This property characterizes a constant-parity jump system (see [107] for details).

Theorem 4.2.2 (Geelen). A nonempty set J is a constant-parity jump system if and only if it satisfies
(EXC).

A constant-parity jump system is a generalization of the base family of a matroid, an even delta-
matroid [133,134], and a base polyhedron of an integral polymatroid (or a submodular system) [47].
The degree sequences of all subgraphs in an undirected graph form a typical example of a constant-

parity jump system [16,102]. Cunningham [25] showed that the set of degree sequences of all Cj-free
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2-matchings is a jump system for k£ < 3, but not a jump system for £ > 5. Kobayashi, Szabé, and
Takazawa [90,119] showed that it is also a jump system when k = 4.
Efficient algorithms for optimization problems on jump systems are studied in [108, 116]. For a set

S CZV, we define ®(S) = max,ey {maxyes y(v) — minges y(v)}.

Theorem 4.2.3 (Shioura and Tanaka). Let J C ZY be a finite jump system, and ¢ € RV be a vector.
Suppose that a vector xo € J is given, and we can check whether x € J or not in v time. Then, we can

find a vector x € J mazimizing cx in O(n>log ®(J)y) time.

We can also find a vector maximizing the sum of univariate concave functions efficiently. A univariate

function ¢ : Z — R is concave if it satisfies

2¢(z) = p(x —1) + oz +1)

for any = € Z. A univariate function ¢ is convex if —¢ is concave. The following result appeared
in [108].

Theorem 4.2.4 (Murota and Tanaka). Let J C ZY be a finite jump system, and ¢, : Z — R be
a univariate concave function for each v € V. Suppose that a wvector xg € J is given, and we can

check whether x € J or not in v time. Then, we can find a vector x € J mazimizing ) oy ¢u(x) in
O(n2®(J)y) time.

Note that Shioura and Tanaka [116] gave an algorithm for the problem that runs in O(n*(log ®(.J))?~)
time. However, if ®(J) is fixed, it is slower than the algorithm in Theorem 4.2.4.

4.3 Polynomial time algorithms for the problems

Let 1 denote the time to solve the b-factor problem when b(v) < 2. That is, for a not necessarily
simple graph G = (V, E) with |V| = n and a vector b € {0,1,2}V, we can determine whether there
exists an edge set F' C FE such that dp = b in 7 time. It is of the same order as the running time
of finding a maximum cardinality matching, and 7, is bounded by O(y/nmlog,, %2) [57]. In subcubic
graphs, since m = O(n), we have vy, = O(n%)

Our first results are the following.
Theorem 4.3.1. In subcubic graphs, the square-free 2-matching problem can be solved in O(n3yy) time.
Theorem 4.3.2. The (n — 3)-connectivity augmentation problem is solvable in O(n3~y;) time.

Theorem 4.3.2 obviously follows from Theorem 4.3.1. Note that we can construct the complement
graph in O(n?) time, which is shorter than O(n37;) time. Our proof for Theorem 4.3.1 is based on the
fact that the degree sequences of all square-free 2-matchings in a subcubic graph form a jump system.

Let Jy(G) C ZV denote the set of all degree sequences of square-free 2-matchings in G, that is,
Jsq(G) = {dpr | M is a simple square-free 2-matching in G}.

Then the following theorem holds [90,119].
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Theorem 4.3.3 (Kobayashi, Szabo, and Takazawa). For any subcubic graph G, Jsq(G) is a constant-

parity jump system.

Although a stronger result is given in [90,119], we give a new proof for this theorem in Section 4.4
which can be extended to the weighted version.
On the other hand, the membership problem of Jy(G) can be solved in polynomial time, whose

proof is given in Section 4.3.1.

Lemma 4.3.4. Given a subcubic graph G = (V, E) and a vector x € ZV, we can determine whether

x € Jsq(G) or not in O(y1) time.

By combining Theorems 4.2.3 and 4.3.3 and Lemma 4.3.4, we obtain Theorem 4.3.1. Note that
(0,0,...,0) € ZV is a vector contained in Js(G).

We give a faster algorithm for the square-free 2-matching problem in Section 4.3.2, which does not
use jump systems. However, the advantage of using a jump system is that we can immediately extend
the result to optimization problems with the aid of some results on jump systems.

When the weight function is node-induced on V', the weighted square-free 2-matching problem is
the problem of finding a square-free 2-matching M maximizing a linear function of dj;. Therefore, by

Theorems 4.2.3 and 4.3.3 and Lemma 4.3.4, we obtain the following corollaries.

Corollary 4.3.5. The weighted square-free 2-matching problem in subcubic graphs is solvable in O(n3~1)

time if the weight function is node-induced on V.

Corollary 4.3.6. The weighted (n — 3)-connectivity augmentation problem is solvable in O(n3~y1) time

if the weight function is node-induced on V.
In the same way as these corollaries, we obtain the following by Theorem 4.2.4.

Corollary 4.3.7. Let ¢, : Z — R be a univariate concave function for each v € V. For a subcubic graph

G = (V,E), we can find a square-free 2-matching M mazimizing

S 6u(dar(v))

veV

in O(n3y1) time.

Corollary 4.3.8. Let ¢, : Z — R be a univariate convex function for each v € V. For an (n — 4)-

connected graph G = (V, E), we can find in O(n3y1) time an edge set E' C E minimizing

> ¢uldpup (v)

veV

such that G' = (V,E U E'") is a simple (n — 3)-connected graph.

4.3.1 Proof of Lemma 4.3.4

In what follows we give a proof for Lemma 4.3.4.
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Take a maximal family of node-disjoint cycles Cq,Cy, ..., Cy of length four such that z(v) = 2 for
each v € |JV/(C;). Obviously, if there is a cycle C; such that V(C;) spans a Ky then x ¢ Jiq(G). Thus,
we may assume that V(C;) does not span a Kj.

Let G° = (V°, E°) denote the graph obtained from G = (V,E) by shrinking C;,Cs,...,C, as in
Definition 4.1.2. Define E; C E as the set of all shrunk edges, that is, £y = E(Cy)U---UE(Cy), and let
Ey = E\ E;. Similarly, define V; C V' as the set of all shrunk nodes, that is, V; = V(C1)U---UV(Cy),
and let Vo = V' \ V4. Therefore Ej and Vj are also subsets of E° and V°, respectively. Note that E° may
contain self-loops and also parallel edges.

Let 2° € ZV° be the vector obtained from z by setting

z(v) ifv eV,
2 if veVe\ .

xz°(v) =

We will show that z € Jyq(G) if and only if z° is the degree sequence of some 2-matching in G°.

Let # € Jy(G) and let M be a square-free 2-matching in G = (V, E) with dy; = z. Note that
|E(C;)N M| =2or |E(C;)NM|=3fori=1,2,...,p, because G is subcubic. Let u} and u} denote the
nodes arising when shrinking C; = (vi, vy, v%, v%). Let I denote the set of indices for which |E(C;)NM| =
3. Then define M° as

M° = (M N Ey) U (U{u1u2}>

el
One can see easily that M° is a 2-matching in G° with dpo = z°.

Conversely, let M° be a 2-matching in G° = (V°, E°) with dpe = 2°. Let C' = (v1, va,v3,v4) be
one of the shrunk cycles and let w1, us be the corresponding nodes in G°. If ujuy € M® then either
{v1v9, v3v4} or {vyvy, vov3} can be added to M° N Ey without forming a square since G is subcubic (we
use here the assumption that V(C;) does not span a K4). One can also see that if ujus € M® then three
properly chosen edges of C' can be added to M° N Ey without forming a square (see Figure 4.1). What
we do exactly is that we blow up the cycles one by one. In each step we extend the actual 2-matching
to a new one in the extended graph using one of the two extensions described above in such a way that
the arising 2-matching has no square. Recall that a square is defined as a cycle of length four whose all
four nodes are contained in Vj. In this way M° N Ey can be extended to a square-free 2-matching M of
G = (V,E) with dy; = =.

The above reduction can be done in linear time and we can determine whether z° is a degree sequence

of a 2-matching or not in O(y;) time which proves the lemma.

4.3.2 Faster algorithm

In this section we give another algorithm for the square-free 2-matching problem that runs in O(~;)
time. A faster algorithm for the (n — 3)-connectivity augmentation problem follows from the algorithm.
However, in this case, we have to consider the time to construct the complement graph, which is denoted

by 7. Obviously, 7o is bounded by O(n?), but it depends on how the input graph is represented.

Theorem 4.3.9. The square-free 2-matching problem in subcubic graphs can be solved in O(~1) time.
The (n — 3)-connectivity augmentation problem is solvable in O(vyy + 1) time, where o is the time to

construct the complement graph.
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U1 U.
iﬁl U2< —_
U2 U3
: edges in M
U1 v
b_M uz —_—
V9 V3

Figure 4.1: Constructing M from M?°

Proof. Let G = (V, E) be a subcubic graph. If G contains a complete graph on four nodes then this
K, forms a component of G since the graph is subcubic. Clearly, a maximum square-free 2-matching
contains exactly three edges of such a component. By handling these components separately, we may
assume that G contains no Kj.

Take a maximal family of node-disjoint cycles C1,Ca, ...,y of length four. Our first observation is
that for any maximum square-free 2-matching M in G either |M N C;| = 2 or |M N C;| = 3 for every

C; = (vi,vh,v8,v}). Moreover, we may assume the following:
(A) If [M N C;| = 2 then M N C; = {vivy, vivi} or {vivi, vivi}.

Let G° = (V°,E°) denote the graph obtained from G = (V, E) by shrinking C1,Cs,...,C,. Define
FEy, E7 and Vy, V] on the same lines with Lemma 4.3.4.

We will show that for any maximum square-free 2-matching M in G satisfying condition (A) we can
find a 2-matching M° in G° with |M°| = |M| — 2q. Conversely, for any maximum 2-matching M° in
G° we can define a square-free 2-matching M in G so that |M| = |M°| + 2q. Since a 2-matching in G°
with maximum cardinality can be found in O(v;) time that would prove the theorem.

The correspondence described in Lemma 4.3.4 works again. Namely, let M be a maximum square-free
2-matching in G satisfying condition (A) and let I denote the set of indices for which |E(C;) N M| = 3.
Then define M° as

M® = (M N Ep) U (U{u’iué}) .
el
One can see easily that M° is a 2-matching in G° and the observation above implies |M°| = |[M| — 2q.

Conversely, let M° be a maximum 2-matching in G°. Let C' = (v1, v2,v3,v4) be one of the shrunk
cycles and let uj,us be the corresponding nodes in G°. If ujug € M° then either {vive,vsvs} or
{v1v4,v2v3} can be added to M° N Ey without forming a square since G is subcubic (again, we use here
the assumption that G contains no K4). One can also see that if ujug € M° then three properly chosen

edges of C' can be added to M° N Ey without forming a square. In both cases, the size of the 2-matching
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increases by two. Hence M° N Ey can be extended to a square-free 2-matching M of G = (V, E) with
|M|=|M°|+ 2q.

Now it is understandable why K,’s are handled differently. If we let G contain a K, then after
shrinking the cycles the K4 corresponds to an edge with two self-loops at the end-nodes in G°. However,
a maximum 2-matching in G° contains the two self-loops and a maximum square-free 2-matching in G
contains three edges from the K4 so in this case the size of the 2-matching increases only by one when
blowing back the corresponding cycle.

As above, the square-free 2-matching problem can be reduced to the ordinary maximum 2-matching
problem, which can be solved in O(y1) time.

The latter half of the theorem is immediately derived from the first half. O

4.4 Proof of Theorem 4.3.3

This section is devoted to the proof of Theorem 4.3.3, that is, we show that Js(G) is a constant-
parity jump system for any subcubic graph G. Recall that G is simple. In this section, we give an
algorithm for finding an (z + s,y)-increment ¢ such that  + s+t € Jq(G) and y — s — t € Jyq(G).
Without loss of generality, we assume that s = —y, for some v € V.

Let M and N be edge sets in an undirected (not necessarily simple) graph. We say that a path
P = (vg,v1,v9,...,v;) is an (M, N)-alternating path if

e vvi1 € M\ N if i is even,
e vviy1 € N\ M ifiis odd, and

® ViVj+1 7& VjVj+1 for 4 7& ]
Obviously, dyarp) = duv — Xue + (=1)!xy, and dnagp) = AN + Xve — (=1)'xy,. By taking the longest
(M, N)-alternating path, we can see the following.

Lemma 4.4.1. For 2-matchings M, N in an undirected graph and for a (dyr,dn)-increment s = —xy,
there exists an (M, N)-alternating path P beginning with vy = u such that both MAE(P) and NAE(P)
are 2-matchings (not necessarily square-free), dyapp) = du + s+, and dyagpy = dv — s —t for
some (dpar + s, dn)-increment t.

Let L be a subset of edges and let C1,Co,...,C, be node-disjoint cycles of length four such that
|[E(C;)NL| = 3 fori=1,2,...,p. If an edge set L° C E° is obtained from L C F by shrinking
C1,0Cy,...,C4, we say that L° is the shrunk edge set of L, and L is an expanded edge set of L°.

Note that the shrunk edge set L° contains all square-edges in G°.
We now define a map ¢ : ZV — ZV° by

(¢(x))(u) = Z{x(v) | v €V, v corresponds to u}
— 2|{square-edges incident to u}| (4.1)

for # € ZV and u € V°. One can see that for an edge set L C E satisfying that |E(C;) N L| = 3 for
i=1,2,...,p, ¢(dr) is the degree sequence of the shrunk edge set of L. Conversely, the following lemma
holds [93].
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Lemma 4.4.2 (Kobayashi and Takazawa). Let L° C E° be a 2-matching in G° that contains all square-
edges and x be a vector in {0,1,2YV . If ¢(x) is the degree sequence of L°, there exists an expanded edge

set L of L° in G such that d;, = x. Furthermore, such L is unique.

4.4.1 Finding an (x + s,y — s)-increment

Although we need an (z 4 s,y)-increment ¢ to prove Theorem 4.3.3, in this subsection, we give a
procedure to find an (z + s,y — s)-increment ¢ such that x+s+1¢ € Jyq(G) and y — s —t € Jgq(G). After
that, we modify the procedure to obtain an (x + s,y)-increment ¢ in Section 4.4.2.

For given degree sequences z,y € Jyq(G), take edge sets M, N C E such that dyy = z and dy = y.
Let s = —xy be an (z,y)-increment for some u € V. Let C1, Cs, ..., C, be node-disjoint cycles of length
four in G such that E(C;) C M UN and |E(C;) N M| = |E(C;) " N| =3 fori=1,2,...,p. We take
such C,Cy,...,C,; maximally, and shrink them. Let G° = (V°, E°) be the obtained graph, and let
M°,N° x° y°, u° and s° be counterparts in G° to M, N, x,y,u and s, respectively.

If s° = —yye isnot an (z°, y°)-increment, then G has a square C' = (u, vy, v9,v3) such that dys(u) = 2,
dy(u) =1, dp(ve) =1, dn(v2) = 2, and C is shrunk in G°. In this case, t = x,, is an (z+s, y)-increment
such that z + s+t € Jyq(G) and y — s — t € Jyq(G) by Lemma 4.4.2.

Thus, in what follows in this subsection, we only consider the case when s° = —y,0 is an (2°,y°)-
increment. Recall that a square is a cycle of length four whose nodes are not incident to a square-edge.

Then, G° satisfy the following condition.

(B) Both edge sets M° and N° contain all square-edges in G°, and G° has no square C such that
E(C) C M°UN?® and |[E(C)NM°|=|E(C)NnN°| =3.

In order to obtain an (x + s,y — s)-increment ¢, it suffices to find an (z° 4 s°,y° — s°)-increment
t° and edge sets M*, N* in the shrunk graph G° such that M* and N* are square-free 2-matchings in
G°, dy» = x° + s° +t°, and dy~ = y° — s° — t°. This is because a unit vector ¢ corresponding to t° is
a desired (x + s,y — s)-increment by Lemma 4.4.2. Thus, in what follows, we describe a procedure that
finds an (z° 4 s°,y° — s°)-increment ¢° and edge sets M*, N* in G°.

Let P = (vg,v1,v2,...,v;) be an (M°, N°)-alternating path beginning with vy = u° such that both
M°AE(P) and N°AE(P) are 2-matchings, dyoapp) = dye + 5° +1°, and dyoapgp) = dyeo — 5° —1°
for some (z° + s°,y°)-increment t°. The existence of such a path is guaranteed by Lemma 4.4.1. We
choose vy such that N + vguy is square-free if possible. Furthermore, we assume the minimality of P,
that is, any subpath (vg,v1,v2,...,v,) does not satisfy the above conditions for 1 <p <[ —1. Let p®)
be the subpath (vg,v1,va, . ..,v,) of P, and define M) = M°AE(P®)) and N®) = N°AE(P®)).

If M) and N are square-free, then t° := dy;0) — dare — s° is an (2° + s°,y°)-increment by the
definition of P, and M® N and ¢° are the desired outputs. Otherwise, let p be the integer such that
MO MO M®) and NO ND N ®) are square-free, and M®TY or N®+1) contains a square.

We consider the case when p is even, that is, M ®*1 is square-free and N*1 has a square containing
Uptpy1. The case when p is odd can be dealt with in the same way. Let C1 = (vp41,vp, u1,u2) be the
square in NP1, When p > 1, by the minimality of I, M(P) is not a 2-matching, that is, d,; ) (vp) = 3.
Therefore {v,v,41,vpu1} € M) because G° is subcubic. Furthermore, {v,v,11,v,u1} € M®) is also

true when p = 0 by the following claim and the definition of P.
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Vo u3
: edges in M.
: edges in N.
(Parallel edges represent the same edge.)
Ul u9

Figure 4.2: An illustration of Claim 4.4.3.

Claim 4.4.3. One of the followings holds:
o there exists an edge e € 6(vg) N (M°\ N°) such that N° U {e} is square-free, or

e G° has a square C = (vg,uy,us,us) such that {voui,vous} € M° and {vouy,ujue,ugus} C N°
(see Figure 4.2).

Proof. 1t is obvious because dpzo(vg) > dne(vp). O

Then, by the condition (B), vptiug, uiug & M®)_ Since the graph is subcubic and vpyiuz, uiug &
M®) | we have dyre (u2) < 1.

Now we define

!
M = M® — UpUpt1 + Up1U2,

N =N® 4+ UpUpt1 — Up1U2

(see Figure 4.3). Obviously, N’ is square-free. Since dy;;) (u2) < 1 and dy@)(u2) = 2, M" and N’ are
2-matchings and dyy —dpo —s° = Yy, is a (dpge +8°, dyo — s°)-increment. Therefore, if M’ is square-free,
then M’ and N’ are the desired 2-matchings and t° = x,, is the desired unit vector.

Otherwise, M’ has a square Cy = (Upt1, U2, us, us) containing v,1jug. Then, the following claim
holds.

Claim 4.4.4. uz # vp,.

Proof. Assume that uz = v,. Since v,u; € M’, we have u; = uq and ujvp41 € M'. Then, [M°NE[Cy]|+
IN° N E[Cy]| = |M' N E[Cs]| + |[N'N E[Cs]| = 7, where E[C5] is the set of edges whose end-nodes are
both in V(C2). This contradicts that M° and N° are square-free 2-matchings. O

By this claim, {us,us} N {vp, vp41} = 0. Now we define
M":M/—u2u?,, N/,:N,+UQU3

(see Figure 4.4). Obviously, M” is a square-free 2-matching. Furthermore, N” is square-free, because
N" contains ugug, usuy, u1vp, VpUpt+1, which means that it has no square containing ugug. If dys(uz) <
1, then M” and N” are the desired 2-matchings and t° = —y,, is the desired unit vector, because
dyr(ug) = 2.

Otherwise, dyn/(ug) = 2 and dy»(uz) = 3. Since G° is subcubic, uguy € N'.

Claim 4.4.5. uqvp4q & N'.
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Up Up+1 Up Up+1
—_—
(5% u9 (75} u9
- edges in M©®), — :edgesin M.
- edges in N®). — :edgesin N'.

Figure 4.3: Definitions of M’ and N'.

Up Up+1 U4 Up Up+1 U4
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Figure 4.4: Definitions of M” and N”.

Up Up+1 U4 Up Up+1 U4
m
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: edges in N”. — :edgesin N”.

Figure 4.5: Definitions of M" and N".

Proof. If ugvpy1 € N', then [M° N E(Cq)| + |N° N E(Cy)| = |[M' N E(Cy)| + |N'N E(Cy)| = 6, which
contradicts the condition (B). O

We define

" "
M" = M" — U2Vp+1 + ugus,

" "
N" = N" —uguy + U4Vp+1

(see Figure 4.5). Then, §(vp41) " M" = {vpr1us} and 6(vpp1) NN = {vpvp41, vpr1ua}. Hence M" and

N" are square-free 2-matchings and t° = dyym — dpre —5° = =Xy, 15 a (dpre +5°, dyo — 5°)-increment.
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4.4.2 Finding an (z + s,y)-increment

We have already presented a procedure to find an (x + s,y — s)-increment. To obtain an (x + s, y)-

increment t, we choose M and N satisfying the following assumption.

Assumption 4.4.6. For z,y € Jy(G), let M and N be square-free 2-matchings with dy; = z and
dy = y maximizing |[M N N]|.

We show that under Assumption 4.4.6 we can find an (z + s, y)-increment by the procedure in the
previous subsection. It suffices to show that we can find an (z° + s°,y°)-increment ¢° in the shrunk
graph G°. Note that an (z° + s°,y° — s°)-increment ¢° is not an (z° + s°,y°)-increment if and only if
t° = —s°. We also note that, by Assumption 4.4.6, M° and N° maximize |M° N N°| among all square-
free 2-matchings in GG° such that both of them contain all square-edges and their degree sequences are
¢ and y°, respectively. Clearly, the modified 2-matchings in our proof contain all square-edges in each
step, since the path is alternating and we modify in squares, where a square is a cycle of length four
whose nodes are not incident to a square-edge.

Suppose that the output (M*, N* t°) in the previous subsection satisfies that t° = —s°, that is,
dy+ = dpe and dy+ = dyo. Then, either |[M* N N*| > |M° N N°| holds or a pair of square-free 2-
matchings (M*, N°) satisfies that dy;» = z°, dyo = y°, and |[M* N N°| > |[M° N N°|. More precisely,
the following claims hold.

e If pis even and (M*, N*) = (M’,N’), then |M* N N°| — |M° N N°| > |[E(PP)n N°| = L.

e If p is odd (in this case, we alternate M and N in the procedure in the last subsection) and
(M*,N*) = (M",N"), then |M* N N°| — [M° N N°| > |E(PP+)) 0 N°| = &L

e If p is odd (in this case, we alternate M and N in the procedure in the last subsection) and
(M*,N*) = (M" /N"), then |M* N N*| — |M° N N°| = 1, because M* N N* = ((M° N N°)U
{(u2,u3), (vpr1,ua)}) \ {(us, us)}-

This contradicts Assumption 4.4.6.
Thus the output ¢° is an (2° + s°,9°)-increment and its corresponding unit vector ¢t € Z" is an

(x 4 s,y)-increment, which completes the proof of Theorem 4.3.3.

4.5 NP-hardness of the weighted problem

The objective of this section is to show the NP-hardness of the weighted square-free 2-matching
problem in subcubic graphs. Actually, we show the following stronger result, which extends Z. Kirdly’s

result for bipartite graphs.

Theorem 4.5.1. The weighted square-free 2-matching problem is NP-hard even if the given graph is

cubic, bipartite, and planar.

First, we show the NP-hardness of the problem of finding a square-free 2-factor of maximum total
weight, called the weighted square-free 2-factor problem. After that we derive Theorem 4.5.1 from

this result.
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Figure 4.6: Definitions of V¢, E¢ and E".

Theorem 4.5.2. The weighted square-free 2-factor problem is NP-hard even if the given graph is cubic,

bipartite, and planar.

Proof. We give a polynomial reduction from the independent set problem in planar cubic graphs to
the weighted square-free 2-factor problem. For a graph G = (V, E), a node set I C V is independent
if there exists no edge in F connecting two nodes in /. The independent set problem is to find an
independent set I of maximum size, and this problem is NP-hard even if the input graph is cubic and
planar [54].

Let G = (V, E) be a cubic planar graph which is an instance of the independent set problem. We
construct a new graph G’ = (V' E’) as follows. As shown in Figure 4.6, define a node set V¢ and an

edge set E° corresponding to e = uv € E by
e e e e e e e e e
V= {ul? Ug, Uz, Uy, V1, Vg, U3, ’U4},
e e, e e, e e, e e, e
B¢ = {ujuj, ujug, ugug, ujus,
e, e e, e e, e e, e e, .e e, e
V3, V55, V5UY, VEUT, ugUy, viUg b
For any node v € V' with 6(v) = {e1, e2,e3}, define an edge set EV by
v o e1,.e2 € €3 e3, .el
EY = {vf'v5?, v vy’ vt ugt ]
and define

vi=[]J Ve E’:(UE@)u(UEv>.

eck ecll veV
Note that EV is depending on the ordering of ey, e, and eg, and if three edges in d(v) are arranged in
an appropriate order for each v € V, then G’ is planar. It is obvious that G’ is cubic and bipartite.
Set L = 3|V| 4+ 1, and define the weight w : E' — Ry by
L if € = ufu§, viv§, u§vg, v§u§ for some e = uv € E,
w(e') =141 ife € EY for some v € Vv,
0 otherwise.

Then the following claim holds.
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Figure 4.7: Three patterns of M N E£°.

Claim 4.5.3. The original graph G = (V, E) has an independent set of size k if and only if G' = (V' E’)
contains a square-free 2-factor whose total weight is 4|E|L + 3k.

Proof of Claim 4.5.3. Let M C E' be a square-free 2-factor in G’ whose total weight is at least 4|FE|L.
We show that such a square-free 2-factor in G’ and an independent set of G' correspond to each other.
First, by the definition of L, one can see that M contains all edges of weight L. Then, since M is a

square-free 2-factor, we have the following three possibilities for each e = uv € E (see Figure 4.7):

B\ {ugus, vgus},
M NE® = § B\ {ufuf, usu§, v§us), (4.2)

B\ {vfug, vgus, ugud).

Note that a 2-factor is a collection of cycles covering all nodes.

For a node v € V with §(v) = {e1, e2,e3}, let C? be a cycle of length six in G’ through v{*, v5", v{?,
v5?,v7?, and v5*. Then, each cycle in M is contained in E€ for some e € E or coincides with C'¥ for some
veV.

Let Vs C V be anode set defined by Vs = {v |v € V|, E(C") C M}. By (4.2), Vi is an independent
set of G. On the other hand, when we are given an independent set I of GG, we can construct a square-
free 2-factor M in G’ such that M contains CV for v € I and w(M) > 4|E|L by (4.2). As above, an
independent set I of G and a square-free 2-factor M in G’ with w(M) > 4|E|L correspond to each
other.

Since M contains 3|Vj/| edges of weight 1, w(M) = 4|E|L + 3|V)s|, which shows the claim. O

By this claim, the independent set problem in G is equivalent to the weighted square-free 2-factor
problem in (G',w). O

Now we can easily give a proof of Theorem 4.5.1.

Proof of Theorem 4.5.1. Let G = (V,E) and w be an instance of the weighted square-free 2-factor
problem. Define a new weight function w’ : E — R by w'(e) = L+w(e), where L = n(max.cp w(e))+1.
We consider an instance (G, w’) of the weighted square-free 2-matching problem. Then, by the definition
of w’, the optimal solution M of the weighted square free 2-matching problem must be a 2-factor if
w'(M) > nL, and in this case M is also an optimal solution of the original problem. If w'(M) < nL, we
can conclude that G has no 2-factors.

Therefore, we can reduce the weighted square-free 2-factor problem to the weighted square-free

2-matching problem, which means that Theorem 4.5.1 can be derived from Theorem 4.5.2. O
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Since the graph G’ in the proof of Theorem 4.5.2 contains no complete bipartite graph with five
nodes (i.e. Kj 4 and Kj3) as a subgraph, its complement graph is (|V’| — 4)-connected. Hence, we also

obtain the following theorem.

Theorem 4.5.4. The weighted (n — 3)-connectivity augmentation problem is NP-hard.

4.6 Weighted square-free 2-matchings

We have already seen in Section 4.5 that the weighted square-free 2-matching problem in subcubic
graphs is NP-hard for general weight functions. In this section, we show that the weighted square-free
2-matching problem is polynomially solvable if the weight function is node-induced on every square.

Suppose that for a weighted (not necessarily simple) graph (G, w) and for a vector z € {0,1,2}V,
we can find in 9 time an edge set F' C F maximizing w(F) such that dp = x. Note that 75 is bounded
by O(n(m + nlogn)) [51] and O(mlog(nw(E))y/na(m,n)logn) [53], where a is the inverse of the

Ackermann function.

Theorem 4.6.1. In a weighted subcubic graph (G, w), if w is node-induced on every square in G, then

the weighted square-free 2-matching problem is solvable in O(n3ys) time.

In what follows, we give a proof of Theorem 4.6.1. In our proof, we show the relation between the
weighted square-free 2-matching problem and M-concave functions, which are a quantitative extension

of jump systems.

4.6.1 M-concave functions

An M-concave (M-convex) function on a constant-parity jump system is a quantitative extension
of a jump system, which is a generalization of valuated matroids [28,30], valuated delta-matroids [29],

and M-concave (M-convex) functions on base polyhedra [105,106].

Definition 4.6.2 (M-concave function on a constant-parity jump system [107]). For J C ZY, we call
f:J — R an M-concave function on a constant-parity jump system if it satisfies the following

exchange axiom:

(M-EXC) For any z,y € J and for any (x,y)-increment s, there exists an (x + s, y)-increment ¢ such
that z+s+teJ,y—s—teJ,and f(x)+ f(y) < flx+s+t)+ fly—s—1).

It directly follows from (M-EXC) that J satisfies (EXC), and hence J is a constant-parity jump
system. We call a function f : J — R an M-convex function if —f is an M-concave function on a
constant-parity jump system. M-concave functions on constant-parity jump systems appear in many
combinatorial optimization problems such as the weighted matching problem, the minsquare factor
problem [2], and the weighted even factor problem in odd-cycle-symmetric digraphs [94]. Some properties
of M-concave functions are investigated in [89], and efficient algorithms for maximizing an M-concave

function on a constant-parity jump system are given in [108,116].
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Theorem 4.6.3 (Murota and Tanaka). Let J C ZY be a finite constant-parity jump system, and
f:J = Z be an M-concave function on J. Suppose that a vector xo € J is given, and we can check
whether x € J or not and evaluate f(x) in ~y time. Then we can find a vector x € J mazimizing f(x)
in O(n3®(J))y) time.

Note that O(n*(log ®(J))?y) time algorithm is proposed in [116] also for this problem.

4.6.2 Relation with M-concave functions

We consider a generalization of Theorem 4.3.3. For a weighted subcubic graph (G,w), define a

function fsq on Jiq(G) by

fsq(x) = max { Z w(e)

ec M

M is a square-free 2-matching, dy; = x} .

Then, the following theorem holds.

Theorem 4.6.4. For a weighted subcubic graph (G,w), if w is node-induced on every square in G, fsq

is an M-concave function on the constant-parity jump system Joq(G).

In what follows, we give a proof of this theorem. In a similar way as Theorem 4.3.3, we use the
procedure in Section 4.4.1 to find an (x + s,y)-increment ¢ satisfying (M-EXC) for given z, y, and
s. We now consider the weight of the output. Define £y C E as the set of all shrunk edges, that is,
Ey = E(Cy)U---UE(Cy), and let Ey = E\ Ey. Define w(F') = ) .pw(e) for FF C E. Then the

following lemma holds.

Lemma 4.6.5. Let M and N be square-free 2-matchings in G, whose shrunk edge sets in G° are M° and
N°, respectively. Let M*, N* be square-free 2-matchings in G° obtained from M and N by the procedure
in Section 4.4.1. Then, w(M* N Ep) + w(N* N Ey) = w(M° N Ey) +w(N° N Ep).

Proof. If (M*,N*) = (M® NO) (M',N"),(M",N"), then M*+ N* = M°+ N°, where ‘4’ means the
union when we consider the multiplicity of the edges. Hence, w(M* N Ey) +w(N*NEy) = w(M°NEy)+
w(N°NEy). If (M*,N*) = (M",N") then M*+N* = M°+N°—{ugvpy1, ugus p+{usus, vy11us}, where
‘—? means the difference of sets when we consider the multiplicity of the edges. Since w is node-induced

on Upy1u2, ugg, we have w(M* N Ey) +w(N* N Ey) = w(M° N Ey) + w(N° N Eyp). O

Lemma 4.6.6. Let M*, N* and t° be the outputs of the procedure in Section 4.4.1. Suppose that M**
and N** are square-free 2-matchings which are expanded edge sets of M* and N*, respectively, and t is
a (dyr + s,dny — s)-increment corresponding to t° such that dyr = dpr + s+t and dy= = dy — s — t.
Then, w(M**) + w(N**) = w(M) + w(N).

Proof. By Lemma 4.6.5, it suffices to show that
w(M*™ N E(C)) + w(N*™NE(C)) =wMnNE(C;)) +wNNE(C)) (4.3)

for any shrunk cycle C;. Since dyr=ng, + dN+*nEg, = dMnE, + ANnE, and da+ + dy= = dpr + dy, it
holds that dyseng(c;) + dn=nec,) = dunEec;) + dnne(c,)- Then the equation (4.3) holds because w is
node-induced on Cj. O
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We are now ready to show Theorem 4.6.4.

Proof of Theorem 4.6.4. For z,y € Jy(G) and an (z,y)-increment s, let M and N be square-free 2-
matchings such that dys = z, dy =y, w(M) = fsq(z), and w(N) = fsq(y). As with Assumption 4.4.6,
we assume that M and N maximize |M N N| among such 2-matchings.

Let M**, N** and t be as in Lemma 4.6.6. If ¢ is not an (x + s,y)-increment, then dy/« = dys
and dy+ = dy. Since w(M**) + w(N**) = w(M) + w(N) by Lemma 4.6.6, w(M**) = w(M) and
w(N**) = w(N). However, either |[M** N N**| > |M N N| or |[M** N N| > |M N N| holds in the same
way as Section 4.4, which contradicts the maximality of |[M N N|. Thus, ¢ is an (z + s, y)-increment.

On the other hand, by Lemma 4.6.6, we have

fsq(x) + fsq(y) = w(M) + w(N)
< fsq(@ +s+1) + faqly — s — 1)

Hence fsq is an M-concave function on Jg. O

4.6.3 Polynomial time algorithm

Now we are ready to give a proof of Theorem 4.6.1 with the aid of previous works on M-concave

functions. As a generalization of Lemma 4.3.4, we show the following lemma.

Lemma 4.6.7. Given a weighted subcubic graph (G, w) and a vector x € Jsq(G), we can calculate fs ()

in O(y2) time if w is node-induced on every square.

Proof. Take a maximal family of node-disjoint cycles Cy, Cs,...,Cy of length four such that z(v) = 2
for each v € JV(C;). Let G° = (V°, E°) denote the graph obtained from G = (V, E) by shrinking
C1,Cy,...,C4. Let u® and ub denote the nodes arising when shrinking C; = (vi,vé,vé,vi). Let m; be
a function on V(C;) such that w(e) = m;(u) + m;(v) for every edge e = (u,v) € E(C;), and let 7 be
the function on |JV (C;) defined by 7(v) = m;(v) for v € V(C;). Since the cycles C1, ..., Cy are disjoint
we can define such w. Let Ey, E1, Vp, V1 and z° be the same as in the proof of Lemma 4.3.4. We define

w® : E° — R as follows (see Figure 4.8):

w(e) when u,v € Vp,
w®(e) = { w(e) — m(v) when u € Vp and v € V°\ Vj,
w(e) — w(u) — w(v) when u,v € V°\ V1,
for each e = uv € Ey, and
w®(e) = m(v}) + m(vy) + m(vh) + m(vh)

for each e = uiul € E°\ Ep.
We will show that fiq(z) = f(2°) + m(V1) where

f(z°) = max{ Z w®(e)

ecM®°

M? is a 2-matching in G°, dpjo = xo} .
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w(a) w(g)
™1 T4 ’w(d) 5 T8
: edges in M
T2 T3 6 7
w(b) w(c) w(e) w(/f)

w(M) =w(a) +w(d) +w(f)+m + 74+ 75 + 77 + 279 + 273 + 276 + 27y

w(a) —m w(g) — 7

w(d) — Ty — Ty

Z?:l T Z?:s T

: edges in M°
w(b) — m w(c) —m3  w(e) —mg w(f) —mr
w®(M°) = w(a) + w(d) + w(f) + 72 + 73+ 76 + 75

Figure 4.8: Example of w®(M°)

Clearly, that would prove the lemma since f(z°) can be calculated in O(y2) time.

For a square-free 2-matching M with djy; = x we can get a 2-matching M° in G° with dpe = z°,
and conversely, for any 2-matching M° of G° with dje = 2° we can define a square-free 2-matching M
of G with dj; = z as described in Lemma 4.3.4. One only has to observe that for a corresponding pair
M, M°, we have w(M) = w°®(M°)+ (V7). This means that for any M with dy; = x and w(M) = fsq(2)
we can find an M° with w®(M°) = fsq(x) — 7(V1), and conversely, for any M° with dye = z° and
w®(M°) = f(2°) we can find an M with w(M) = f(z°) + 7(V1), hence we are done. O

Theorem 4.6.1 follows from Lemma 4.6.7 and Theorems 4.6.3 and 4.6.4.

4.7 A min-max formula

In this section we give a min-max formula that characterizes the maximum size of a square-free
2-matching in a subcubic graph. The proof is based on the connection between square-free 2-matchings
in G and 2-matchings in G° that was described in Section 4.3.

The following characterization of the maximum size of a 2-matching (not necessarily square-free)

can be derived from a construction of Tutte [126].

Theorem 4.7.1. Let G = (V, E) be a graph. The mazimum size of a 2-matching in G is equal to the
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minimum value of

176(U,8) = V| + |U| = |S| + Y _ I3 |E(T, )|, (4.4)
T

where U and S are disjoint subsets of V', S is independent, and T ranges over the components of
G-U-S.

We drop the subscript G if it is clear from the context. Our first observation is that U can be

eliminated from the formula in the subcubic case.

Theorem 4.7.2. Let G = (V, E) be a subcubic graph. The mazimum size of a 2-matching in G is equal

to the minimum value of

T6(S) = VI =S|+ > IF|E(T, )|, (4.5)
T
where S is an independent subset of V', and T ranges over the components of G — S.

Proof. Let U and S be disjoint subsets of V' that minimize (4.4). If U = (), then we are done, otherwise

take a node u € U. As G is subcubic, d(u) < 3 and so we have the following cases.

e If u has all of its neighbors in UUS, then u is a component of G— (U —u)—S and | 3|E(u, S)|] < 1.
Hence 7(U — u, S) < 7(U, S).

e If u has exactly one neighbor in V'\ (U US), then let T be the component of G —U — S containing
the neighbor of u. Then ||E(T +u,S)|| < [3|E(T, S)|] + 1, hence 7(U — u, S) < 7(U, S).

o If w has exactly two neighbors in V' \ (U U S), then we have two subcases. If these neighbors
are contained in the same component 7' of G — U — S then [3|E(T 4+ u, S)|| < [5|E(T,S)|| +1
so 7(U —u,S) < 7(U,S). If the two neighbors are contained in 7} and 75, then 77 + 75 + u
will form one component of G — (U — u) — S. It is easy to see that [$|E(Ty + Tb + u,S)|| <
|2|E(T1, S)|] + [3|E(T%, S)|] 4+ 1 which implies 7(U — u, S) < 7(U, S) again.

e If u has three neighbors in V' \ (U U S), then, depending on the position of these neighbors in the
components of G —U — 5, we may get one from two or three components when leaving u out from
U. One can easily check that the sum in (4.4) belonging to the components of G — U — S may
increase only by one in each case while the size of U always decreases by one. That means that
(U —u,S) <7(U,S).

The observations above imply that if U and S attain the minimum in (4.4) and the graph is subcubic,
then we can make U empty by trimming its nodes one by one so that the value 7(U, S) does not increase.

At the end, we get an independent set S for which 7/(S) = 7(U, S), and we are done. O

Now we turn to the min-max formula characterizing the maximum size of a square-free 2-matching.
Let G be a subcubic graph, let S be an independent subset of V', and take a set C of node-disjoint cycles
Cy,...,Cq of length four. We define the C-components of G — S as follows.

Definition 4.7.3 (C-component). We say that u,v € V' \ S are in the same C-component of G — S if
and only if one of the followings hold:

e y and v are in the same component of G — S, or
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o u € V(T1), v € V(T) (where 71 and T are components of G — S), and there is a cycle C =
(v1,v2,v3,v4) € C such that vy € V(T1), vz € V(T3), va,v4 € S.

We say that C' = (v1,v2,v3,v4) € C fits a C-component T' if v1,v3 € V(T') and ve,v4 € S.

In other words, a C-component is the union of some components of G — S that are connected with

cycles from C in a special configuration. Using this definition, we can formalize our result.

Theorem 4.7.4. Let G = (V, E) be a subcubic graph and let C be a mazimal set of node-disjoint cycles

of length four. The mazimum size of a square-free 2-matching in G is equal to the minimum value of
76(S) = VI = IS|+ > 15 E(T,9) - [cr])) — K, (4.6)
T

where S is an independent subset of V', T ranges over the C-components of G — S, Cr C C denotes the
set of cycles fitting T, and K 1is the set of K4’s in G.

Seemingly, the minimum value of (4.6) also depends on the choice of C. The theorem implies that we
can anyhow take node-disjoint cycles maximally, the minimum value of 74 (S) will always be the same,

namely, the maximum size of a square-free 2-matching.

Proof. As a K4 forms a component of GG, first we handle such a component separately. Let K € K be a
Ky-subgraph of G. For an independent set S C V, |S N K| =0 or 1 by the definition of independence,
and in both cases, |SNK| = [$(|E(K =S, 5)|—|Ck—s|)]. Thus, a square-free 2-matching M of maximum

size satisfies that
IMNE(K)| =3=|K|-[SNK|+ [$(|E(K - S,5)| - [Ck-s])] — 1,

and hence it suffices to consider the case when G has no Ky as a subgraph.

First we show that the maximum is not more than the minimum. Let M be a square-free 2-matching
and take an independent subset S of V. We claim that for each C-component T of G — .S, the number
of edges in M spanned by V(T') U S is at most |V (T)| + |3(|E(T, S)| — [Cr|)]. Indeed,

2MNE(T+S)|=2MNE(T)|+2|MnE(T,S)|
<2IM N E(T)|+ |MnE(T,S)| + |E(T,S)| — |Cr|
< 2AV(T)| + |E(T, S)| — |Crl.

Here, T'+ S denotes the graph induced by V(7T') U S. Hence we have
(M <Y (VD) + [5(E(T,9)] = [er)])
T

= V= 15|+ Y 3BT, 9)| — |crl))-
T

Now we turn to the reverse inequality. According to the above mentioned, we may assume that G
does not contain a Ky4. Let C = {C4,...,C,} and let G° = (V°, E°) denote the graph obtained from
G = (V, E) by shrinking C1,C5,...,Cy. By Theorem 4.7.2, the maximum size of a 2-matching in G° is
equal to the minimum value of

T6o(5%) = VoI = S°] + D51 E°(T°, 5°)]). (4.7)
D
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From now let S° C V° be an independent set attaining the minimum in (4.7). In Section 4.3, we
have already shown that the maximum size of a square-free 2-matching in G is equal to 7/, (S°) + 2g¢.
So we only have to find an independent subset S of V such that 7¢(S) = 7/ (S°) + 2¢.

Let S denote the set of nodes in V' that corresponds to S°. Since no self-loops are incident to nodes
in S° by the definition of an independent set, S is obviously independent. We claim that 7¢(S) =
T (5°) 4 2q. To see this, we will blow back the cycles one by one and show that (4.7) increases by two
at each step. Assume that some of the cycles are already blown back, and G’ and S’ are the actual graph
and an independent set, while G” and S” are those arising after blowing back the next square-edge. We
also use the notation C’ and C” for the set of cycles already blown back.

If the edge has both of its end-nodes in V' \ S" then |[V"| = |[V'| + 2, |S”| = |S’| and the set of
edges going between S" and V'\ S” does not change. Hence 71 (S”) = 7¢/(S’) + 2. Now assume that the
square-edge has one of its end-nodes in S’ and the other in 7" where T” is a C’-component of G’ — 5.
Then we have |V”| = |V'| +2,|58"| = |S'| + 1, and |E(T",S")| — |C7,| = |E(T",S")| — |C;| + 2. Hence
T (S") = 17 (S") + 2 again, and we are done. O

Remark 4.7.5. It is easy to see that both an algorithm and a min-max theorem can be presented in
the slightly more general case when a list of forbidden squares is given in the graph. That is, if we denote
by L the list, we are looking for a maximum L-free 2-matching M where L-free means that M contains
at most three edges from each square in £. The only difference is that we have to take node-disjoint

cycles of length four maximally from £ and only shrink these cycles.

By using the min-max result, we can prove a special case of a conjecture of Jordan appeared in [79].
To describe the conjecture, first we give some definitions.

We call an ordered pair L = (Z,P) a clump of G if Z is a cut of size k — 1 and P is a partition of
V'\ Z such that no edge of G joins two distinct member of P. A clump L covers a pair of nodes u, v if
u and v belong to distinct members of P. A bush B is a set of clumps such that each pair of nodes is
covered by at most two of them. A bush B covers a pair of nodes if it contains a clump covering them.

Two bushes By and By are disjoint if no pair of nodes is covered by both of them. Let

o(B)=I3 > (PI-Dl.
(Z,P)eB
It is easy to see that in order to make G k-connected, one must add a set of at least ) p.p o(B) edges

to G for any collection D of disjoint bushes.

Conjecture 4.7.6 (Jordan). Let G be a (k — 1)-connected graph. Then the minimum number of edges
that must be added to G' to make it k-connected is equal to the mazimum value of Y p.p o(B), where

the mazimum is taken over all sets of pairwise disjoint bushes D of G.

The conjecture can be easily verified for k = n — 1 and n — 2. Now we show how it follows from our

min-max result when £k =n — 3.

Theorem 4.7.7. Let G be an (n — 4)-connected graph. Then the minimum number of edges that must
be added to G to make it (n — 3)-connected is equal to the mazimum value of Y p.po(B), where the

mazimum, is taken over all sets of pairwise disjoint bushes D of G.
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Proof. Obviously, the maximum is at most the minimum. We prove the reverse inequality. Let G = (V, E)
be the complement of the graph, which is a subcubic graph. We have already seen that a graph is
(n — 3)-connected if and only if its complement is a square-free 2-matching. Take a maximal family
of node-disjoint cycles C1, ..., C, of length four in G. However, we know, by the min-max result, that
the minimum number of edges that must be added to G to make it (n — 3)-connected is equal to the

maximum value of

1Bl = (VI =[S+ Y _[31ET,9)| —|cr])] — IK), (4.8)
T

where S is an independent subset of V in G, T ranges over the C-components of G — S, and K is the
set of K4's of G. Assume that S attains the minimum in (4.8). Let T1,...,T; be the C-components of
G — S intersecting no K. We will define a set of disjoint bushes D of G such that

Y a(B) = |E[ - (V] -S| +Z s(IB(T, 8)] = [cr])] = K, (4.9)

BeD
which would clearly prove the theorem.

Fori=1,...,t, let B; be the set of the following clumps:

e for v € T; with dn(v) = 3, let L be the star of v, namely L = (Z,P) where Z =V \ (Na(v)U{v})
and P = {{v}, Ng(v)};
e for a cycle C' = (v1,v9,v3,v4) € C fitting T;, let L = (Z,P) be a clump such that Z =V \ V(C)
and P = {{v1,v3},{va,va}}.
Here Ng(v) is the set of nodes adjacent to v in G.

Clearly, these pairs are clumps in G. Moreover, each pair of nodes is covered by at most two of them.

Hence the B;’s form a set D of pairwise disjoint bushes of G. We have
o(Bi)=T3 Y, (IPI-1)]
(Z,P)eB;
= [3({v € V(T}) : dg(v) =3} + [Cr,])]
> [30> (dg(v) = 2) + [Cr )]

veT;
= [3QIE(T)| + |E(T3, S)| - 2|V (T3)| + [Cr:])]
= |E(T})| = IV(T)] + [5(1E(T;, S)| + [Cr, )]
= |E(T; + S)| = [V(T3)| = [5(IE(T3, S)| - [Cr.]))
Note that for a subgraph T of G = (V, E), E(T) is the set of edges of T
For T € K, the bush Bp will contain a single clump twice. Namely, if V/(T') = {vy,v2,vs3,v4}, then
L = (Z,P) is defined by Z = V \ V(T) and P = {{v1},{va},{vs},{vs}}. Clearly, o(Br) = 3. By

summing these values over the bushes defined above we get
Y aB)= Z(IE(T +8)| = IV(T)| = [5(1E(T3, 9)| - [Cx ) + 3IK]|
=Y (BT +9)| = V(D)| - [5(E(T, )| - [cr])]) + K|

T
= [E]— (V] = S|+ Y _[3( BT, )| - [er])] - 1K),
T
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where T ranges over the C-components of G — S and the second equality follows from |E(T + S)| =
6, [V(T)| =4ifT € Kand |[E(T+S)| =6, |V(T)| =3, |[E(T,S)|=3if T+v € K forsomev e S. O



Chapter 5
Kt +- and Ky y-free t-matchings

Let K be a list of forbidden K;; and K subgraphs where ¢ > 2 is assumed throughout the chapter.
For disjoint subsets X,Y of V' we denote by K[X] and K[X, Y] the members of I contained in X and
having edges only between X and Y, respectively. That is, [X, Y] stands for forbidden K};’s whose
colour classes are subsets of X and Y. Recall that Vi and Ex denote the node-set and edge-set of the

forbidden graph K € IC, respectively.

5.1 Main theorem

Before stating our theorem, let us recall the well-known min-max formula on the maximum size of

a b-matching (see e.g. [114, Vol A, p. 562.]).

Theorem 5.1.1 (Maximum size of a b-matching). Let G = (V, E) be a graph with an upper bound

b:V — Z,. The mazimum size of a b-matching is equal to the minimum value of
b(U) + [EW][+ > [50(T) + [E[T, W]))] (5.1)
T

where U and W are disjoint subsets of V, and T ranges over the connected components of G —U — W.

Let us now formulate our theorem. There are minor technical difficulties when ¢ = 2 that do not
occur for larger t. In order to make both the formulation and the proof simpler it is worth introducing the

following definitions. We refer to forbidden K2 and K3 subgraphs as squares and triangles, respectively.

Definition 5.1.2. For ¢t = 2, we call a complete subgraph on four nodes square-full if it contains three

forbidden squares.

Note that, by assumption (1.10), every square-full subgraph is a connected component of G. We
denote the number of square-full components of G by S(G) for ¢t = 2, and define S(G) = 0 for ¢ > 2. It
is easy to see that a C-free b-matching contains at most three edges from each square-full component

of G. The following definition will be used in the proof of the theorem.

Definition 5.1.3. For ¢t = 2, a forbidden triangle is called square-covered if its node set is contained

in the node set of a forbidden square, otherwise uncovered.
The theorem is as follows.

65



66 5. K;4- and K -free t-matchings

Theorem 5.1.4. Let G = (V, E) be a graph with an upper bound b : V' — Z and K be a list of forbidden
Ky and Kyyq subgraphs of G so that (1.8), (1.9) and (1.10) hold. Then the mazimum size of a K-free

b-matching is equal to the minimum value of
L(
b(U) + |EW]| = KW+ 3 [30(T) + [BIT, W] — [KIT, W) | - $(6) (5.2)
TeP

where U and W are disjoint subsets of V', P is a partition of the connected components of G — U — W
and K C K is a collection of node-disjoint forbidden subgraphs.

For fixed U, W,P and K the value of (5.2) is denoted by 7(U, W, P,K). It is easy to see that the
contribution of a square-full component to (5.2) is always 3 and a maximum K-free b-matching contains
exactly 3 of its edges. Hence we may count these components of G separately, so the following theorem

immediately implies the general one.

Theorem 5.1.5. Let G = (V, E) be a graph with an upper bound b : V' — Z and K be a list of forbidden
Kyt and Ky subgraphs of G so that (1.8), (1.9) and (1.10) hold. Furthermore, if t = 2, assume that G
has no square-full component. Then the maximum size of a KC-free b-matching is equal to the minimum

value of

b(U) + |EW]| — KW+ > |S0(T) + |BIT, W] - |K[T, W) (5.3)
TeP

where U and W are disjoint subsets of V', P is a partition of the connected components of G — U — W
and K C K is a collection of node-disjoint forbidden subgraphs.

Proof of maz < min in Theorem 5.1.5. Let M be a K-free b-matching. Then clearly |[M N (E[U] U
E[U,V\U))| < bU) and |M N E[W]| < |E[W]| — |[K[W]|. Moreover, for each T' € P we have

2-IMN(E[T|UE[T,W])|=2-|MNE[T]|+2-|MnE[T,W]|
<2-|MNE[T]|+ |M N E[T,W]|
+|E[T,W]| — |K[T, W],
WT) + |E[T,W]| — |K[T, W]|.

These together prove the inequality. U

5.2 Shrinking

In the proof of max > min we use two shrinking operations to get rid of the K;; and K subgraphs
in IC.

Definition 5.2.1 (Shrinking a K;; subgraph). Let K be a K;; subgraph of G = (V, E) with colour

classes K4 and Kpg. Shrinking K in G consists of the following operations (see Figure 5.1:

e identify the nodes in K 4, and denote the corresponding node by k,,

e identify the nodes in Kp, and denote the corresponding node by k;, and
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Kay / a

_— t — 1 edges
| Q] O,

/ \ |

Figure 5.1: Shrinking a K;; subgraph

Figure 5.2: Shrinking a K11 subgraph

e replace the edges between K4 and Kp with ¢t — 1 parallel edges between k, and k;, (we call the

set of these edges a shrunk bundle between k£, and k).

When identifying the nodes in K4 and Kp, the edges (and also loops) spanned by K4 and Kp are
replaced by loops on k, and ky, respectively. Each edge e € E'\ Ex is denoted by e again after shrinking
a K;; subgraph and is called the image of the original edge. By abuse of notation, for an edge set
F C E\ Eg, the corresponding subset of edges in the contracted graph is also denoted by F'. Hence for
an edge set F'C E'\ Ex we have hp(Ky) = dp(kq), hp(Kp) = dp(ky).

Definition 5.2.2 (Shrinking a K41 subgraph). Let K be a K;y; subgraph of G = (V, E). Shrinking

K in G consists of the following operations (see Figure 5.2:
e identify the nodes in Vi, and denote the corresponding node by k,
e replace the edges in Ex by L%J — 1 loops on the new node k.

Again, for an edge set F' C E'\ Ef, the corresponding subset of edges in the contracted graph is
also denoted by F.

We usually denote the graph obtained by applying one of the shrinking operations by G° = (V°, E°).
Throughout the section, the graph G, the function b and the list K of forbidden subgraphs are supposed
to satisfy the conditions of Theorem 5.1.5. It is easy to see, by using (1.10), that two members of K are

edge-disjoint if and only if they are also node-disjoint, hence we simply call such pairs disjoint.
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The following two lemmas give the connection between the maximum size of a K-free b-matching in
G and a K°-free b°-matching in G° where b° is a properly defined upper bound on V° and K° is a list
of forbidden subgraphs in the contracted graph.

Lemma 5.2.3. Let G° = (V°, E°) be the graph obtained by shrinking a K;; subgraph K. Let K° be
the set of forbidden subgraphs disjoint from K and define b° as b°(v) = b(v) for v € V \ Vi and
b° (ko) = b°(kp) = t. Then the difference between the mazimum size of a K-free b-matching in G and the

mazimum size of a K°-free b°-matching in G° is ezactly t> — t.

Lemma 5.2.4. Let G° = (V°,E°) be the graph obtained by shrinking a K1 subgraph K € K where
K is uncovered if t = 2. Let K° be the set of forbidden subgraphs disjoint from K and define b° as
b°(v) = b(v) forv € V\ Vi, b°(k) =t if t is even and b°(k) =t + 1 if t is odd. Then the difference
between the maximum size of a K-free b-matching in G and the maximum size of a K°-free b°-matching

; o t?
in G° is exactly LgJ .
The proof of Lemma 5.2.3 is based on the following claim.

Claim 5.2.5. Assume that K € K is a Ky; subgraph with colour classes K4 and Kp and M’ is a
K-free b-matching of G — Ex. Then M’ can be extended to a K-free b-matching M of G with |M| =
|M,| + t2 — maX{l, hM/(KA), hM’(KB)}

Proof. First we consider the case t > 3. Let P be a minimum size matching of K covering each node
v € Vi with dpp(v) = 1 (note that dyp(v) < 1 for v € Vi as d(v) < t+ 1). If there is no such node,
then let P consist of an arbitrary edge in Ex. We claim that M = M’ U (Ek \ P) satisfies the above
conditions. Indeed, M is a b-matching and |M N Ex| = t* — max{1, hpy (Ka), har(Kp)} clearly holds,
so we only have to verify that it is also IC-free.

Assume that there is a forbidden K;; subgraph K’ in M with colour classes K, Kj. Ef must
contain an edge uwv € Ex N M with u € K’y and v € K};. By symmetry, we may assume that u € K 4.
As b(u) =t, T'yr(u) = KJ; and also |T'pr(u) N Kp| > ¢t — 1. Hence |[K; N Kp| >t — 1. Consider a node
z € Ky. Since dp(z, Kg) >t —1 and t > 3, we get dpr(z, K3) > 0, thus K4 C I'py(K}). Because of
'y (Kp) = Ky, this gives Ky = K'y. Kp = K/ follows similarly, giving a contradiction.

If there is a forbidden K;,i subgraph K’ in M, then Egs must contain an edge uv € Ex N M,
u € Ky4. As above, |V N K| >t —1. Using t > 3 again, K4 C 'y (Vg N Kp) C V. But K4 C Vi
is a contradiction since t + 1 = |Vi/| > |V N Ka| + |V N Kp| >t +t—1=2t -1 >t+ 1.

Now let t = 2 and K4 = {v1,v3}, Kp = {va,v4}. If max{hpp (Ka),hp(Kp)} < 1, then we may
assume by symmetry that dyy(v1) = dpp(ve) = 0. Clearly, M = M’ U {vivg,v1v4, 0203} is a K-free
2-matching. If max{hyy(K4), har (Kp)} = 2, we claim that at least one of M; = M’ U{v1vg,v3v4} and
My = M'"U{v1vy4,v903} is K-free. Assume M; contains a forbidden square or triangle K'; by symmetry
assume it contains the edge vivy. If K/ contains vzvy as well, then K’ is the square vyvzvsve. Otherwise,
it consists of vyve and a path L of length 2 or 3 between v; and vs9, not containing vy and v4. In the
first case, the only forbidden subgraph possibly contained in Ms is the square viv3vouy, implying that
{v1,v2,v3,v4} is a square-full component, a contradiction. In the latter case, it is easy to see that My

cannot contain a forbidden subgraph. O
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Proof of Lemma 5.2.3. First we show that if M is a -free b-matching in G then there is a K°-free
b°>-matching M° in G° with |M°| > |M| — (t> — t). Let M’ = M \ Eg. Clearly, |[M N Ex| < t* —
max{1, hpy (Ka), hap (Kp)}. In G°, let M° be the union of M’ and t —max{1, dp; (ks), dpr (kp)} parallel
edges from the shrunk bundle between k, and kj. Is is easy to see that M° is a K°-free b°-matching in
G° with |M°| > |M| — (#* — ).

The proof is completed by showing that for an arbitrary K°-free b°-matching M° in G° there exists
a K-free b-matching M in G with |M| > |M°| + (t2 —t). Let H denote the set of parallel edges in the
shrunk bundle between k, and kp, and let M’ = M°\ H. Now |M°NH| < t—max{1,dyy(kq),dpr (kp)}
and, by Claim 5.2.5, M’ may be extended to a K-free b-matching in G with |[M N Ex| = t* —
max{1, hpp (Ka), hpr (Kp)}, that is

|M| = |M°| —|[M° N H|+|MnNEg|>|M°| - (t — max{1,dn (ka), drr (kp) })
+ (12 — max{1, hpp (K A), hap (Kp)}) > |M°| + (£ —t).

Lemma 5.2.4 can be proved in a similar way by using the following claim.

Claim 5.2.6. Assume that K € K is a K1 subgraph and M’ is a K-free b-matching of G — Ex. If
t = 2, then assume that K is uncovered. Then M’ can be extended to obtain a K-free b-matching M of
G with |M| = |M'| + (*§1) — | mextbiyeQidl],

Proof. Let P be a minimum size subgraph of K covering each node v € Vi with dyp(v) = 1 (so P
is a matching or a matching and one more edge in Ef ). If there is no such node, then let P consist
of an arbitrary edge in Ex. For t = 2 and 3, we will choose P in a specific way, as given later in the
proof. We show that M = M’ U (Ek \ P) satisfies the above conditions. Indeed, M is a b-matching and
|MNEg|= (thl) — {M1 clearly holds, so we only have to show that it is also KC-free.

Assume that there is a forbidden K, subgraph K’ in M. E: must contain an edge uv € Ex N M.
By the minimal choice of P at least one of [I'pr(u) N Vg| >t —1 and [T'a(v) N Vg| >t — 1 is satisfied
which implies |V N Vg| > ¢t — 1. For t > 3 this immediately implies Vg C T (Vg N Vg) C Vg, a
contradiction.

If t = 2, then |V NVk| > 1 does not imply Vi C Vi and an improper choice of P may enable M to
contain a forbidden Kj3. The only such case is when hyp (Vi) = 3, Vi = {v1,v9,v3}, Vi = {ve, v3,v4},
voug,v3vy € M" and P = {vjvg,v1v3} (Figure 5.3). In this case, we may leave the edge incident to vy
from M’ and then P = {wvgu3} is a good choice. Indeed, the only problem could be that vjvovzvy is a
forbidden square, contradicting K being uncovered.

Otherwise hy (Vi) < 2 implies | P| < 1. Hence at least one of |I'p(u)NVk| = 2 and |[T'p(v) NV | = 2
is satisfied meaning K’ = K, a contradiction again.

Now assume that there is a forbidden K, subgraph K’ in M with colour classes K, K7;. The
same argument gives a contradiction for t > 4. However, in case of t = 3, choosing P arbitrarily
may enable M to contain a forbidden K33 in the following single configuration: Vi = {vy, va,v3,v4},
Ky = {vi,v,z}, Ky = {vs,v4,y}, xv3, 204, y01,yv2, 2y € M’ and P = {viva,v3v4} (Figure 5.4). In

this case, P = {vjvy,vov3} is a good choice.
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Figure 5.3: Choice of P for ¢t = 2 in the proof of Claim 5.2.6
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Figure 5.4: Choice of P for t = 3 in the proof of Claim 5.2.6
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Figure 5.5: Choice of P for ¢t = 2 in the proof of Claim 5.2.6

Finally, for ¢ = 2 no forbidden square appears if hy;(K) < 2 as otherwise K would be a square-
covered triangle. If hyy (K) = 3, then such a square K’ may appear only if Vi = {vy,v9,v3}, Vr =
{va,v3, V4, U5}, V304, V4V5, V5V € M, P = {vjvg, v103} (v1 # v4,v5 as K is uncovered). In this case both

P = {vjvy,vov3} and P = {vyv3,vovs} give a proper M (Figure 5.5). O

Proof of Lemma 5.2.4. First we show that if M is a IC-free b-matching in G then there is a K°-free
b°-matching M° in G° with [M°| > |M]| — L%J Let M' = M\ Ex. Clearly, [M N Ex| < (3') -
{—max{l’hé”'(v’()}—‘. In G°, let M° be the union of M’ and Vﬁmax{lédf‘/" (k)}J or VH*manl’dM' (k)}J loops
on k depending on whether ¢ is even or not, respectively. Is is easy to see that M° is a K°-free b°-matching
in G° with [M°] > | M| — gJ

The proof is completed by showing that for an arbitrary K°-free b°-matching M° in G° there exists
a K-free b-matching M in G with |[M| > |[M°|+ L%J . Let H denote the set of loops on k obtained when
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shrinking K, and let M’ = M°\ H. Now |[M° N H| < LMJ if ¢ is even and |M° N H| <

VH*manl’dM’ (k)}J if t is odd. By Claim 5.2.5, M’ can be extended modified as to get a K-free b-matching
in G with |M 0 Ex| = (35) — | 2e 00t ghag is

\M’:\MOI—IM"ﬂH\Jr\MﬂEK\zyMo\_LMJ
max{1,h (V] o )
+(t;1)_{w12|M|+L%J

if t is even and

|M| = |MO| _ |Mo ﬂH| + |MmEK| > |M0| _ Lt-kl—maxél,dM/(k)}J
LY - {ww > [M°| + L%J

if ¢ is odd. O

5.3 Proof of Theorem 5.1.5

We prove max > min by induction on |K|. For K = (), this is simply a consequence of Theorem 5.1.1.

Assume now that K # () and let K be a forbidden subgraph such that K is uncovered if ¢ = 2. Let
G° = (V°, E°) denote the graph obtained by shrinking K, let b° be defined as in Lemma 5.2.3 or 5.2.4
depending on whether K is a K;; or a K;11. We denote by K° the list of forbidden subgraphs disjoint
from K.

By induction, the maximum size of a K°-free b°-matching in G° is equal to the minimum value of
7(U°, W°,P°, K°). Let us choose an optimal U®, W°, P°, K° so that |U°| is minimal. The following claim

gives a useful property of U°.

Claim 5.3.1. Assume that v € U is such that d(v,W) + |[I'(v) N (V\ W)| < b(v) + 1. Then 7(U —
v, W, P, IC) <7(U,W,P, IC) where P’ is obtained from P by replacing its members incident to v by their

union plus v.

Proof. By removing v from U, b(U) decreases by b(v). |E[W]| — [K[W]| remains unchanged, while the
bound on d(v,W) + |T'(v) N (V \ W)| implies that the increment in the sum over the components of
G — U — W is at most b(v). O

Case 1: K is a K;; with colour classes K4 and Kpg.
By Lemma 5.2.3, the difference between the maximum size of a K-free b-matching in G and the

maximum size of a K°-free b°-matching in G° is exactly t? — t. We will define U, W, P and K such that
(U, W,P,K) = 7(U°, W°, P°,K°) + t> — t. (5.4)

The shrinking replaces K4 and Kp by two nodes k, and k; with ¢t — 1 parallel edges between them.
Let U, W and P denote the pre-images of U°, W°, P° in G, respectively and let K = K° U {K}. By
(1.10), dgo—p, (ka), dgo—k, (ky) < t. Since b°(k,) = b°(ky) = t, Claim 5.3.1 and the minimal choice of
|U°| implies that if k, € U°, then k, € W°.

Hence we have the following cases (7° denotes a member of P°). In each case we are only considering
those terms in 7(U°, W°,P°, ICO) that change when taking 7(U, W, P, IC) instead.
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Figure 5.6: Extending M°

ko € U°, ky € WO: b(U) = b°(U°) + 2 — ¢.

asky € WO [E[W]| = |E°[W] 4+ 2 — £+ 1 and [K[W]| = [Ko[W°]] + 1.

ko € WO, ky € T°: |E[T,W]| = |E°[T°,W°]| +t> =t + 1, b(T) = b°(T°) + t> — t and |K[T,W]| =
|Ke[T°, W°]| 4+ 1 (see Figure 6.9 for an example).

kg € T°, ky € W°: similar to the previous case.

ko, ky € T°: b(T) = b°(T°) + 2t> — 2t.

(5.4) is satisfied in each of the above cases, hence we are done. Note that in the first and the last

case we may leave out K from K as it is not counted in any term.

Case 2: K is a K.
By Lemma 5.2.4, the difference between the maximum size of a K-free b-matching in G and the

maximum size of a K°-free b°-matching in G° is L%J We show that for the pre-images U, W and P of
U°, W and P° with K = K° U {K} satisfy

(U, W, P,K) = 7(U°, We, P Ko) + | 5| (5.5)

After shrinking K = (Vi, Ex) we get a new node k with [£1] — 1 loops on it. (1.10) implies that
there are at most ¢ + 1 non-loop edges incident to k. Since b°(k) > t, Claim 5.3.1 implies k ¢ U. Hence

we have the following two cases (T° denotes a member of P°).
o ke We |[EW]| = [E° W]+ (5') — |22 + 1 and |K[W]| = [Ko[W°]| + L.

o kT b(T)=10b°(T°) + 2 if t is even and b(T) = b°(T°) + t> — 1 for an odd t.
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(5.5) is satisfied in both cases, hence we are done. We may also leave out K from K in the second

case as it is not counted in any term.

5.4 Algorithm

In this section we show how the proof of Theorem 5.1.5 immediately yields an algorithm for finding
a maximum /C-free b-matching in strongly polynomial time. In such problems, an important question
from an algorithmic point of view is how K is represented. For example, in the K-free b-matching
problem for bipartite graphs solved by Pap in [110], the set of excluded subgraphs may be exponentially
large. Therefore Pap assumes that C is given by a membership oracle, that is, a subroutine is given
for determining whether a given subgraph is a member of K. However, with such an oracle there is no
general method for determining whether K = (). Fortunately, we do not have to tackle such problems:
by the next claim, we may assume that K is given explicitly, as its size is linear in n. We use n = |V/|,

m = | E| for the number of nodes and edges of the graph, respectively.

Claim 5.4.1. If the graph G = (V, E) satisfies (1.8) and (1.10), then the total number of K;; and K1

subgraphs is bounded by @

Proof. Assume that v € V is contained in a forbidden subgraph and so dg(v) = t + 1. If we select
an edge incident to v, the remaining ¢ edges may be contained in at most one K;;; subgraph hence
the number of K;,1’s containing v is at most ¢ + 1. However, these ¢ edges also determine one of the
colour classes of those K;;'s containing them. If we pick a node v’ from this colour class (implying
dg(v') =t + 1), pick an edge incident to v/ (but not to v), then the remaining ¢ edges, if they do so,
exactly determine the other colour class of a K;; subgraph. Therefore the number of K;; subgraphs

containing v is bounded by (¢+1)t = t?+t. Hence the total number of forbidden K;; and K¢ subgraphs

. (t*+tn | (t+Dn _ (+3)n
is at most ~—r— + - = 5. U
Now we turn to the algorithm. First we choose an inclusionwise maximal subset H = {Hq, ..., Hy}

of disjoint forbidden subgraphs greedily. For ¢t = 2, let us always choose squares as long as possible and
then go on with triangles. This can be done in O(#3n) time as follows. Maintain an array of size m
that encodes for each edge whether it is used in one of the selected forbidden subgraphs or not. When
increasing H, one only has to check whether any of the edges of the examined forbidden subgraph is
already used, which takes O(¢?) time. This and Claim 5.4.1 together give an O(t3n) bound.

Let us shrink the members of H simultaneously (this can be easily done since they are disjoint),
resulting in a graph G’ = (V/, E’) with a bound &' : V' — Z, and no forbidden subgraphs since H was
maximal. One can find a maximal b’-matching M’ in G’ in O(|V'||E'|log |V'|) = O(nmlogm) time as in
[50]. Using the constructions described in Lemmas 5.2.3 and 5.2.4 for Hy, ..., H1, this can be modified
into a maximal KC-free b-matching M. Note that, for ¢ = 2, H; is always uncovered in the actual graph
by the selection rule. A dual optimal solution U, W, P,K can be constructed simultaneously as in the
proof of Theorem 5.1.5. The best time bound of the shrinking and extension steps may depend on the
data structure used and the representation of the graph. In any case, one such step may be performed

in O(m) time and |H| = O(n), hence the total running time is O(t3n + nmlogm).
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Chapter 6

Polyhedral descriptions

6.1 Main results

Let G = (V, E) be a graph and b : V' — Z an upper bound on the node set such that for any 7" € T

and any node v of T',

da(v) < 3, (6.1)
b(v) = 2. (6.2)

These settings clearly includes and generalizes the triangle-free 2-factor and 2-matching problems in
subcubic graphs.

In this chapter we give new proofs of Theorems 1.4.5 and 1.4.7 in a slightly more general form, based
on a newly introduced contraction operation. The proof easily extends to the polyhedral description
of T-free b-factors under assumptions (6.1) and (6.2). Hartvigsen and Li showed that the polyhedral
description of T-free 2-matchings is far more complicated, and proved their fundamental characterization
in [63]. We give a slight generalization of their nice result by extending our contraction techniques.

Yet giving a polyhedral description of triangle-free (or, more generally, T-free) 2-factors and 2-
matchings of arbitrary graphs is still open. One might wonder whether the description for subcubic
graphs could be a valid description for the general case. Unfortunately, the answer is negative as shown
by the counterexample of Figure 6.9.

As the considered graphs may contain parallel edges and self-loops, it may happen that two non-
identical triangles share the same node-set, that is, 7} and 75 are triangles with V3, = Vp, but B, # Er,.
We call these triangles node-identical. If there exists a pair of node-identical triangles in G then, by

(6.1) and (6.2), no b-factor exists.

Theorem 6.1.1. Let G = (V,E), b:V — Z, and T a collection of triangles satisfying (6.1) and (6.2).

Assume that there are no node-identical triangles in G. The T -free b-factor polytope is determined by

(1) 0<z(e) <1 (e € B),

(ii) 2(9(v)) = b(v) (veV), (Pr)
(11i) z(6(K)\ F) —x(F) >1—|F)| (K, F) odd),

)

)
(TeT)

Our main result is the proof of the following theorem which gives a slight generalization of Theo-
rem 1.4.7. The method we use is also inspired by Edmonds’ matching algorithm, but different from that

of [63] and is based on a new shrinking approach.

75
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Theorem 6.1.2. Let G = (V,E), b:V — Z, and T a collection of triangles satisfying (6.1) and (6.2).
The T -free b-matching polytope is determined by

(1) 0<z(e) <1 (e€ E),

(i1) 2(5(v)) < b(v) (vewv),
(iii) z(B[K]) + 2(F) + Yrez 2(Er) < (K, F,%) odd (Ps)

| PO FISIE] tri-comb of Type 2),

(iv) z(Er) <2 (T eT),

(v) 2(Bp, U Ep,) < 2 (Ty, Ty € T, Vi, = V).

Assumption (6.1) here is essential: the theorem is false if we remove the degree bound dg(v) < 3 on

nodes of forbidden triangles. An example is shown in Section 6.9.

6.2 Shrinking odd pairs

We prove Theorem 1.4.2 by induction on b(V'), |V|] and |E|. In the proof we use a shrinking oper-
ation to get a smaller graph on which the induction step can be applied. Note that condition (éi7) in
Theorems 1.4.2 and 6.1.1 is required for odd pairs. If (V') is odd then (V,0) is an odd pair and thus

(P,) and (P7) are infeasible. In the sequel we assume that b(V') is even.

Definition 6.2.1 (Shrinking an odd pair). Shrinking an odd pair (K, F') consists of the following

operations (see Figure 6.1):
e replace K by an edge pg with 0°(p) = |F| and b°(q) = 1,
e define b°(v) = b(v) for each v € V' \ K,

e replace each edge e with e € K,e” € V' \ K by an edge pe" if e € F', otherwise by ge”.

<
|
=

K V-K o
] b°(q) =1

= ;
~ _—
—
TR A
b°(p) = |F|
edges in §(K) \ F

edges in F

Figure 6.1: Shrinking an odd pair (K, F)

We usually denote the graph obtained by shrinking an odd pair by G° = (V°, E°). By abuse of
notation, each edge e € 6(K) is denoted by e again after shrinking the pair and is called the image of
the original edge. Hence the intersection £ N E° stands for the set of all edges not induced by K, in
other words, E° — pg C E. Similarly, V°\ {p,q} C V.



6.2. Shrinking odd pairs 7

Assume that z € R” satisfies (P»). An odd pair (K, F) is called z-tight if it satisfies (iii) with

equality. When shrinking an z-tight pair, we use the notation z° for the image of x, namely

x(e) if e € E° — pgq,
z°(e) =

|F| —z(F) if e =pgq.
The main advantage of the shrinking operation is the following.

Lemma 6.2.2. Let G = (V,E) be a graph with b : V — Z,. Assume that x € RY satisfies (P;) and
(K, F) is an x-tight pair. Then x° satisfies (P2) in G° = (V°, E°) with b°.

Proof. (i) clearly holds for edges different from pqg. Concerning pq, z°(pq) = |F| — x(F) > 0. The
tightness of (K, F') implies z°(pq) = |F| —z(F) =1 —z(6(K) \ F) < 1.

For a node v in V°\ {p, ¢}, by the definition of shrinking, 2°(§(v)) = z(6(v)) = b(v) = b°(v). Also,
2°(8(p)) = #(F) +2°(pq) = |F| = b°(p). By the tightness of (K, F), 2°(0(q)) = x(6(K) \ F) +2°(pq) =
1=10°(q).

It only remains to show that z° satisfies (i7i) in G°. First, observe that -assuming b(V') is even-
(Z,H) is an odd pair if and only if (Z, H) is also an odd pair. For these two pairs, condition (i) is
identical.

(73) immediately follows for odd pairs (Z, H) with Z C V°\ {p, ¢} as x satisfied (i7) in the original
problem. By taking (Z, H) instead, it also holds if p,q € Z. Again by possibly changing Z to Z, it
remains to show that (7i7) is satisfied if p € Z,q & Z.

If pg € H, then add ¢ to Z and delete pq from H. We have previously seen that the odd pair

(Z',H') = (Z + q, H — pq) satisfies (iii), thus

2(6(Z)\ H) —x(H) > 2(0(Z')\ H') — x(H') — 2(3(q))
>(1—H) -1
=1-|H|

If pq & H, then first consider the case when F'N(§(Z)\ H) # (. Let f be an edge in this set. Define
(Z',H') = (Z + q,H + f), which is again an odd pair satisfying (ii7). Then

2(6(Z)\ H) = (H) = 2(6(Z") \ H') — =(H') + 2z(pq) — =(3(q)) + 22(f)
> (1= H') +2(z(pg) + x(f)) - 1
=1—[H| +2(z(pq) + =(f) — 1)
>1—|H|.

For the last inequality, we use that xz(d(p)) = |F|, and the degree of p is |F'| + 1. Hence pg and f, two
edges incident to p must have x value together at least 1.

If FN(5(Z)\ H) =0, then let ; = FNH, Fy = F\ H. Define Z' = Z —p, H' = (H\ [,) U F,.
(Z',H') is odd since b(Z') + |H'| = b(Z) + |H| — |F| — |F1| + |F2| = b(Z) + |H| — 2| F1|. As we have seen,



78 6. Polyhedral descriptions

the pair (Z’, H') satisfies (4i7), so

2(0(Z)\ H) —2(H) > 2(6(Z") \ H') — x(H') + 2(F32) + 2(pq) — 2(F})
> (1= [H')) + z(5(p)) — 22(F)
> (1= [H'|) + |F| — 2| Fy]
=1-|H]|.
This completes the proof. ]

6.3 Proof of Theorem 1.4.2

It is easy to see that each b-factor satisfies (z) and (7). To show that (i7i) indeed holds for a b-factor
M C E, add all equalities dp;(v) = b(v) for v € K. This gives

9|M N E[K]| + |M N §(K)| = b(K). (6.3)

Adding the inequalities |[M N F| < |F| and —|M N (6(K) \ F)| <0, we get 2|M N E[K]|+2[M NF| <
b(K) + |F|. This yields |[M N E[K]|+ [M N F| < |3(b(K) + |F|)| = 2(b(K) + |F| — 1) since (K, F) is
odd. Subtracting the double of this from (6.3), we get |M N (§(K)\ F)|—|MNF| > 1—|F|, as required.

Recall that we may assume that b(V') is even since otherwise there exists no b-factor and the polytope
(P») is empty.

It remains to show that (i), (i¢) and (7i7) completely determine the b-factor polytope, that is, any
r € R¥ satisfying (P») is a convex combination of incidence vectors of b-factors. Assume that this does
not hold. Let us choose = to be a vertex of the polytope described by (P») not contained in the b-factor
polytope.

We choose this counterexample in such a way that (|[¢(V')|,b(V'),|V], |E|) is lexicographically minimal.
This implies that 0 < z < 1 as edges with z(e) = 0 could be deleted, while if z(e) = 1 we can delete
e and decrease the b values on its ends by one (if e is a loop on v then decrease b(v) by 2). It is easy
to see that the 2/ and ¥’ thus obtained would satisfy (i) — (4ii) thus giving a smaller counterexample,
a contradiction. Also, it can be shown that, in presence of parallel edges, the total x value of parallel
edges between two nodes should be strictly smaller than one.

As b(v) > 1 for each v € V, each node has degree at least 2 in G, so |E| > |V|. G is connected,
otherwise one of its components would be a smaller counterexample. If |E| = |V, then G is an even
cycle as it implies that b = 1 and b(V) is even. By (ii), = is alternately p and 1 — p for some value
0 < pu < 1 on the edges of this cycle, hence it is the convex combination of the two perfect matchings of
the graph, a contradiction.

So |E| > |V|. As z is a vertex, it satisfies |F| linearly independent constraints among (P,) with
equality. From |E| > |V, there is a tight odd pair (K, F) linearly independent from the equalities of

form (4).

Proposition 6.3.1. For any tight odd pair (K, F) independent from equalities of form (ii), the shrinking
of (K, F) results in a lezicographically smaller problem, and the same holds for (K, F).
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Proof. The second part follows by complementing K and by the observation that (K, F') is independent
from equalities of form (i) if and only if (K, F) does so.

What we have to prove is that either (A) ¢(K) # 0, or (B) ¢(K) = 0 and b(K) > |F|+ 1, or (C)
U(K)=0,b(K) =|F|+1and |[K| > 2, or (D) {K)=0,b(K) =|F|+1,|]K| =2 and E[K] > 1 as
([e(V)],6(V),|V],|E|) decreases only in these cases. However, we will show that either (A), (B) or (C)
is satisfied.

We claim that G[K] is connected. Indeed, assume indirectly that K = K7 U Ky where K3 N Ky = ()
and there is no edge between K; and Kp. Define F; = F N §(K;) for i = 1,2. Then one of the pairs
(K1, F1), (K2, F) is odd while the other is not, say (K7, F}) is odd. We have

1= [F]=z(0(K)\ F) — 2(F)
= z(0(K1) \ F1) — x(F1) + 2(6(K2) \ F2) — 2(F2)
— |Fi| = [F
=1—[F],

thus we have equality everywhere. That means that x(0(K2)\ Fa)—x(F») = —|F»|, which is only possible
(by 0 <z < 1) if §(K2) = 0, contradicting the connectivity of G. Hence G[K] must be connected.

Assume that (A) does not hold, so /(K) = 0 and (B) does not hold either, so b(K) < |F| + 1.
We show that b(K) = |F| + 1 in this case. Otherwise b(K) < |F| — 1 as (K, F) is an odd pair. As
x(F) > |F|—1, only b(K) = |F|—11is possible. By 0 < x < 1, F[K] = () and so | K| = 1 by the previous
observation. If F' = §(v), the tightness of (K, F) is identical to 2(d(v)) = b(v), contradicting linear
independence. Hence §(v) \ F' # () and thus z(6(v) \ F') > 0. Also, 2(F') < b(v) < |F| — 1. Consequently,
z(d(v) \ F) —z(F) > 1 —|F|, a contradiction.

Now we show that |K| > 2. If K = {v} then z(6(v) \ F) > 1 as 2(0(v)) = |F| + 1 and £(v) = 0. If
F # () then z(F) < |F| as < 1, so (4ii) cannot hold with equality. Hence F' = () and 2:(6(v)) = 1 = b(v),
so the tightness of (K, F) is identical to (8(v)) = b(v), contradicting independence.

Assume that (C) does not hold either, so ¢(K) = 0,b(K) = |F|+ 1 and | K| = 2. We show that this
leads to contradiction. Let K = {u, v}, and let C be the set of parallel edges between w and v. Then we
have

z(0(K)\ F) — z(F) = b(u) + b(v) — 22(C) — 2z(F,) — 2z(F,).

As b(u) 4+ b(v) = |F| + 1, either b(u) < |Fy| or b(v) < |F,|, say the first holds. In this case z(C) +
x(Fy) < b(u) < |Fyl, so 2(C) + z(Fy,) + z(F,) < |F,| + |F,|. Here F, = (), otherwise strict inequality
holds by = < 1, contradicting the tightness of (K, F'), and also b(u) = |F,| follows. Then the tightness
of the pair can be reformulated as z(d(u) \ C) — 2z(F,) = 1 — |F,|. By subtracting this from equality
2¢(C)+z(0(K)) = |F|+1, we get 22(C) +x(6(K)\6(u))+2z(F,) = 2|F,| = 2b(u). But 2(C)+z(F,) <

b(u), hence 6(K) \ 6(u) = 0 and z(C) 4+ z(F,) = x(C) + x(6(u)) = b(u) = |Fy|, b(v) = 1. That means
that the tightness of (K, F') is identical to x(d(u)) = b(u), contradicting linear independence. O

Note that (K, F) is also a-tight. Let G = (V°, E?), b3, 25 and G§ = (Vy, ES), b3, x5 denote the
problems we get after shrinking (K, F') and (K, F), respectively. By Proposition 6.3.1, the induction

o

step can be applied, and -by the minimality of G- 7 is the convex combination of incidence vectors

of by-factors of G7. Note, that a bj-factor contains either each edge of F' and exactly one edge from
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Figure 6.2: Illustration of the shrinking method

S(K)\ F, or all but one edges of F, the edge p;g; and none of the edges of 6(K) \ F. We can write these
combinations in the form 2§ = £ > xa, and 23 = £ - xn, for some k € Z, where the M;’s and N;’s
are (not necessarily distinct) b9- and bS-factors, respectively (note that z° is rational, being a vertex of
a rational polytope).

Then each edge e € §(K) \ F' is contained in exactly kz(e) number of M;’s and N;’s. Each of them
contains the entire F'. We can pair these b-factors and ‘glue’ them together to get kx(e) b-factors of G
containing the edge e. This can be done for each edge e € §(K) \ F. Similarly, for each edge e € F there
are exactly k(1 — x(e)) M;’s and N;’s that does not contain e. Notice that these contain all edges in
F — e and none in §(K) — F. Again, pair and glue these together to get b-factors of G not containing
e. For an illustration of this step, see Figure 6.2.

These b-factors altogether yield x as a convex combination of b-factors of GG, a contradiction.

Remark 6.3.2. Note that the above proof also gives a new proof of Theorem 1.4.3 by using the well-
known construction given below.

Take a copy of G denoted by G’ and for each v € V add b(v) new edges between v and v'. Let G*
be the graph thus arising and define b*(v) = b*(v') = b(v). Theorem 1.4.3 follows as the restriction of a
b*-factor of G* to GG gives a b-matching in G, and the restriction of the b*-factor polytope of G* to G
gives exactly the polytope described by Ps.
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6.4 Triangle-free b-factors

In this section, we extend the proof of Theorem 1.4.2 to Theorem 6.1.1. Besides shrinking odd pairs,

we also need to shrink triangles. The following shrinking operation appeared in [12].

Definition 6.4.1 (Shrinking a triangle). Assume G, b and T satisfy (6.1) and (6.2). Shrinking a
triangle T' € T consists of the following operations (see Figure 6.3):

e replace T by a node ¢,

e replace each edge e € E\ Ep with e* € Vp,e” € V' \ Vp by an edge te”, and each edge e € E'\ Ep
with e*, e” € Vr by a loop e on ¢,

e let b°(t) = 2 and define b°(v) = b(v) if v # t,

e let 7° denote the set of triangles in 7 node-disjoint from 7.

3l

4 £ be(t) =2

Figure 6.3: Shrinking a triangle

Similarly to Definition 6.2.1, we use the notation G° = (V°, E°) for the shrunk graph with E° C F
and V° —t C V. It is easy to see that G°, b° and T° also satisfy (6.1) and (6.2).
Assume that 2 € R¥ satisfies (P;). When shrinking a triangle, we use the notation x° for the image

of x, that is, z°(e) = x(e) for each e € E°.

Lemma 6.4.2. Let G = (V,E), b:V — Z4 and T a collection of triangles satisfying (6.1) and (6.2).
Assume that there are no node-identical forbidden triangles in T. If x € R¥ satisfies (Py) and T € T is
a forbidden triangle, then x° satisfies (Pr) in G° = (V°, E°) with b° and T°.

Proof. (i), (ii7) and (iv) easily follow from the same inequalities in the original graph. Also, (i) holds
for nodes different from t. As T is a-tight, z°(8(t)) = z(6(Vr)) = S 2(6(t;)) — 2z(Er) =2 =10°(t). O

Now we turn to the proof of Theorem 6.1.1. It is clear that a T-free b-factor satisfies (i) — (iv) ((4i7)
can be verified as in the proof of Theorem 1.4.2).

It remains to show that (i) — (iv) completely determine the polytope in question, that is, any z € R¥
satisfying (P7) is a convex combination of incidence vectors of T-free b-factors. Assume that this does
not hold. Let us choose x to be a vertex of the polytope described by (P7) not contained in the T-free
b-factor polytope.

We choose this counterexample in such a way that (|V|,|E|) is lexicographically minimal. This
immediately implies that 7 = (). Indeed, if there is a triangle T € T then it is automatically tight,
that is, x(E7p) = 2. Shrink T to a single node ¢ as in Definition 6.4.1, obtaining G°, b°, 7°, xz°. By
Lemma 6.4.2, these satisfy (Pr). As |[V°] < |V, 2° is a convex combination of T °-free b°-factors M; of
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G°. Note that b°(t) = 2 and dge (t) < 3 follows by (6.1). Let 2° = + >° Aixme. For each 4, [M7N4(t)| = 2.
Moreover, M7 No(t;)| < 1 for j = 1,2,3. We extend M? to a T-free b-matching of G as follows: if

|M? N 6(t)| = |MP No(tj41)| =1 (indices are meant modulo 3) then M; = M7 U {e}jj”, e]T+1,j+2}'

Proposition 6.4.3. M; is a T-free b-factor of G.

Proof. Assume that |[M? N6(t1)| = |M7 N(t2)| = 1. M; cannot contain a triangle in 7°, and neither
contains T' due to the construction. It suffices to check that it does not contain a triangle 77 € T which
shares a node with 7. By (6.1), 7' and 7' must have an edge in common. If the common edge is el,,
then M; does not contain 7" since el, & M;. If the common edge is ef; then el;,el; € M; and (6.2)
implies that the edge of T” not incident to t1 is not in M;. The same argument works if the common
edge of T and T" is el;. O

As b(t;) =2 for j = 1,2,3 and z(Fr) = 2, an easy computation shows that x(efj“) = x(5(t]-+2) \
Er). This implies that = %Z XM;, a contradiction. So 7 = ) indeed holds and the theorem follows
from Theorem 1.4.2.

6.5 Extending the shrinking operations

Theorem 6.1.1 turned out to easily follow from Theorem 1.4.2 due to the fact that a forbidden
triangle is always tight if (6.1) and (6.2) hold. Not surprisingly, this does not hold for b-matchings. In
this section, we extend the notion of shrinking to tri-combs. To prove Theorem 6.1.2, we also need to

slightly modify the notion of shrinking a triangle. We start with the latter one.

Definition 6.5.1 (Shrinking a triangle - extended). Assume G, b and 7T satisfy (6.1) and (6.2).
Shrinking a triangle 7" € T consists of the following operations (see Figure 6.4):

e replace T by two nodes t,t/,

replace each edge e € E\ Ep with e* € Vp,e¥ € V' \ Vp by an edge te”, and each edge e € E'\ Ep
with e*, e” € Vr by a loop e on ¢,

add three edges between t and ¢’ denoted by ¢1, g2 and g3,
e let b°(t) = 2, b°(t') = 2 and define b°(v) = b(v) if v # ¢, ¢,
e let 7° denote the set of triangles in 7 node-disjoint from 7.

We use the notation G° = (V°, E°) for the shrunk graph with E°\ {g1, 92,93} C E and V°\{¢t,t'} C
V. It is easy to see that G°, b° and T° also satisfy (6.1) and (6.2).

Assume that 2 € R¥ satisfies (Pg). A triangle T € T is called a-tight if it satisfies (iv) with
equality. Let T' € T be a tight triangle with Vp = {t1,t9,t3} and §(t1) \ Er = f1, d(t2) \ Er = f2 and
d(t3) \ Er = f3 (two of these edges may coincide). When shrinking 7', we use the notation z° for the
image of x, namely

z(e) if e € E°\ E°[t, 1],
x°(e) =
x(ealﬂjﬂ) —a(f;) ife=g;fori=1,23.
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Figure 6.4: Shrinking a triangle - extended

Remark 6.5.2. In case of x being a b-factor, z(g;) = 0 for each i, making the presence of edges
g1, 92, g3 unnecessary. That is the reason for the simpler definition of shrinking a triangle when proving
Theorem 6.1.1.

Lemma 6.5.3. Let G = (V,E), b:V — Z, and T a collection of triangles satisfying (6.1) and (6.2).
Assume that v € R satisfies (Ps) and T is an x-tight triangle. Then x° satisfies (Pg) in G° = (V°, E°)
with b° and T°.

Proof. Let Vi = {t1,ta,t3} and 6(t1) \ Er = f1, 6(t2) \ Er = f2 and 6(t3) \ Er = f3 again. Then (i), (iv)
and (v) easily follow from the same inequalities in the original graph and from z(g;) = x(eau 42) —
z(fi) > 0. Also, (ii) holds for nodes different from ¢ and . Clearly, z°(5(t)) = z(Er) = 2 = b°(t). As
for ¢/, 2°(8(t") = x(Er) — S, 2(8(t;) \ Er) <2 =b°(t).

Concerning (iii), for a tri-comb (Z, H,R) with Z C V°, H C §(Z),R C T° the required inequality

follows from the same inequality for (Z \ {t,t'}, H \ (6(t) Uo(t')), R) in the original graph. O

As mentioned earlier, forbidden triangles are not automatically tight in case of b-matchings. This
phenomenon lead us to extend the notion of shrinking to more complex structures than odd pairs,

namely to tri-combs, already introduced in Section 1.4.

Definition 6.5.4 (Shrinking a tri-comb of Type 1). Shrinking a tri-comb (K, F,T) of Type 1 consists

of the following operations (see Figure 6.5):
e replace K by an edge pg with b°(p) = |F| + |¥| and b°(¢) =1,

e replace each triangle T € T with Vp = {u,v,w} and VpNK = {u} by edges prr, rrsr, retr,spv, trw
where rp,sp and tp are new nodes with b°(rp) = 2,b°(sp) = b°(tp) = 1, and we also set
b (0) = b () = 1,

e define b°(v) = b(v) for each v € V' \ (K U Vg),

e replace each edge e € F with e € K,e’ € V \ K by an edge pe’ if e € F, and by ge" if
ecd(K)\ (FUExg),

e let 7° denote the set of triangles in T node-disjoint from K U Vz.

We usually denote the graph obtained by shrinking a tri-comb of Type 1 by G° = (V°, E°). By
abuse of notation, each edge e € §(K) \ Ex is denoted by e again after shrinking the tri-comb and is
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edges in 6(K) \ F
edges in F'U Ex

Figure 6.5: Shrinking a tri-comb of Type 1

called the image of the original edge. Hence the intersection £ N E° stands for the set of all edges not
induced by K nor by a triangle in ¥.
Assume that = € R¥ satisfies (Pg). When shrinking a tri-comb of Type 1, we use the notation z°

for the image of x, namely
o for an edge e € EN E° let 2°(e) = x(e),

e for a triangle T € T with Vp = {u,v,w} and Vo N K = {u} consider the new edges mentioned in
Definition 6.5.4, and define

- x(eg‘w) - x(eg‘w%
2% (s7v) = x(eg,) + x(eg,) — 1,
2% (trw) = x(efy,) + x(eg,) = 1,

 define 2°(pq) = |F| + 3[T| — 2(F) ~ Speq 2(Br) — Yyper v(er).
Recall that er denotes the special edge of triangle 7', that is, the edge in Ep having no end in K.

Definition 6.5.5 (Shrinking an odd tri-comb of Type 2). Shrinking a tri-comb (K, F,¥) of Type 2

consists of the following operations (see Figure 6.6):
e replace K by an edge pg with b°(p) = |F| + |¥| and b°(¢) = 1,

e replace each triangle T' € T with Vp = {u,v,w} and V7 N K = {u,v} by an edge prr, a loop Ip
on r7, and two parallel edges between rr and wr (denoted by rrw' and rrw?) where rr is a new
node with b°(r) = 2,

e define b°(v) = b(v) for each v € V' \ K,

e replace each edge e € F with e € K,e’" € V' \ K by an edge pe¥ if e € F, and by ge" if
e € 3(K)\ (F U Bx),

e let 7° denote the set of triangles in 7 node-disjoint from K.
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K VK () = 1 VK
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edges in 6(K) \ F
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Figure 6.6: Shrinking a tri-comb of Type 2

We usually denote the graph obtained by shrinking a tri-comb of Type 2 by G° = (V°, E°). Again,
each edge e € 6(K) \ Ex is denoted by e again after shrinking the tri-comb.
Assume that z € R¥ satisfies (Pg). When shrinking a tri-comb of Type 2, we use the notation z°

for the image of z, namely
e for an edge e € EN E° let z°(e) = x(e),

e for a triangle 7' € T with Vp = {u,v,w} and Vo N K = {u,v} consider the new edges mentioned
in Definition 6.5.5, and define

2°(prr) = 22 (egy) + 2(eg) + 2(ehy) = 2,
2°(Ir) = 2 — a(eg) — 2(egy) — (),
z°(rrw') = x(ey,),
2°(rrw?) = x(ey,,),

o define 2°(pg) = |F| +3[T| — 2(F) ~ S 2(Br) — Yrpex vler).

Recall that er denotes the special edge of triangle T, that is, the edge in Er having both ends in K.

An odd tri-comb (K, F,T) of Type 2 is called z-tight (or tight, for short) if it satisfies (¢ii) with
equality. A tri-comb (K, F, %) of Type 1 is called tight if (K, F,T) is a tight tri-comb of Type 2. If
T = () then (K, F) is called a tight pair instead.

The following simple observation will be useful later.

Proposition 6.5.6. Let (K, F,T) be an x-tight tri-comb of any type for some 0 < x < 1 satisfying
(Ps). For any F' C F,¥ C %, %" C% and H C §(K) \ (F U Ex) we have

z(H)<1

and

[F+ 2T+ 1S =1 < a(F) + Y a(Br) + ) aler) < |[F/|+2/%] + 2],
Tex Tex"

Moreover, if at least one of F' and T" is nonempty then the upper bound hold with strict inequality.
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Proof. We may assume that the tri-comb is of Type 2. Summing up inequalities z(§(v)) < b(v) for
veK,x(e)<1lforee F,z(Er) <2and z(er) <1 for T € T gives

2¢(EIK]) + z(6(K)) + =(F) + Z z(Er) + Z z(er) < b(K) + |F| + 3|
Tex Tex

As (K, F,T) is x-tight, we have

b(K)+|F|+3]%|-1
2(EIK]) +&(F) + Y a(By) = UOHIESES
TeX
These together imply z(6(K) \ (F U Ex)) < 1, hence proving the first part. The upper bound in the
second part follows from z < 1 (from what strict inequality immediately follows if F” or T” is not
empty). On the other hand, the tightness of the tri-comb means that we may loose at most 1 when

summing up the inequalities as described above, hence

2(F)+ Y x(Br)+ Y aler) > |F|+ 3T -1,
TeX TeX

from what the lower bound follows by x < 1. O
In the sequel, we will refer to the following special case of Proposition 6.5.6 several times.

Corollary 6.5.7. If v is a node without loops and x(6(v)) = b(v) = d(v) — 1 then z(F) > |F| -1 for
any F C §(v).

Proof. The tri-comb (v,d(v),0) is odd as b(v) + |d(v)| = b(v) + d(v) = 2d(v) — 1 and is also tight as
z(d(v)) =d(v) — 1= w. The statement follows from Proposition 6.5.6. O

The main advantage of shrinking odd pairs was that the arising graph G° and vector z° still satisfied
(P»). The above definitions also have this useful property, as shown in the following lemma. The proof
is rather technical and needs a lot of computation, hence is left to the end of this chapter. The reader

may skip it in order to follow the main idea of the proof of Theorem 6.1.2.

Lemma 6.5.8. Let G = (V,E), b:V — Z, and T a collection of triangles satisfying (6.1) and (6.2).
Assume that © € RF, 0 < 2 < 1 satisfies (FR) and (K, F,%) is an x-tight tri-comb of Type 2. Then
either shrinking (K, F, %) or (K, F,%), (6.1) and (6.2) hold for G° = (V°, E°). Moreover, b°,T° and x°
satisfies (Pg).

Remark 6.5.9. In the above, we only defined shrinking for tri-combs either of Type 1 or 2. The
definition could be easily generalized to shrink gadgets having both triangles 1-fitting and 2-fitting

them. The reason for not introducing shrinking in that way was the form of description (P).

6.6 Proof of Theorem 6.1.2

It is easy to see that each T-free b-matching satisfies (7), (i7), (iv) and (v). To show that (7i7)
indeed holds for a T-free b-matching M C E, take an odd tri-comb (K, F,¥) and add up inequalities
dy(v) <b(v) forve K, [ MNF|<|F|, MNEr| <2and [MNer| <1 for T € T. This gives
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2|M N E[K]| + M N6(K)| + |MNF|+ > (Mn0Er|+|MNer|) <b(EK)+ |F|+3/%].
Tex
Clearly, |[MNF|+|MNEz| < |MNO(K)|+> reg [IMNer|, so [MNE[K]|+|MNF|+3 ree IMNE7| <
|3(b(K) + |F| + 3|%])], as required. The above proof easily implies that (iii) is also valid for even tri-
combs, where a tri-comb (K, F,¥) is called even if b(K) + |F'| + |Z] is even.

It remains to show that (7) — (v) completely determine the 7-free b-matching polytope, that is, any
r € R¥ satisfying (Ps) is a convex combination of incidence vectors of T-free b-matchings. Assume that
this does not hold. Let us choose z to be a vertex of the polytope described by (FP3) not contained in
the T-free b-matching polytope.

We choose this counterexample in such a way that (|7, [¢(V)[,b(V),|V],|E]) is lexicographically
minimal. GG is connected, otherwise one of its components would be a smaller counterexample. As x is
a vertex, it satisfies |E| linearly independent constraints among (Pg) with equality. We call a node, a
tri-comb or a triangle z-tight (or simply tight for short) if the corresponding inequality, which is of
type (i7), (#i7) or (iv), respectively, is satisfied with equality. Also, the corresponding inequality is called
x-tight. We also use this notation for even tri-combs satisfying (ii7) with equality.

From now on, our aim is to show that there is a tight tri-comb or triangle whose shrinking results
in a lexicographically smaller problem. Then we show that a proper convex combination for the smaller
problem can be transformed into a convex combination for the original problem giving x, thus leading
to contradiction. However, this latter step requires much more work than it did in case of b-factors.

We start with some technical observations.
Proposition 6.6.1. For each T € T, Vp does not span parallel edges.

Proof. Assume to the contrary that Vp = {u,v,w} spans parallel edges, say between v and w as on
Figure 6.7. By (6.1), d(u),d(v),d(w) < 3. We claim that G is in fact consists of these three nodes, or
these three nodes plus an edge incident to u. Indeed, d(u) < 3 implies that if |[V| > 4 then u has a
third neighbour different from v and w, say z, and uz is a cutting edge in G. Let G; and (G2 denote the
graphs consisting of a component of G — uz plus uz. We denote by x1,b1, 71 and xo, bo, T2 the natural
restriction of z,b and T to G and Gg, respectively. If both of these graphs have at least two nodes then
we get two lexicographically smaller instances, hence x; is a convex combination of 7;-free b;-matchings
of G;. These could be glued together as to get a convex combination of 7-free b-matchings of G giving

x, a contradiction.

€4
@) (w)
€1 €
@)
f

Figure 6.7: Vp spanning parallel edges
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So G is in fact consists of four or three nodes. Let us consider the first case, the second can be
handled similarly (by using (v) of (Pg)). We use the notation of Figure 6.7. First assume that both
triangles are forbidden. Delete z from G. The graph thus arising is not a counterexample, hence the
restriction of x to G — z is a convex combination of T-free b-matchings of G — z. Let %Z XM, denote
this combination and let Ay = £|{i : M; = {e; : j € I}}| for I C {1,2,3,4}. Moreover, take a convex
combination with Ao as small as possible. That means that Ao = 0 or A3 = Ay = A34 = 0. Indeed,
assume to the contrary that both A;2 > 0 and A34 > 0 hold. Take an M; with ej,ez € M; and an M;
with e3,es € M; and exchange the edges e; and e3 between them. Then we get T-free b-matchings still
giving the restriction of z to G — z but the value of A\j2 decreased, a contradiction. The other cases can
be proved similarly.

If A\j2 = 0 then f can be added to any of these b-matchings, a contradiction. So A3 = Ay = A\34 =0
and A2 + A3+ Mg+ Aag + Aag + A+ Ao = 1. If A\jg < 1—2(f) then we can add the edge f to some of
these b-matchings with coefficients in total equals z(f) and so get a proper convex combination in the
original graph, a contradiction. Hence x(é(u)) =z(f)+2 2+ A3+ Mg+ dos+Aas+ A+ A2 >2,a
contradiction.

Now assume that only one of the triangles, say {e1, e, es}, is forbidden. Delete z from G. The graph
thus arising is not a counterexample, hence the restriction of z to G — z is a convex combination of T-free
b-matchings of G — 2. Let + >y, denote this combination and let A\; = £|{i : M; = {e; : j € I}}|
for I C {1,2,3,4}. Moreover, take a convex combination with Aj2 as small as possible, and beside this,
A124 as small as possible. That means that Ao = 0 or A3 = Ay = A4 = 0, and also A\jgy = 0 or
A3 = Ag = 0. If both A3 = Aj94 = 0 then f can be added to any of these b-matchings, a contradiction.
Otherwise if A\j2 + A124 < 1 —z(f) then we can add the edge f to some of these b-matchings with total
coefficients x(f) and so get a proper convex combination in the original graph, a contradiction again.

Hence A2 + Ajgq > 1 — x(f) and Ao + A3+ Mg + Aog + Aog + Azq + A1 + Ay = 1. We have

o(E[Vr]) + 2(f) = 3X124 + 2X12 + 2X13 + 2X14 + 2X93 + 2Xog + 2X34 + A1 + Ao + 2(f)
= Aos + 2+ 2(f)

>3 — A9

As x satisfies (ii7) of (Ps) for the odd pair (Vp, f), A2 > 0 must hold. But then A3y = 0 and so
x(é(u)) =2(f) + 2124 + 2X12 + M3 + A1 + Aoz + Aog + A1 + A2 > 2, a contradiction. O

Proposition 6.6.2. 0 < z(e) < 1 for each e € E.

Proof. Clearly, edges with x(e) = 0 could be deleted, contradicting minimality.

If x(e) = 1 and T = (), delete e and decrease b on its endnodes by 1 (if e is a loop on v then decrease
b(v) by 2). However, the situation is more complicated if 7 # 0. If e € Ep for some T € T, it may
happen that there is a proper convex combination in the smaller graph, but it can not be extended to
the original problem because a triangle may arise. Hence we use a simple trick here to show z(e) < 1.

Assume that z(uv) = 1 and let T, € T denote the set of triangles containing wv (there are at most
two such triangles as (6.1) holds). Note that the edge uv is well-defined as there exist no parallel edges
between u and v by Proposition 6.6.1. For a triangle T' € T, let tp denote its third node.

By (6.1), t7 has at most one neighbour different from u and v, denoted by z7 (if exists). Delete

e = uwv from G, decrease b(u) and b(v) by one, for each T' € T, decrease b(t7) by one, delete -if exists-
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Figure 6.8: Excluding saturated edges

trzr and add a new edge t/.zp where t/. is a new node. The graph thus arising will be denoted by
G’ = (V',E'). The modified degree prescription is denoted by b (with b'(t/,) = 1 for a new node) and
the natural image of « on E’ is denoted by 2’ (that is, a'(t,27) = z(tr2r)). Let 7' C T denote the
set of triangles disjoint from the triangles in 7T,,. The degree condition implies that two triangles are
node-disjoint if and only if they are edge-disjoint. It is easy to check that z’ satisfies (Ps) in G’ with ¢/
and 7.

As |T'| < |T|, 2’ is a convex combination of incidence vectors of 7'-free b'-matchings of G', say
=13 x m;- These b'-matchings use at most one of €Ly Coy for each T € Top. If we extend M)
by wv and edges {trzr : T € Tyy, thzr € M]}, we get a T-free b-matching M; of G by (6.2) and
Proposition 6.6.1.

An easy computation shows that x = % > XM;, hence x is a convex combination of 7-free b-matchings

of G, a contradiction. O

So we may assume that 0 < z(e) < 1 for each edge e € E.
Proposition 6.6.3. For each u,v € V, z(E[u,v]) < 1.

Proof. 1f |E[u,v]| = 1 then the proposition follows from Proposition 6.6.2. Otherwise no edge in E[u, v]
is contained in a forbidden triangle by Proposition 6.6.1 and we can decrease the z-values on them by one

in total and also decrease b(u), b(v) by one, thus obtaining a smaller counterexample, a contradiction. [

Claim 6.6.4. There is no x-tight triangle T € T .

Proof. Assume that there exists a tight triangle T and let Vi = {¢1, 9, t3}. Shrink 7" to a single node ¢
as in Definition 6.5.1, obtaining G°, v°, 7°, z°. By Lemma 6.5.3, these satisfy (Fg).

As |T°| < |T], z° is a convex combination of 7°-free b°-matchings M; of G°. Let z° = %ZXM;’
and let ajy = £|{i: fj, fi € M}, Bju=+I{i : fj, 9 € M;}| and finally v;; = 1|{i : g;, 9 € M;}| where

f1, f2, f3, 91, g2, g3 are as in Definition 6.5.1. As 2°(6(t)) = 2, we have Y o+ > B+ > v = 1.

Proposition 6.6.5. There exist a proper conver combination for what ) 5;; = 0.

Proof. Take a combination in which ) /3;; is minimal and assume that $1; > 0. This immediately implies

that S22, 23, B32, B33, 723 = 0 as otherwise we could easily modify the b°-matchings and decrease ) f3;;.
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We have the following equalities.

ara + iz + P11 + iz + iz = x(f1),
a2 + a3+ Po1 =2 f2)7
)

(
(
a3 + azs + B3 = z(f3),
P11 + Bo1 + P31 + y12 + 113 = x(tatz) — z(f1),
Bia + m2 = z(tits) — z(f2),
( -

B3 + 13 = x(tita) — x(f3).

From these and from z(E7) = 2 we get agg — 11 = 1 — x(tat3) > 0. Hence there is an M;, say My,
with f1,91 € M; and another one, say Mo, with fo, f3 € Ms. The proof of Theorem 4.1 of [88] implies
that we can take an alternating path P in M;AM,; starting at ¢’ such that M7 AP and My/AP are also
T°-free b°-matchings of G°. Hence (311 can be decreased while 822 and (33 do not change, so in total

> Bii can be decreased, and the proposition follows. O

Take a convex combination %ZXMI- as in Proposition 6.6.5. We extend the M?’s to T-free b-
matchings of G as follows: if M? Né&(t) = {fj, fi} or {fj,a} or {g;,9} where j # [ then define
M; = M U (B —el).

It suffices to verify that the b-matchings thus arising are 7T-free b-matchings of G. Indeed, they
cannot contain any triangle in 7°, and neither contain 7" due to the construction. For a triangle 7" € T
which shares a node with 7', by (6.1), T and 7" must have an edge in common. By Proposition 6.6.1,
they do not have the same node-set but then (6.2) implies that at least one of the edges of 7" is not in
M;.

The convex combination of the M;’s gives x. To see this, it suffices to check that the combination
gives x(e;{jﬂ) in total for each 5 = 1,2,3. This is assured by the choice of the coefficients as T is
tight. U

If x is a b-factor, that is, x(d(v)) = b(v) for each v € V then each T' € T is tight. By Theorem 1.4.2
and Claim 6.6.4, x is not a b-factor. So our aim is now to show that there is an z-tight odd tri-comb
(K, F,T) of Type 2 whose shrinking lexicographically decreases (|7|,b(V),4(V),|V],|E|), and the same
holds for (K, F,%).

The next proposition states that, as one would expect, b < d can be assumed.

Proposition 6.6.6. b(v) < min{d(v), [z(d(v))] + 1} for each v € V.

Proof. Assume that b(v) > d(v) for some v € V. By (6.1) and (6.2), v is not a node of a triangle. Set
b(v) := d(v). We claim that the inequalities of (Pg) remain valid, contradicting the minimal choice of the
counterexample. Assume indirectly that there is a tri-comb (K, F,¥) with v € K violating (i) after the
modification. However, for the tri-comb (K —v, F\ F,UE[v, K —v], %) the left hand side of (iii) decreases
by (¢(v)) + x(F,) while the right decreases by exactly 3(d(v) + |F,| — |E[v, K — v]|) = [£(v)| + |Fy|
(compared to (K, F,T) after the modification) implying that (K —v, F'\ F, UE[v, K —v], %) is a violating

odd tri-comb in the original problem, a contradiction.
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If we set b/ (v) := [x(8(v))] for each v € V then (4), (ii), (iv) and (v) clearly remains valid in (Pg).
Assume that there is an odd tri-comb (K, F,¥) violating (4i7) after the modification. Inequalities of form
(7i1) are obtained by summing up inequalities of from (i) and (i), then dividing by two and taking the
floor of the right hand side. But until the very last step the inequality remains valid, so the violation,
that is, the deficiency of the tri-comb can be at most 4. Hence setting ¥’ (v) := min{b(v), [2(d(v))] + 1}
assures that no violating tri-comb arises.

The proposition follows by the choice of the counterexample. O

Since G is connected, |E| > |[V| — 1. If |[E| = |V| -1 or |E| = |V| and G does not contain triangles
then z is a convex combination of b-matchings by Theorem 1.4.3, a contradiction. Assume that |E| = |V
and T # (). This is only possible if G is obtained from a tree by replacing a node with a triangle (where
the degree of a node of the triangle should not exceed 3). If after deleting the edges of the triangle at
least one of the connected components has size larger than 2 then the G can be divided into two smaller
graphs as in the proof of Proposition 6.6.1, giving a contradiction. So G is in fact a triangle with at
most one extra edge at each of its nodes. These cases can be easily seen not to give a counterexample
(similarly to the proof of Proposition 6.6.1), hence we may assume that |[E| > |V|.

We call an even tri-comb (K, F,¥) tight if 2(E[K]) + 2(F) 4+ > _pec 2(Er) = w.

Proposition 6.6.7. Let (K, F) be a tight pair (odd or even), v € K. If b(v) < |F,| then (K +v, F\ F,)
is also tight. Moreover, £(v) =0 and Ev, K]\ F = 0.

Proof. By adding v to K, the left hand side of (ii7) of (Ps) may only increase while the right hand side
may only decrease. The second part follows by Proposition 6.6.2. U

If there is an z-tight odd tri-comb (K, F,¥) such that T # ), then |7| decreases when shrinking
either (K, F, %) or (K, F,%), and we are done. So assume that this is not the case. Recall that a tight
tri-comb (K, F,T) with T = () was called a tight pair.

We have already seen that there is no tight constraint of form (i), (<v) or (v), and now we assumed
that neither of form (i4i) with T # (). Let us call an z-tight constraint bad if it is of form (ii) for some
v eV, orit is of form (éi7) for some odd pair (K, F') and at least one of the followings holds.

(D) £(K) =0,b(K) < |F|
(I1) 6(K) = 0,b(K) = |F| +1,|K| =1
(IT) ¢(K) = 0,b(K) = |F| +1,|K| = 2,|E[K]| < 1
(IV) LK) = 0,b(K) < |F]|
(V) UK) =0,6(K) = |F|+1,|K| =1

(VD) K(Kv) wvb(K):’F’+17’K’:27‘E[R”§1

If the shrinking of (K, F) or the shrinking of (K, F') does not result in a lexicographically smaller
problem then (K, F) must be bad (however, it may happen that we get a smaller problem even in case

of a bad pair as Tk # () would also assure that).
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As we may assume that |E| > |V, the existence of a tight odd pair (K, F') whose shrinking results in a
lexicographically smaller problem and the same holds for (K, F) is assured by the following fundamental

lemma. The proof of the lemma, is quite technical and is detailed in the end of the chapter.

Lemma 6.6.8. Under the assumption that there is no tight constraint of form (iii) with T # (), the

mazimum number of linearly independent bad constraints is at most |V|.

As |E| > |V|, Lemma 6.6.8 implies that there exists a tight odd tri-comb (K, F,¥) whose shrinking
lexicographically decreases the problem, and the same holds for (K, F,T). More precisely, there is a
tight tri-comb (K, F,T) with either T # () or being independent from L defined earlier. Take such a
tri-comb with |K| being minimal and let G = (V°, EY), b3, 2%, 7" and G§ = (V3, ES), b3, 25, Ty denote
the problems arising through shrinking (K, F, %) and (K, F,T), respectively. We refer to the new nodes
p,q in these graphs by pi,q1 and pa, g2, respectively. By the minimality of the counterexample, x7 is
a convex combination of 7°;-free bf-matchings of G7, say, 2 = %ZXMI' and z§ = %ZXNJ- for some
k € Zy (note that z is rational, being a vertex of a rational polytope). The following proposition is an

easy observation.

Proposition 6.6.9. The tightness of (K, F, %) implies that exactly one of the followings holds for each

o (6(p1) —prar) € Mi, [(6(q1) — prgr) N M| <1, or

o |(0(p1) —p1qn) \ Ms| =1, pign € M, (0(q1) —prgi) N M; = 0.
Similarly, for N;'’s:

o (0(p2) —p2g2) € Nj, [(0(q2) — p2g2) N N;| < 1, or

o |[(6(p2) —p2g2) \ Nj| =1, paga € Nj, (6(q2) — p2g2) N N; = 0.

Each edge e € 0(K) \ (F'U Ez) is contained in exactly kx(e) number of M;’s and N;’s. By the above
observation, each of these M;’s contains the entire F' and edges pry, rrw' or pry, rpw? for each T € T,

while each of the N;’s contains the entire F' and edges prr,rrsr,trw or prr,rrtr,stv. However,

2

it is easy to see that, as they are parallel, the role of edges rrw! and rpw? can be ‘exchanged’ in

such a way that the total number of M;’s with prp,rrw' € M; is equal to the number of N;’s with
prr, rrtr, spv € Nj. This makes possible to pair these by-matchings and ‘glue’ them together to get kx(e)

b-matchings of G containing the edge e. A b-matching obtained by gluing an M; with prp, rrw' € M;

T

T and el from Er; a b-matching obtained by gluing an

T
vw

and an N; with prp,rrtr, spv € Nj contains e
M; with prp, rpw? € M; and an N; with pro,rpsp,trw € N; contains e, and egv from E7. This can
be done for each edge e € §(K) \ (F'U Ex).

Similarly, for each edge e € F' there are exactly k(1 — x(e)) M;’s and N;’s that does not contain e.
Notice that these contain all edges in §(p;) — e and none in §(K) — (F'U Ex). Again, pair and glue these
together to get b-matchings of G not containing e.

2 € M; for some T € T is equal to the number

The number of M;’s with Ip € M; or rrw, rpw
of N;’s with rpsp,rptr € Nj. The idea is that a b-matching obtained by gluing an M; with Iy € M;

and an N; with rpsp,rrtr € N; contains efw from E7p; a b-matching obtained by gluing an M; with
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T

T
w and ey, from Ep. However, we have

rew!, rew? € M; and an N; with resp,ret € Nj contains e
to pair these matchings together carefully. Note, that 7, consists of triangles disjoint from K. It may
happen that there is a forbidden triangle 77 € T such that Vv C K for what a triangle T' € ¥ has
|Vr N Vpr| = 2. In this case, we are not allowed to pair an M; and an N; together if lp € M; and
the two remaining edges of 7" not contained by 7" are in N;. We can avoid this unless the sum of the
coefficients of these N;’s is more than 1 — 25(lr) = (Er) — 1. Consider a convex combination in which
the sum of the coefficients of b3-matchings containing the edges of 7" different from erp is minimal. If
this value is positive then there is no NN; containing none of these two edges. But this implies that
x(Er) > 2(x(Er) — 1)+ (1 — (z(E7) — 1)) + xz(er) = x(Er) + z(er) > 2, a contradiction. The last
inequality follows from Proposition 6.5.6.

So the pairing can be done. However, it is left to prove that the b-matchings thus arising are also
T-free.

Lemma 6.6.10. The b-matchings thus obtained are T -free.

Proof. The only triangles possibly contained in one of the b-matchings could be those in 7 — (7T UTy).
Moreover, by the above, a bad triangle should have nodes both in K and K.

Due to the construction, a triangle T € ¥ is not contained in the b-matchings thus obtained. Also,
a T with Ep N Ex # ) is not contained by (6.1), (6.2) and Proposition 6.6.9. Assume that 7" shares no
edge with triangles in ¥.

If |Er N F| = 0 then each M; contains at most one of T’s edges going between K and K as
|M; N (0(K) \ (FUE<))| <1, hence T is not contained by the b-matchings.

Let Vi = {r,s,t}. Recall that (K, F,%) is such that either T # ) or it is independent from L. The

following proposition will be useful.

Proposition 6.6.11. There is no tight even tri-comb (Z, H,R) in G with Z # 0.

Proof. Assume to the contrary that (Z, H,R) is a tight even pair, that is, z(E[Z])+x(H)+ > req 2(E7T) =

w. By 0 < x < 1, this immediately implies H = 6(Z) = (), which is only possible if Z =V as

G is connected. But z(F) = @ means that z is a b-factor, a contradiction. O

We distinguish the following cases.

Case 1: |[ErNF|=1,|[VrNnK|=1

Assume that Vo N K = r and rt € F. Let u be the third neighbour of r, if exists. If u € K then
2(E[K —7])+x(F —rt+ru) + > pec 2(Er) > 2(E[K])+2(F)+ > peg #(Er) — 1 while b(K —r) 4+ |F —
rt+rul+3|%| = b(K)+ |F|+3|%| —2. Hence (K —r, F —rt +ru, %) would violate (iii), a contradiction.

If u € K and ru € F then z(E[K —r]) + z(F — rt — ru) + Y peg 2(Er) > 2(E[K]) + z(F) +
> ez z(Er) —2 while b(K —7) +[F —rt —ru| + 3|T| = b(K) + |F|+ 3|%| — 4. Hence (K —r, F\(r), %)
would violate (i), a contradiction.

If u € K and ru & F or r has no third neighbour then z(E[K —r]) + z(F — rt) + Y pec 2(E7) >
r(EK])+x(F)+ Y pes v(Er) —1 while b(K —r) 4 |F —rt|+3|%| = b(K)+|F|+3|%| -3, a contradiction
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as (K —r, F' —rt,T) is an even tri-comb that would violate (ii7) which is not possible.

Case 2: |[ErNF|=1,|VrNnK|=2

Assume that K N Vp = {r,s} and rt € F. Let u be the third neighbour of s, if exists. If u € K
then 2(E[K — s]) + 2(F 4+ su+1s) + Y peg (Er) = 2(E[K]) + 2(F) + Y pes 2(£7) while b(K — s) +
|F'+ su+rs|+ 3|T| = b(K) + |F| + 3|%|. Hence (K — s, F 4+ su+rs, %) is also tight and its tightness is
identical to that of the original tri-comb. However, |K| decreased, contradicting the minimality of K.

If u € K and su € F then z(E[K — s]) + z(F — su+rs) + > peg #(Er) > z(E[K]) + z(F) +
> ez 2(Er)—1 while b(K — )+ |F —su+rs|+3|%| = b(K)+|F|+3|%|-2. Hence (K —s, F —su+7s,%T)
would violate (i), a contradiction.

If w e K and su ¢ F or s has no third neighbour then z(E[K — s]) + z(F) + > pec 2(Er) >
r(EK])+2(F)+ ) reg v(Br) —1 while b(K —s) +|F|+3|%| = b(K) +|F|+3|%| —2. Hence (K —s, F,T)

would violate (i), a contradiction.

Case 3: |[ErNF|=2,|[VrNK|=1

Assume that Vp N K = r and rs,rt € F. Let u be the third neighbour of r, if exists. If u €
K then z(E[K —r]) + x(F —rs —rt) + Y pecv(Br) > 2(E[K]) + 2(F) + Y peg 2(£7) — 2 while
(K —71)+ |F —rs—rt|+ 3|T| < b(K) + |F| + 3|%| — 4. Hence we must have equality everywhere, so
z(0(r)) =2 and (K —r,F —rs —rt, %) is tight. The tightness of (K —r, F' —rs —rt,T) is identical to
that of the original tri-comb. However, |K| decreased, contradicting the minimality of K.

If ue K and ru € F then z(E[K —r]) + &(F —rs —rt —ru) + > pec @(Er) > o(E[K]) + o(F) +
Y rexx(Er) — 2 while b(K —r) + |F —rs —rt — ru| + 3|T| = b(K) + |F| + 3|F| — 5. We must have
equality everywhere as otherwise (K — s, F'—rs —rt — ru,T) would be an even tri-comb violating (i7).
That is, z(6(r)) = 2 and (K — s, F —rs —rt — ru,T) is tight. Note that |K| # 1 as otherwise T # ()
or the tri-comb is not independent from L. Hence (K — s, F' —rs — rt — ru,¥) is a tight even tri-comb
with K — s # (), contradicting Proposition 6.6.11.

If u € K and ru € F or r has no third neighbour then z(E[K —r])+x(F —rs —rt)+ > pec (Er) >
r(EK])+2(F)+ > res v(Br) — 2 while b(K —r) + |F —rs —rt| + 3|%| = b(K) 4 |F| + 3|T| — 4. Hence

(K =1, F —rs—rt,T) would violate (i), a contradiction.

Case 4: |[ErNF|=2,|VrNK|=2

Assume that K N Vy = {r,s} and 7t,st € F. Let u be the third neighbour of r, if exists. If u € K
and ru € F' then (E[K —r]) + 2(F —ru—1t) + > pec ©(Er) > 2(E[K]) + 2(F) + Y pec 2(Er) — 2
while b(K —r) + |F —ru —rt|+ 3|T| = b(K) + |F|+ 3|%| — 4. Hence z(6(r)) =2, (K —r, F —ru—rt, %)
is also tight and is independent from L if the original tri-comb was so (note that K — r # ()). However,
| K| decreased, contradicting the minimality of K.

If w € K and ru € F or r has no third neighbour then z(E[K —r])+z(F —rt+7s)+ > pec x(Er) >
2(EK])+2(F)+ > resv(Br) — 1 while b(K —r) + |F —rt +rs| + 3|Z| = b(K) 4 |F| + 3|F| — 2. Hence
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(K =1, F —rt+rs,T) would violate (i), a contradiction.

The same can be told about the third neighbour of s denoted by v, if exists. So the only remaining
case is when both u,v € K. Then z(E[K —1r — s]) + 2(F' —rs — rt + ru + sv) + > g v(Ep) >
2(EK])+z(F)+> peg 2(Er)—2 while b(K —7—5)+|F —rs—rt+ru+sv|+3|%| = b(K)+|F|+3|T| 4.

Hence (K —r —s,F —rs —rt +ru + sv,T) would violate (iii), a contradiction. O

By Lemma 6.6.10, the b-matchings constructed above altogether yield = as a convex combination of
T-free b-matchings of G, a contradiction. Hence x is indeed contained in the convex combination of the

incidence vectors of T-free b-matchings, finishing the proof.

6.7 Proof of Lemma 6.5.8

The validity of (6.1) and (6.2) can be checked easily in both cases. We discuss the second part
separately for K and K.

(I) Shrinking (K, F, ), which is of Type 1:

We use the notation of Definition 6.5.5. (¢) clearly holds for edges different from pg and not contained
in 6(K) N Ez. For the rest of the edges the required inequalities follow from Proposition 6.5.6. As an

example, we show this for pg. We have

o(F) + Y a(Br)+ ) w(er) < |F|+2/% +|T] = |F| + 3/%,
Te% TeT

that is, z°(pg) > 0. On the other hand,

o(F)+ ) a(Br)+ Y aler) > |F| +2|T| +|T| - 1= |F| +3/F| - 1
TeT Tex
by Proposition 6.5.6, so 2°(pq) < 1.
The validity of (i7) is straightforward for nodes different from ¢q. However, the tightness of the

tri-comb implies

2°(8(q)) = 2°(pq) + z(5(K) \ (F U Ex))
= |F|+3[T| = 2(F) = ) _a(Br) = Y z(er) + z(5(K) \ (F U Ex))

TeX TeX

= 22(E[K]) + 2(F) + Y z(Br) +1 - b(K)
TeX

— Y a(er) + (38(K) \ (F U Ex))

TeX
= 20(E[K)) + 2(6(K)) + 1 — b(K)
<1

= b°(q)-

(1v) and (v) remain valid for triangles in 7° as the same inequalities were true in the original graph.

So it remains to show that (i7i) is indeed satisfied in G°. Choose an odd tri-comb (Z, H,R) of G° with
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(def(Z, H,R),|Z U {p,q}|,|H|) lexicographically maximal. Our aim is to show that def(Z, H,R) < 0,
which would prove (iii) for all odd tri-combs.
Clearly, an even tri-comb has deficiency at most 0 in G°. Hence if we find an even tri-comb (Z', H', R’)

with def(Z, H,R) < def(Z', H',’) then we are done. So assume that there is no such even tri-comb.
Proposition 6.7.1. Let v € Z be a node with {(v) =0, b°(v) = d°(v) — 1 and v & V.

(a) If 2°(6(v)) = b°(v) and v # p,q, then 6(Z), C H and |E°[v, Z — v]| > 2.

(b) If v=1p and 6(Z), \ H # 0 then H, = 0.

(¢) If v#p,q and b°(v) = d°(v) — 1 =1 then 6(Z), = 0.

Proof. (a) The conditions on v imply that for any two edges e, f € d(v) we have x°(e) + x°(f) > 1. If
|0(Z), \ H| > 2 then the addition of two of these edges to H would result in a lexicographically larger
odd tri-comb, a contradiction.

Assume that [6(Z), \ H| = 1. Define 2/ = Z —v, H = (H \ H,) U E°[v,Z — v]. The tri-comb
(Z', H',R) thus arising is odd and with deficiency

det(Z', H', M) = det(Z, H,R) — 2°(H,) + LOHH sl P 0.2 0]

= def(Z, H, M) — a°(H,) + T EC O
= def(Z, H,R) — 2°(H,) + | H,|.

That is, the deficiency is not decreased and |Z \ {p, ¢}| decreased by 1, a contradiction.

So [6(Z)y \ H| = 0. Assume that |E[v,Z —v]| = 1. Then (Z —v, H \ H,,fR) is an odd tri-comb with
the same deficiency as (Z, H,R) but has larger |Z \ {p, ¢}| value, a contradiction.

(b) The computation of part (a) shows that in case of H, # ) the deficiency of the tri-comb would
strictly decrease for the tri-comb (Z —p, (H \ H,) U E°[p, Z — p],R) as x > 0.

(c) The deletion of v from Z decreases x°(E°[Z]) + 2°(H) + Y peq 2°(E7) by at most 1 while
[5(b°(Z)+|H|+3|%R|)] always decreases by 1 unless |H,| = 0. If |§(Z),| = 2 then the deletion of v from
Z gives an even tri-comb with deficiency not smaller than that of the original tri-comb; if |§(Z),| = 1
then the deletion of v from Z and the addition of the other edge incident to v to H would result in a

lexicographically larger tri-comb, a contradiction. U
Proposition 6.7.1 indicate the following simple but useful observation.

Corollary 6.7.2. Let T € T be a triangle with Vr = {u,v,w},Vpr N K = {u,v}. Then ezactly one of
the followings hold.

1. pyrp,sp tp,u,v & Z;

2.p& Z, rp,sp,tr,u,v € Z, prp € H and the third neighbours of w and v -if exist- are in Z;
3. pEZ, rp,sp,tr,u,v ¢ Z;

4. p,rr, ST, tr,u,v € Z and the third neighbours of u and v -if exist- are in Z;

5. pyrrystyu € Z, tp,v ¢ Z, rptp € H and the third neighbour of w -if exist- is in Z;
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6. p,rp,tr,v € Z, sp,u ¢ Z, rpsp € H and the third neighbour of v -if exist- is in Z.

Proof. Assume first that p ¢ Z. If rp € Z then (a) implies that both sp,tp € Z and prp € H. However,
(c) further implies u,v € Z, and so their third neighbours are in Z.
If rp ¢ Z then neither sp,tpr and so nor u,v are by (c).

The proof of the cases when p € Z goes in a similar way. O

Corollary 6.7.2 reduces the number of cases to be checked. Let T; = {T" € T : T satisfies i. of
Corollary 6.7.2}. From now on, let K/ = V°\ {p, ¢}.

Case 1: p,q ¢ Z

By Corollary 6.7.2, each T € Tisof Type lor 2. Let 2/ = Z,H' = H\{prp: T € T2}, R = RUT,.
It is easy to check that the tri-comb (Z’, H',R") is odd, hence satisfy (iii) of (Pg) in the original graph.
However, both sides of (i7i) remains unchanged when considering (Z, H,fR) instead in G°, hence the

validity of (7ii) follows from the same inequality for (Z’, H',9R) in the original graph.

Case 2: p,ge Z

We prove Case 2 with the help of Case 1. First of all note that |[Hp| > [6(Z),| — 1. To prove this,
assume that [§(Z), \ H| > 2. We have z°(5(p)) = |F| + ||, and the degree of p is |F| + || + 1. Hence
any two edges incident to p must have x° value together at least 1. The addition of two of these edges
to H would result in a lexicographically larger tri-comb, a contradiction.

We distinguish two subcases.

Subcase 2.1: §(Z), = H),
If |Hy| > 1 then let Fy = Hp,, F» =(p) \ (F1 +pq). Take Z' = ZNK', H = (H\ (F1 UH,)) U F>.
Then

2(B°[Z)) +a°(H) + ) x

TeER

= 2°(B°[Z)) + 2°(H') + > _ 2°(B}) + 2°(pq)
TeR

+a°(E%(q, Z']) + a°(H,) + 2°(FY)

< |PEAHESI | 4 20 (pg) + 2°(E°[g, Z)) + a°(H,) + 2°(F})
b (Z)—1—|F|—|%T H|—|F Fo|—14+3|R
<L() I\II+\2|\1I+\2\+\IJ

+2°(pg) + 2°(E°[g, Z]) + 2°(Hy) + 2°(F1)

= [ — IR = 1+ 0%(pg) + 27 (B%[g, 2)) + 27 (H) + 2°(F)
£b0(2)+|§ﬂ+3\mu7

<

as 2°(pq) + 2°(E°[q, Z]) + 2°(Hy) < 2°(6(¢q)) < 1. This implies def(Z, H,R) < 0.

Now assume that [H,| = 0. If Z = {p, q} then R = 0 and H = §(p) — pg. Hence z°(E°[Z])+2°(H) =
2°(8(p)) = |F| + || < L\F|+\T\+;+|F\+|T|J _ Lbo(p)er‘;(Q)HHlJ o (iii) holds.

So assume that Z # {p,q} and let Z’ = Z N K'. Define F' = §(p) — pq. It is easy to see that the
tightness of (K, F,¥) implies the tightness of (K’, F’). Using this and that (ii7) holds if Z = {p, q}, we
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have the following

2°(E°[K']) + 2°(F') + 2°(E°[Z] )+ > af
TeR

= 2°(E°[K'\ Z]) + 2°(E°[Z \ K")) H)+ )" a°(E7) +2°(F)
TeENR

+20°(E°(2') + 2 (E°[K'\ 2/, 2) + 2°(E°[{p.a}, Z')
< |FUSAIHEEL |y | BASIHIEL ) 4 00 (B°(2) + 2°(5(2))
= CUOHFEL 4 PEOHHRIRL _ po(71) 4 94°(E°[Z']) + 2°(8(2"))
b°(Z)+|H|+3|R|—1
[+

<

b (K')+|F'|—1
(O HPI-1

The tightness of (K',F’) implies def(Z, H,R) < 0. In the proof we used that (K’ \ Z, H,R) and
(Z\K', F') are also odd. This can be seen by b°(K'\ Z)+|H|+3|R| = b°(K')—b°(Z)+1+|F'|+ |H |+ |R|
which is odd as (K’, F’) and (Z, H,9R) are odd, and b°(Z \ K') + |F'| = 1 + 2|F’|.

Subcase 2.2: |6(Z),| = |H,| +1
By Proposition 6.7.1, H, = (. Let 6(Z), = f and F» = d(p) — f. Take 2’ = ZNK', H =
(H\ 6(q)) U F5. Then

2°(E°(2) )+ Yt

TeR

— 2°(E°[Z")) )+ > 2°(Bp) +2°(pq) + 2°(E°[q, Z']) + °(Hy)
TeER

be(Z )—l—g{ |+3|9‘§\J + xO(pq) —{—,IO(EO

o —_1— —|g o o o
L FISHHIIRISIR | | o (pq) 1 2°(E°[q, 2')) + 2°(H,)

[

(
bO(Z)+\QI{|+3|9‘§\J 1 +x0(pq) —i—l’o(Eo
b°(Z)+\H|+3|£mJ

2 ’

¢, Z']) + 2°(Hy)
)
[

¢, Z'])) + a°(Hy)

as 2°(pq) + z°(E°[q, Z]) + 2°(H,) < xo(é(q)) < 1. This implies def(Z, H,R) <0

Case 3: pc Z,q&¢ Z
If pg € H, then add ¢ to Z and delete H,, - including pq - from H. We have previously seen that the
tri-comb (Z', H',2R) thus obtained satisfies (ii%), so

2°(E°(2) )+ Y af
TeER
= o°(B°[Z) + 2°(H') + Y 2°(B}) — 2°(E°[q, Z)) + 2°(H,)
TeER
< Lb°(Z’)+I5f’\+3\9%IJ

b° (Z)+1+|H|-1+3|R
< (BEHH] ]

- LbO(Z)+|2H\+3\9"IJ_

This implies def(Z, H,R) < 0.
If pg ¢ H, then first consider the case when §(Z), \ (Hp + pq) # (. Let f be an edge in this set.
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Define again Z' = Z + ¢, delete H, from H and add f to it. For the new tri-comb (Z’, H',R), we have

2°(E°[Z)) +a°(H) + ) x

TeENR
= 2°(B°[Z')) +2°(H') + 3 2°(B3) + 2°(H,) — 2°(E°[q, Z]) — 2°(f)
TeER
< |BEHESR | o (pg) — 2°(f)
< LbO(Z +lJ;|H\+3\iR|J 1

< | BTN |

For the second last inequality, we used Corollary 6.5.7 (z°(6(p)) = |F| + |Z|, and the degree of p is
|F'| + |T| + 1, hence pg and f, two edges incident to p must have z° value together at least 1). This
implies def(Z, H,R) < 0.

If §(2), \ (Hy + pq) = 0, then let Fy = H, — pq, F» = §(p) \ (H + pq). Define Z' = Z — p,
H' = (H\ F})U F». Note that (Z', H',fR) is odd since b°(Z') + |H'| + |R| = b°(Z) + |H| — |F| — |T| —
|F1| + |Fa| + |R| =0°(Z) + |H| + |R| — 2|F1|. Hence

2°(E°(Z) )+ > af

TeR
2 (E°[Z)) + 2°(H') + ) a°(Bf) + 2°(F)
TeR
< LbO(Z +|H’\+3\m|J + 2°(Fy)
@ISR o)

<l
< I_bO(Z +|H|— 2‘F1‘+3“.R|J O(Fl)

b°(Z)+|H|+3|R
EL( |2\ HJ.

This implies def(Z, H,R) < 0

Case d: pZ Z,qe Z
If H, # 0, then delete ¢ from Z and H, from H. Then

2°(E°(Z]) +a°(H) + ) a°(EY)
Tenr
= a°(E°[2']) +2°(E°[q, Z — q]) + 2°(H') + 2°(Hy) + ) «°(EY)
TeER

IN

[HEEEEEEL 20 (3(g)

IN

b°(Z)—1+|H[-1+3|R
QAT e T

| B |

This implies def(Z, H,R) < 0.
If H, = (), then first consider the case when E°[p, Z —q]\ H # 0. Let f be an edge in this set. Delete
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q from Z and take H' = H + f. Then
°(E°[Z] )+
TeR

=2°(E°[Z']) + 2°(H') +Z (ET) +2°(E°[q, Z — q]) — 2°(f)
TeR

< | | po(B2lg, Z — q]) — 2°(f)

< (PRI |y o (5(q)) — 2°(pg) — 2°(f)
< LbO(Z |H\+3\9’.|J

by Corollary 6.5.7. This implies def(Z, H,R) < 0.
If E°[p,Z —q]\ H = 0 then let F; = H, — pq and F» = §(p) \ (H + pq). Define Z' = Z + p and
H' = (H \ Fy) U F;. For the tri-comb (Z', H',R)
2°(E°[Z]) + )+ > af
TeR
= 2°(EY[Z']) + 2°(H') + Y 2°(E7) — 2°(pq) — 2°(F)
TeR
LbO(Z +|H |+3|93U . O(pQ) . O(FZ)
{bO(Z +|F\+|H\ |F1\+|F2|+3|93U 0(pq) _ .%'O(FQ)
I
I

IN

PERGEEL ) 1 |y | - 2%(pg) — 2°(Fy)
b°(Z) +|H\+3\m|J

IN

IN

by Proposition 6.5.7. This implies def(Z, H,R) <0

(ITI) Shrinking (K, F,T), which is of Type 2:

The verification of (7), (i7), (iv) and (v) goes in the same way as in the previous case. Choose an
odd tri-comb (Z, H,R) of G° with (def(Z, H,%R),|Z U {p, q¢}|,|H|) lexicographically maximal. We start
again with some technical propositions. These are only easy observations but they greatly help us to
reduce the number of cases to be checked.

Again, an even tri-comb has deficiency at most 0 in G°. Hence if we find an even tri-comb (Z', H',R')

with def(Z, H,R) < def(Z', H',R’) then we are done. So assume that there is no such even tri-comb.

Proposition 6.7.3. Let T € T with Vp = {u,v,w}, Vr N K = {u,v}. Then z(el,)) + z(eL,) > 1 and
ACHEEICEST

Proof. Assume that one of the mentioned sums, say z(el,) + z(el,), is strictly less than 1. Then
(K,F +el ,T —T) violates (ii4), a contradiction. O

vw?

Proposition 6.7.4. Let T € T with Vp = {u,v,w}, Vp N K = {u,v}. If both p,w & Z then rp & Z.

Proof. 1f |H,,.| > 2 then for the tri-comb (Z — rp, H \ H,,,R) the left side of (iii) (Ps) decreases by

at most 2 while the right decreases by 2, which means that the new tri-comb has no smaller deficiency

T

and is either lexicographically larger or it is even, both leading to a contradiction.
If |H,,| = 0 then the left side of (iii) decreases by z°(ly) < 1 while the right decreases by 1, a

contradiction.
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If H,,. = rrw! then the left side of (iii) decreases by z°(Ir) + 2°(rrw!) = 2 — z(eL,) — z(eL,) —
z(el )+ wx(el,)) =2 —x(el)) — z(el,) < 1 by Proposition6.7.3 while the right side decreases by 1, so
(Z—rp, H\H

The other case when H,, = rrw? leads to a contradiction similarly.
If H,. = prr then the left side of (iii) decreases by x°(ly) + 2°(prr) = 2 — z(el)) — x(el,)) —

z(el )+2x( o) +xel,) +z(el,) —2=mx(el,) <1, hence (Z — rp, H \ H,,,R) is an even tri-comb
with deficiency no smaller than that of (Z, H,R), a contradiction. ]

rps R) is an even tri-comb with deficiency no smaller than that of (Z, H,R), a contradiction.

Proposition 6.7.5. Let T € T with Vp = {u,v,w}, Vp N K = {u,v}. If p,w € Z then rp € Z.

Proof. 1f |H,,.| > 2 then for the tri-comb (Z + rr, H \ H,

x > 0 while the right does not change, which means that the new tri-comb has larger deficiency. So it

rpy R) the left side of (7i7) strictly increases by
is either a lexicographically larger odd tri-comb or it is even, both leading to a contradiction.

If |H,,| = 0 then the left side of (i7i) increases by x°(d(rr)) = x(E7r) > 1 while the right increase
by 1, a contradiction again.

If H,, = rrw' then the left side of (i) increases by x°(I7)+x° (rrw?) +2°(prr) = x(el )+ z(el,) >
1 by Proposition6.7.3 while the right side increases by 1, so (Z + rr, H \ Hy,,R) is an even tri-comb
with deficiency no smaller than that of (Z, H,9R), a contradiction. The other case when H,, = ryw?
leads to a contradiction similarly.

If H,,. = pry then the left side of (i) increases by z°(Ir) +z°(rrw?) +2° (rrw?) = 2—x(el)) > 1 as

x < 1, hence (Z +rr,H\ Hy,,R) is an even tri-comb with deficiency no smaller than that of (Z, H,R),

rT

a contradiction. O

Proposition 6.7.6. Let T' € T with Vp = {u,v,w}, Vp N K = {u,v}. If p & Z but w,rp € Z then
prr ¢ H.

Proof. Let wz = 6(w) \ Er, if exists. If prpr € H and z € Z then (Z —rp —w, H — prp + wz,R), while
if pre € H and z ¢ Z then (Z —rpr — w, H \ {prr,wz}, M) has deficiency at most def(Z, H,?R) and

smaller |Z|, a contradiction. O
Propositions 6.7.4, 6.7.5 and 6.7.6 imply the following.

Corollary 6.7.7. Let T € ¥ be a triangle with Vp = {u,v,w}, Vp N K = {w}. Then exactly one of the
followings hold.

1. pyrp,w ¢ Z; 5 porre€Z,wé¢ Z;

2. prr & Z, weZ;

6. p€Z, rp,wé¢ Z and prp € H;

3. p¢Z, rp,w€ Z and prp € H;

4. pyrp,wp € Z; 7. peZ, rp,wé¢ Z and pro ¢ H.

Let ¥, = {T € ¥ : T satisfies i. of Corollary 6.7.7}. From now on, for a forbidden triangle T' € T

let Vip = {uT,vT,wT} with up,vp € K.

Case 1: p,g & Z
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By Propositions 6.7.4 and 6.7.6, if rp € Z for some triangle T' € T then T' € T3. Let Z/ = Z \ {ry :
Te%3}, H=H\{prr: T € T3} U{upwp,vpwy : T € T3}. It is easy to check that the tri-comb
(Z', H',2R) is odd, hence satisfy (iii) of (Pg) in the original graph. However, both sides of (ii7) remains
unchanged when considering (Z, H,R) instead in G°, hence the validity of (iii) follows from the same

inequality for (Z’, H',9') in the original graph.

Case 2: p,ge 7

Proposition 6.7.5 implies T = T4 U T5 U T U T7. However, |T7| < 1. Indeed, 2°(6(p)) = |F| + |Z],
and the degree of pis |F|+|%|+1, so any two edges incident to p must have z° value together at least 1.
If |0(Z), \ Hp| > 2, then the addition of two edges from this set to H would not decrease the deficiency
of the tri-comb, not increase |Z| but increase |H|, a contradiction.

If T, =0 thenlet S = KU (ZNK), I = {urwr: rrwt € H} U {vpwr : rrws € HYU (HNE)
and P =R U Tg. Then

2°(E°(Z] )+ > af

TeR
= 2(B[S) +=(I) + > =(Br) —2(EIK) +2°(pg) + >, ax(er)) — 2/Tg
Tep TeT1UT2UT3
= z(E[S]) + 2(I) + > x(BEr) — 2(E[K]) + |F| + 3T
Tep
—a(F) =Y x(Br) — 2|T|

TeX
b(S)+|I|+3 b(K)—|F|-3|%|—1
SL()HQHW‘J— (K) |2\ 1T — 2|%g]

_ bE)+6(Z) 1= | F| = |F]|=2|FaUTs | +[H| = [T6|+3[R[+3|T6| =1 _ b(K)—[F|=3|F|-1 2| T
- 2 2

= PEHAERL gy U T3 U Tl + [T
_ PHHE3R
- ! _

This implies def(Z, H,?R) < 0.
If |T7| =1 then take Z' = ZN(KU{rr: T€T}), F={prr: T €Ts}and H = (H \ H,) U Fb.
Thus

2°(E°[Z)) + a®(H) + Y 2°(E7)

Tenr

2 (E°[Z') + a°(H') + ) 2°(E7) + 2°(pg) + 2°(E°[q, Z']) + 2°(H,)
TeER

PERGELEL 2% (pg) +2°(E°lq, 2')) +2°(Ho)
b°(Z)+\H|+3|9;\7|F°|71+\F2|J +xo<pq) +$O(Eo[q, Z/]) +.%'O(Hq)

i
i
< BB g 4 20 (pg) + 2°(E°[q, Z')) + 2°(H,)
b°(Z)+|H|+3|%R|

| A HIS |

This implies def(Z, H,?R) < 0.
Case 3: p &€ Z,q € Z The proof of this case, by using the above propositions, goes exactly the same

way as in case (I)/3.
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Case 4: p € Z,q ¢ Z The proof of this case, by using the above propositions, goes exactly the same

way as in case (I)/4.

6.8 Proof of Lemma 6.6.8

Take a maximal independent set of tight equalities of form (i), and extend this to a maximal
independent set with bad equalities of type (IV) with |K| = 1, and then with equalities of type (V). Let
L denote the set of equalities thus obtained.

Claim 6.8.1. There is no bad pair (K, F') independent from L.

Proof. In the proof we will use Proposition 6.5.6 several times without mentioning it.

Assume that (K, F') is of type (I) independent from L. First of all, b(K) > |F| — 1 as otherwise
z(E[K])+z(F) = |3(b(K) +|F|)] < |F| -2, contradicting z(F) > |F|—1. If b(K) = |F| — 1 then from
z(E[K]) + z(F) = |F| — 1 we get (E[K]) = 0 and z(F) = b(K) which in turn implies E[K| = () and
F = §(K), so z(6(v)) = b(v) for each v € K. But this is a contradiction as (K, F') is supposed to be
independent from equalities of form (i7). Observe that b(K) = |F| is not possible as (K, F') is an odd
pair.

Assume that (K, F') is a bad pair of type (II), so K = {v}, F C §(v),£(v) = () and b(v) = |F| + 1.
Then the tightness of (v, F') means x(F') = |F|, which is only possible if F' = () by x < 1, contradicting
independence.

Assume that (K, F) is a bad pair of type (III) independent from £ and let K = {u,v}. Let C be the
set of parallel edges between u and v. As b(u) + b(v) = |Fy| + | Fy| + 1, either b(u) < |Fy,| or b(v) < |Fyl,
say the first one. In this case 2(C) + z(Fy) < b(u) < |Fy|, so z(C) + x(F,) + z(Fy) < |Fy| + |Fy|. Here
F, =0, otherwise even strict inequality holds by z(F,) < |F,|, contradicting the tightness of (K, F'). By
the tightness of the pair, z(C)+z(F,) = |F,|. We assumed that b(u) < |F,|, so b(u) = |F,| and b(v) =1
implying d(u) \ (C'U F,,) = 0. But then the tightness of the pair (K, F) is equivalent to 2(d(u)) = b(u),
contradicting linear independence.

Assume now that (K, F') is of type (IV) independent from £ with |K| > 2. It can be seen similarly to
the earlier cases that b(K) > |F|—1 must hold. If b(K) = |F|—1 then z(E[K])+z(5(K)\ F) = 0, hence
E[K] = (0and 6(K) = F.So we have z(E) = 2(E[K])+2(5(K)) = z(E[K])+z(F) = 1(b(K)+|F|-1) =
+b(V). That is, z is in fact a b-factor, a contradiction.

£ b(K) = |P| then a(E) > a(E[K]) + a(F) + 2(E[K]) = L(b(K) + |F| - 1) + a(EIK]) = | 1(V)] +
z(E[K]). But z(E) < [$b(V)] so E[K] = 0 and also §(K) = F. That means that K consists of isolated
nodes vy, ...,v and §(K) = F = §(vy1) U ... U (vg). Let F; = §(v;). We claim that b(v;) = |F;| for
each 7. Indeed, otherwise there is an ¢ with b(v;) > |Fi| +1 > d(v;), contradicting Proposition 6.6.6. So
b(v;) = |F;| for each ¢. Then (K U{v1,...,vx—1}, F}) is also tight, and the tightness of (K, F) is identical
to the tightness of this pair, a contradiction.

Now assume that (K, F) is a bad pair of type ((VI) independent from £ and let K = {u,v}. As
b(u) + b(v) = |Fyu| + |Fy| + 1, either b(u) < |F,| or b(v) < |F,|, say the first one. By Proposition 6.6.7,
(K 4 v, F,) is also tight and §(v) \ F' = 0, hence the tightness of (K, F) is equivalent to the tightness
of (K + v, F,,), contradicting linear independence. ]
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Claim 6.8.1 implies that an upper bound for |£| is also an upper bound for the maximum number
of independent bad constraints. Hence it suffices to bound [£|. We say that a bad constraint in £
corresponds to a node v € V if it is either of type z(d(v)) = b(v), or of type (IV) or (V) with K = {v}.

We give a bound on the number of bad constraints in £ corresponding to a node v € V.
Proposition 6.8.2. If (K, F) isin L then (K,F') & L for F' C F.

Proof. Assume indirectly that (K, F') is in £ for some F/ C F. Then x(F \ F') = &211,‘ from what
F' ' =0,|F| =2,z(F) =1 follow by Propositions 6.5.6 and 6.6.2. But then each node is saturated in K
and (K, F') = (K, () is not independent from equalities of form (4i). O

Claim 6.8.3. If (6(v)) = b(v) then there is no bad constraint of type (IV) or (V) in L corresponding

to v.

Proof. Let v be such that z(d(v)) = b(v) and z(E[K])) + z(F) = % for some F' C 0(K) where
K =V —v. Recall that £(v) = 0.

Assume first that b(v) < |F|. By Proposition 6.6.7, §(v) \ F = 0. Hence z(d(v)) = b(v) is identical
to z(F') = |F|, a contradiction.

Assume now that b(v) = |F|+ 1. As 2(6(v)) = b(v) = |F|+ 1 and z(F) < |F|, z(6(v) \ F) > 1
must hold. Hence we have x(E) = z(FE[K]) + z(F) + z(5(v) \ F) > % +1= @, which is only
possible if x is a b-factor, a contradiction. O

Observe that if there is a bad constraint of type (IV) corresponding to v then this constraint is
unique, namely (V' — v,§(v)). Moreover, there is no bad constraint of type (V) corresponding to v by

Proposition 6.8.2.
Claim 6.8.4. For each v € V, there is at most one bad constraint of type (V) in L corresponding to v.

Proof. Assume that v is such that z(E[K])) + z(F}) = % and z(E[K])) + z(Fp) = %
for different Fy, F» C §(K) where K =V — v.

Proposition 6.8.5. |F}| = |F3|.

Proof. Assume to the contrary that |Fy| > |Fy|. (Fy \ F2) C F; hence xz(F; \ Fy) > |Fy \ F2| — 1. On
the other hand, (F} \ F) C (6(K) \ Fy), hence x(F; \ Fy) < 1. These imply |F; \ F3| < 2. By parity

arguments, Fy, C F}, contradicting Proposition 6.8.2. ]
Proposition 6.8.6. |F; N Fy| = 0.

Proof. Assume that F; N Fy, = F # (). From the tightness of (K, F}) and (K, Fy) we get 22(E[K]) +
2:(F) + o(RAF) = b(K) + |F| + 220 _ 1 > p(K) + |F|. On the other hand, we know that
2¢(FIK]) + z(6(K)) < b(K) and z(F) < |F| implying 22(E[K]) 4+ 2z(F) + z(0(K) \ F) < b(K) + |F]|,

a contradiction. O

Proposition 6.8.7. |F}| = |F,| =1
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Proof. By Proposition 6.5.6, x(Fy) <1 as F; C §(K) \ Fs, hence |F;| < 2 by the same proposition.
Assume that |F;| = 2. From the tightness of (K, F}) and (K, F») we get

20(E[K]) + x(F1) + 2(Fy) = b(K) + 1.
On the other hand, we know that 2z(E[K]) + z(0(K)) < b(K), a contradiction. O

Let F1 = fl,FQ = fg. Clearly, (L‘(fl) = (L‘(fg)

Proposition 6.8.8. §(v) = {f1, fo}

Proof. We have 2(E[K])+a(f1) = $(K) and a(E[K]) +2(f2) = $b(K), s0 20(E[K]) +2(f1) +2(f2) =
b(K). That means that each node is saturated in K by the z-values on E[K]| and {f1, f2}, hence there
is no edge f € 6(K) \ {f1, f2} by Proposition 6.6.2. O

Proposition 6.8.8 implies that there are at most two bad constraints of type (V) in £ corresponding
to a node. Assume that v is a node with two such constraints. The proof of Proposition 6.8.8 implies
that all the other nodes are saturated by x, hence v is unique with this property by Claim 6.8.3.

We claim that 7 = (). Indeed, assume first that there is a forbidden triangle T € T containing v. Let
f1 =wvu and fo = vw be the two edges incident to v. Both u and w have degree 3 as they are saturated
and x < 1. Let e; = d(u) \ Er and ex = §(w) \ Er. It is easy to see that z(e1) = z(e2) > x(f1) = z(f2).
Also, z(e;) > % by < 1, the previous observation and z(e;) + z(f;) + 2 (uw) = 2.

Edges e1, ea, uw do not form the edge-set of a forbidden triangle T" as otherwise x(Er) 4+ z(E7) =
x(6(u)) + z(0(w)) = 4, hence both T and T” are tight, a contradiction.

Delete the edges uv, uw from G, shrink u and w in a single node z with b(z) = 2 and add a new edge
vz to the graph with z(vz) = 2 — x(e1) — x(e2). Let G, b, T', 2’ denote the lexicographically smaller
problem thus arising. An easy case-checking shows that 2’ satisfies (Pg) in G’ with ' and T hence it
is a convex combination of 7’-free b'-matchings of G’. This convex combination can be extended to the

original problem in a straightforward manner thus giving z, a contradiction.

Proposition 6.8.9. There is no triangle T € T whose nodes are all saturated.

Proof. Assume that z(d(v)) = 2 for each v € Vi for some T' € T. Recall that V7 does not span parallel
edges by Proposition 6.6.1. Then 2z(Er) + 2(6(Vr)) = 6, and so z(Er) + z(6(Vr)) > 5 —2 =4. On
the other hand, (Vir, (V) is an odd pair, so 2(Er) +z(5(Vr)) < | %42 ]) = 4. Hence we have equality

everywhere, implying x(E7) = 2, a contradiction. O

By Claim 6.8.9, thereisno T" € T with Vp C V —wv either. Let fi = vu and fo = vw be the two edges
incident to v. Delete v from G and add a new edge between u and w with z-value z(f1) = z(f2) = C.

Let G', 2" denote the graph and vector thus arising.

Proposition 6.8.10. 2’ satisfies (Ps) in G'.

Proof. Tt only suffices to verify (iiz). Assume that there is an odd pair (Z,H) with Z C V — v, H C
3 Z) \ {f1, fo} violating (i7i) in G’. It is easy to see that u,w € Z must hold otherwise there would be
a violating pair in the original problem, too. That means that z(E|[Z]) + z(H) > % —C.In
other words, as each node different from v is saturated, b(Z) — z(E[Z]) —z(6(Z)\ H) > % -C,
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so 2(E[Z]) + 2(6(2) \ H) < MAHEL L ¢ 1f (7, H) is odd then (V \ (Z 4 v), H) is also odd and
(E[V\(Z+v)])+z(H) < w Summing up these we get x(F) < w +C.

As both (V —w, f1) and (Vi f2) are tight, 2z(E[V —v]) + z({ f1, f2}) = b(V — v), that is, 2z(F) =
b(V —v) + 2C, a contradiction. O

As G', 2/ provides a lexicographically smaller problem, 2’ is a convex combination of b-matchings (in

fact factors) of G'. These b-matchings easily extends to G giving x, a contradiction. O

Claims 6.8.1, 6.8.3 and 6.8.4 imply that |£]| < |V, and we are done.

6.9 Further remarks

The problem of giving a complete description of the triangle-free 2-matching polytope of arbitrary
graphs is still open. As mentioned in Section 1.4, assumption (6.1) is essential: Theorem 6.1.2 is false
if we remove the degree bound dg(v) < 3 on nodes of forbidden triangles, as shown by the following

example.

1/ /2 1/2 [2

Figure 6.9: A counterexample for the non-subcubic case

The values on the nodes and on the edges represent b and x, respectively, and T contains the triangle
in the center. One may check that z satisfies (Ps) with total value 3, but the maximum size of a 7-free
b-matchings is 4, hence x is definitely not contained in the T -free b-matching polytope.

In [58], Grotschel and Pulleyblank introduced a new class of inequalities valid for the travelling sales-
man polytope. This new class, which is called clique tree inequalities, properly contains various classes
of well known inequalities such as blossom inequalities, subtour elimination constraints, 2-matching
constraints, Chvatal combs or comb inequalities.

An articulation set of a graph G = (V, E)) is minimal set of nodes whose deletion results in graph

with more connected components that of G. A clique tree, according to [58], is defined as follows.

Definition 6.9.1. A clique tree is a connected graph C for which the maximal cliques satisfy the

following properties:

The cliques are partitioned into the sets of handles and teeth.
No two teeth intersect.

No two handles intersect.

Ll e

Each tooth contains at least two, at most n — 2 nodes, and at least one node belonging to no
handle.
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5. For each handel, the number of teeth intersecting it is odd and at least three.
6. If a tooth T" and a handle H have nonempty intersection, then H N'I" is an articulation set of the

clique tree.

It follows from the definition that a clique tree indeed has a ‘tree-like structure’, see Figure 6.10.

. : handles
O : teeth

Figure 6.10: A clique tree

Grotschel and Pulleyblank showed the following.

Theorem 6.9.2 (Grotschel and Pulleyblank). Let C be a clique tree in K,, with handles Hy, ..., H,
and teeth T4, ...,Ts. Then the clique tree inequality

r

S w(BH]) + > @(BIT)]) <> |H|+Y (T —t;) — =5 (6.4)
j=1 i=1 j=1

=1
is valid with respect to the travelling salesman polytope, where t; denotes the number of handles inter-

secting tooth Tj.

In case of triangle-free 2-matchings, those clique trees are interesting in which the teeth are either

triangles or single edges, see Figure 6.11.
Definition 6.9.3. A tri-clique tree is a connected graph C satisfying the following properties:

C is the union of subgraphs partitioned into two sets, handles and teeth.

No two teeth intersect.

No two handles intersect.

Each tooth is an edge or a triangle and contains at least one node belonging to no handle.

For each handel, the number of teeth intersecting it is odd and at least three.

S Gt W=

If a tooth T" and a handle H have nonempty intersection, then H N7 is an articulation set of the

clique tree.

Using the same idea as in [58] the following can be proved.
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O handles O teeth

Figure 6.11: A clique tree for the Cs-free 2-matching case

Theorem 6.9.4. Let C be a tri-clique tree in a simple graph G with handles Hy, ..., H, and teeth
Ti,...,Ts. Then the tri-clique tree inequality

T

Y @(BUH)) + ) w(B[T) < Y [Hil + Y (T —t;) — =5 (6.5)
=1 j=1 i=1 j=1
is wvalid with respect to the triangle-free 2-matching polytope, where t; denotes the number of handles

intersecting tooth T.

It was also showed in [58] that the clique tree inequalities are facet-inducing for the travelling
salesman polytope and almost always induce distinct facets. Moreover, these inequalities -in some sense-
can not be further generalized in a facet-inducing manner. Hence it would be interesting to see whether
the addition of these inequalities to the description of the triangle-free 2-matchings in subcubic graphs

would give a complete description of the polytope in question for arbitrary graphs.



Chapter 7

Splitting property via shadow systems

7.1 Shadow systems
The main result of the chapter is the following theorem.

Theorem 7.1.1. In the poset (M, <), the mazimal antichain le has the splitting property, that is,
MF can be partitioned into disjoint sets Ay and As such that U(Ay) U L(Ag) = M.

In Theorem 7.1.1, the required property of Ay C M ,f is that for every vector ¢ € M ,f“, Ay must
contain at least one shadow of A;. Generalizing this notion, for r < ¢ we call A C M] a (t,r; k)-shadow
system, if for every colour vector ¢ € M}, A contains at least one shadow of ¢. With this terminology,
Ap in Theorem 7.1.1 is a (k + 1, k; k)-shadow system.

Consider a vector s € Z;. The colour profile a = M(s) € M/ can be naturally defined so that a;
equals the number of i’s in s for 1 <1 < k. First of all we give a proof of Theorem 1.5.4 by using the

following.

Theorem 7.1.2. For integers t > r, there exists a (t,r;t — 1)-shadow system AL C M] | so that if we
r—1

pick a vector s € Z_, uniformly at random, then the probability of M(s) € AL equals (;’%11)
Proof of Theorem 1.5.4. Let us take a uniform random colouring with ¢t — 1 colours of a ground set V'
with |V| = n nodes. Consider a (t,r;t — 1)-shadow system AL C M/ ; as in Theorem 7.1.2, and let the
r-uniform hypergraph (V, £) contain those r-element subsets X whose colour profile is contained in A’.
(An r-element set coloured by ¢ — 1 colours naturally corresponds to a vector in Zj_;.) The (¢,7;t — 1)-
shadow system property implies that every vector ¢ € M} | has a shadow in A%. Consequently, every
t-element subset of V' has a subset in &, that is, £ is a Turdn (n,t,r)-system. Theorem 1.5.4 follows
since the expected size of £ is (;%11)?71 (:f) by Theorem 7.1.2. O

In what follows, we give a proof of Theorem 7.1.2.

Let z = (z1,...,25) € My bea k-colour vector. If z; = 0 and zj 41 # O then 2’ = (x1,...,zj_1,2j11—
L, 2j42,...,2) € My_ is called the reduction of = at the jth position and is denoted by red[j](x)
(indices are in a cyclic order, i.e. zx1 refers to x1). A vector with no zero entries is called irreducible.
Assume that a series of reduction steps at positions ji,...,J; is applied on vector x € M), which results
in another vector ' € M, where t = k — m. We define the ancestor anc(i) of a position 1 <1i < m as
the original position of that entry in the starting vector. Formally, these can be obtained by Procedure 2.

The following proposition unravels an important property of the reduction operation.

109
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Procedure 2 Computing anc()

1: Set anc(7) := 1.
2: Set q :=1t.
3: while ¢ > 0 do

4:  if j, > anc(i) then

5 anc(i) := anc(7)

6: else

7: anc(i) := anc(i) + 1
8: end if

9 q:=q—1

10: end while

11: return anc()

Proposition 7.1.3. Let © € My be a k-colour vector. Assume that after some reduction steps we obtain
an irreducible vector x’. Then x' and the ancestors of its positions are independent from the choice of

the reduction steps.

Proof. For a contradiction, assume there exists a k-colour vector x € M}, that can be reduced to two
vectors 2’ and z” that are either different or are identical but one of the positions has different ancestors
in them. Choose k as the minimum value where this may occur; clearly k£ > 2. By this minimal choice,
the two reduction sequences must differ in the very first step. Assume the first sequence reduces at
position j' and the second at position j”, resulting in ' = red[j’](z) and 3" = red[;”](z). W.lLo.g.
assume j° < j”; then j” > j' + 1 follows as we cannot reduce at position j" if x;41 = 0. Consider
now the reductions red[;'](y”) and red[;” — 1](y'). These must be identical. Moreover, the ancestors
of the positions in red[j’|(y”) and red[;” — 1](y') also coincide. However, by the minimal choice of
k, any reduction sequence of 3/ and y” must result in the same vector z with the same ancestors, a

contradiction. O
k—1
i=j
= max{0, x; + min; sum(yj,7)}. Observe

As an alternative proof, we can define the following quantity. Let sum(j, k) = > .— . (x; — 1) where

red

indices are in cyclic order and sum(k, k) is defined as 0. Let ]

that the reduction stops with an 2’ which is obtained from 2" by deleting its zero entries. Moreover,
the ancestor of position i is just the position of the corresponding nonzero entry in z"¢.
The irreducible vector arising by applying a sequence of reductions on z is hence uniquely defined;
it is called the complete reduction of x and is denoted by red(x). The ancestor of position 7 in a
complete reduction is denoted by anc(z). Let us define the rank of z, denoted by rk(x), as the length
of the vector red(z), and let
Ay = {z € M :rk(z) = 1}. (7.1)

Note that reducing a vector in M ,’: gives a vector in M ]1;_—11 and the only irreducible vector in M ,’j is an

all-one vector (that is, all its entries are 1). Consequently, the complete reduction of any vector in M ,f
is an all-one vector of dimension m < k, and x € A, if and only if m = 1. Theorem 7.1.1 follows by the

next lemma, showing that partitioning M. ,’j to A and M ,f \ Ay satisfies the splitting property.

Lemma 7.1.4. Let B, = M} \ Ay,. Then My, = U(Ag) U L(By).
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The proof needs one more operation. For = (z1,...,x1) € M} we call 2’ = (z1,x2,...,2;-1,0,2;+
L, Zj41,...,25) € My the extension of z at the jth position and denote it by ext[j](x). The
extension can be considered as a reverse counterpart of the reduction. However, there are no restrictions

on the elements of x in this case and applying ext does not modify the result of red, namely red(x) =

red(ext[j](x)).

Proof of Lemma 7.1.4. We have to show that (a) for every ¢ € M/:H, A contains a shadow of ¢, that
is, Ay is a (k + 1, k; k)-shadow system; and (b) for every d € M,ffl, there exists a b € By, such that d is
a shadow of b.

Both statements are proved by induction on k. For k = 2, Ay = {(2,0),(0,2)} and By = {(1,1)},
and both statements clearly hold. Assume both (a) and (b) hold for all values strictly less than k.

For (a), consider an arbitrary vector ¢ € M /:H. We distinguish two cases.

Case 1. c is irreducible, that is, every entry is strictly positive.
Since the sum of the elements of c is k 4 1, this is only possible if for some 1 < p <k, ¢, = 2 and
¢; = 1for 1 <i <k, i+# p. Consider the vector a € M,’: with ap, = 2, ap41 = 0, a; = 1 for every other

index i. Then a is a shadow of ¢ and it is easy to verify that rk(a) = 1, that is, a € Ay as required.

Case 2. There exists an index i with ¢; =0, ¢;4+1 # 0.

Let ¢ = redfi](c) € M} ,. By induction, there exists an o/ € A{_! that is a shadow of ¢. Let
a = ext[i](a’) € MF. Then rk(a) = rk(a’) = 1, and therefore a € Aj. Now a is a shadow of c,
completing the proof.

Let us now turn to statement (b). Consider an arbitrary colour vector d € M, ,f ~!. Since the sum of the
elements of d is k— 1, there is an index 1 <4 < k such that d; = 0 and d; 11 # 0. Let d’ = red|i](d) which
is in M}~ 2. By induction, there exists a b’ € By_ such that d’ is a shadow of b'. Let b = ext[i](b') € M}.
Since red(b) = red(V'), it follows that b € By, as required. O

The construction of the (¢,r;¢ — 1)-shadow system in Theorem 7.1.2 is also based on Aj. We first
need to define some further operations. For a vector x € Z}, we obtain the vector 2’ = dx € Z] by
increasing every coordinate by 1: 2} = z; + 1. We call ¢ the k-shifting operator; the j'th power is
denoted by 7. Clearly 6* is the identity but 6’2 # = for 0 < j < k. The set {z, 0z, 8%z,...,6* 12} is
called the k-orbit of z. Being in the same k-orbit defines an equivalence relation on Zj..

The k-shifting operation induces a natural operation on the colour vectors in Mj. For a € M, let
a' = Aa € M} be the vector with a = a;—; (with indices modulo k, i.e. @} = aj). We call A the cyclic
shifting operator. Clearly, M (éx) = AM (z) for every x € Zj (recall that M (z) denotes the colour
profile of x). Again, {a, Aa,A%a,..., A*"1a} defines the cyclic orbits of M}, and being in the same
orbit is again an equivalence relation. However, note that AJa = a may occur even for j < k. (For
example, let k =4, r =4, j = 2, a = (2020).) If @ and b are on the same cyclic orbits, then so are red(a)
and red(b). We denote the cyclic orbit of an a € M] by CO(a). The above notions are illustrated on
Figure 7.1.

Remark 7.1.5. It is worth mentioning that in Lemma 7.1.4, both sets A and By, are closed under the

operation A.
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73 M3 3-orbits of Z3 cyclic orbits of M3
(1,1) (2,0,0) {(1,1),(2,2),(3,3)} {(2,0,0),(0,2,0),(0,0,2)}
(1,2) (0,2,0) {(1,2),(2,3),(3, 1)} {(1,1,0),(0,1,1),(1,0,1)}
(1,3) (0,0,2) {(1,3),(2,1),(3,2)}

(2,1) (1,1,0)
(2,2) (1,0,1)
(2,3) (0,1,1)
(3,1)
(3,2)
(3,3)

Figure 7.1: The members and orbits of Z3 and M3.

We are ready to define AL as in Theorem 7.1.2. Consider A, as in (7.1), and let a € A,.. By definition,
red(a) = (1). Let us call the ancestor of this single element the tip of the vector a. Let blow(a) € M/

denote the vector arising from a by inserting ¢t — 1 — r zeros just after the tip of a. Define

Al:= ] CO(b1ow(a)). (SHA)
acAy
For example, let r = 3, ¢ =5, and a = (2,0,1) € As. The tip of a is the first element, and blow(a) =
(2,0,0,0,1). Finally, CO(blow(a)) = {(2,0,0,0,1),(1,2,0,0,0), (0,1,2,0,0), (0,0, 1,2,0), (0,0,0,1,2)}.
Also, note that if o’ € CO(a), then CO(blow(a)) = CO(blou(a’)). Further, Uycco(q)blow(a’) <
CO(blow(a)): in the above example, (0,0,0,1,2) is contained in the latter set but not in the first.
We show that AL is a (t,r;t — 1)-shadow system satisfying the requirement of Theorem 7.1.2. The
shadow system property can be verified using an argument almost identical to that in the proof of
Lemma 7.1.4.

Lemma 7.1.6. For integers t >r, AL C M/ | defined by (SHA) is a (t,r;t — 1)-shadow system.

Proof. The proof is by induction on r. For r = 2, Ay = {(2,0),(0,2)}, and for any ¢ > r, A} contains
the vectors with one entry being 2 and all other entries 0. Every ¢ € M/} ;| must contain at least one
entry > 2, and therefore it has a shadow in AL. Assume we have proved the statement for all values
strictly less than 7 and consider an arbitrary colour vector ¢ € M} .
Case 1. c is irreducible, that is, every entry is strictly positive.

Since the sum of the elements of c is ¢, this is only possible if for some 1 < p <t —1, ¢, = 2 and

¢i=1for 1 <i<t—1,1%#p. Consider the vector a € M/ _; with
2 if 1 = p,
a; = 0ifi=p+1,....p+t—r,
1 otherwise,
where we use the indexing cyclically, i.e. ¢ means 1. Clearly, a is a shadow of ¢, and a € AL since

removing t — 1 —r 0’s after the 2, we obtain ¢’ = (1,...,1,2,0,1,...,1) € M/, and it is easy to verify
a € A,.



7.1. Shadow systems 113

Case 2. There exists an index i with ¢; =0, ¢;411 # 0.
Let ¢ = red[i](c) € M!~). By induction, there exists an a’ € A/") that is a shadow of ¢. Let
a = ext[i](a’) € M] . Tt is easy to verify a € AL. Now a is a shadow of ¢, completing the proof. O

The following lemma considers elements of Z;_, instead of colour vectors, and gives the exact number

of those having their colour profile in AL.

Lemma 7.1.7. Let S C Z; | denote the set of vectors whose colour profile is in AL. Then |S| =
(r—1)t-1).

Before proving the lemma, let us derive Theorem 7.1.2 as a consequence.

Proof of Theorem 7.1.2. We show that A’ as defined by (SHA) satisfies the conditions. Lemma 7.1.6
shows that it is a (¢,r;t — 1)-shadow system. The total number of vectors in Zj ; is (t — 1)". The
probability that a randomly picked s € Z!_; has its colour profile in AL is |S|/(t — 1)" = (;%11)7"_1 by
Lemma 7.1.7 as required. 0

By definition, A’ is closed under the operation A. While certain cyclic orbits may be shorter than

t — 1, the next claim shows this cannot be the case for orbits contained in AC.

Claim 7.1.8. Ifa € AL, then Ala # a for 0 < j <t — 1. Consequently, all cyclic orbits contained in

AL have size exactly t — 1.

Proof. Every cyclic orbit in AL can be obtained as CO(blow(a)) for some a € A,. It suffices to show
that for any 0 < j < t — 1, A/blow(a) # blow(a). For a contradiction, assume there exists such a j
and a for which A/blow(a) = blow(a); let b = blow(a) and ' = Afblow(a). Without loss of generality,
assume the tip of a is its first element.

As a € A,, it can be reduced to (1), which means that b can be reduced to (0,...,0) consisting of
t —r — 1 zeros and the ancestor of the ith zero is ¢. Recall that the complete reduction of b and the
ancestors of the elements of red(b) are uniquely defined by Proposition 7.1.3. By & = b, b’ also has
complete reduction (0, ...,0) consisting of ¢ —r — 1 zeros where the ancestor of the ith zero is 7. On the
other hand, by b’ = A7b, the ancestors of the elements of red(b’) are just the ancestors of the elements

of red(b) shifted by j, a contradiction as 0 < j <t — 1. O

Proof of Lemma 7.1.7. The cardinality of ZI_, is (r —1)" and the number of (r — 1)-orbits is (r —1)""1.
Since A! is closed under A, it follows that S is closed under ¢ and is hence a union of (¢ — 1)-orbits.
In what follows, we define a bijection ¢ between the (r — 1)-orbits of Z;_; and the (¢ — 1)-orbits of S.
Since every (t — 1)-orbit has cardinality ¢ — 1 by Lemma 7.1.7, this proves the lemma.

Consider a colour vector a € M, _,. It is easy to verify that its complete reduction has one entry
that is 2 and all other entries are 1, that is red(a) = (1,...,1,2,1,...,1). Analogously as for elements
of A,., we call the ancestor of the entry 2 the tip of a. Clearly, the tip of Aa is the tip of a plus one (in
a cyclic sense).

Take an arbitrary (r — 1)-orbit X in Z]_,. The colour profiles of the vectors in X map to a cyclic-
orbit 7' of M]_;. T must have an element a whose tip is the last ((r — 1)’st) coordinate; pick an s € X
such that M(s) = a. Let us inject Z,_1 into Z;—1 by mapping i € Z,_1 to i € Zy—1 for 1 <i <r —1,
and let § € Zj_; be the image of s under this mapping. Let us define p(X) as the (¢ — 1)-orbit of 5 in



114 7. Splitting property via shadow systems
Zj_,. In what follows, we verify that ¢ is a good bijection.

Well-defined. We first have to show that 5 € S, that is, M(5) € AL. Observe that a = M(s) € M,
can be obtained from a = M(s) € M!_; by adding ¢ — r zero coordinates at the (r — 1)’st position.
The vector a can be reduced to (1,1,...,1,2); apply the same reduction steps to 5. This gives a vector
b= (1,1,...,1,2,0,...,0) (with ¢ — r zeros at the end), which can be further reduced to (1) after

deleting the last ¢ — r — 1 zeros.

Injective. Assume indirectly that X; and Xy are different (r —1)-orbits of Z_, such that ¢(X;) =
©(X3). For i = 1,2, let T; be the corresponding cyclic orbit, a* € T; the element with tip (r — 1) and
s' € X; with M(s') = a'. Define 3 € S by mapping Z, 1 to Z;_1 and @ € M] ; as the colour profile
of 3. Now s! # s? are on different (r — 1)-orbits but 3! # 32 are on the same (¢ — 1)-orbit. That means
that there is a j such that 3% = §’5', and so @*> = AJg'.

We know that both @' and @ can be reduced to (1,...,1,2,0,...,0) (with ¢ — r zeros at the end)
by applying the same reductions steps as for a! and a?, and this vector can be further reduced to the
all-zero (0,...,0) vector consisting of ¢ — r — 1 zeros where the ancestor of the ith element is t — r.
Again, the complete reduction of a vector and the ancestors of the elements of the reduction are uniquely
defined by Proposition 7.1.3. We have seen that @' and @ has the same complete reduction. On the
other hand, by @* = A’a!, the ancestors of the elements of red(a?) are just the ancestors of the elements

of red(@') shifted by 7, a contradiction as 0 < j <t — 1.

Surjective. Consider any orbit Y of S, and let a € Al be the colour profile of an element s € Y.
We may choose s such that a, = ... = a;—; = 0. This is since a is a vector in CO(blow(ap)) for some
ap € A,, that is, we insert ¢t — 1 — r zeros after the tip of ag and apply A7 for some j. It is easy to verify
that the element of ag following the tip must be 0 because of r7k(ag) = 1.

Let us apply reduction steps on a avoiding the last ¢ — r zeros but reducing all others. It is easy to
verify that this reduces a to (1,...,1,2,0,...,0) (with ¢ —r zeros at the end). Now let us map s € Z]_,
to s* € Z;_, by mapping i € Zy_; to i € Zy_; for 1 < i < r — 1 (this is well-defined as s does not
contain colors r,...,t —1 by a, = ... = a1 = 0). Observe that ¢ maps the orbit of s* to Y, proving

the claim. O

7.1.1 Relation to Sidorenko’s construction
Sidorenko’s construction is based on the following observation.

b1+...4bg
k

Lemma 7.1.9. Let by,...,by be cyclically ordered reals, and b = . Then there exists an index

m such that

b+ ...+ bm_st1 >sb Vs=1,... k.

The construction is as follows: Divide the n elements into ¢ — 1 groups Ay, Ay, ..., A;_1. Let B be

an r-element subset and b; = |[B N A;|. Then set B is included into the set system 7 if and only if there
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is an index m such that

S
D bmeipr =s+1 Vs=1,...,r—1, (7.2)
i=1
where indices are meant in cyclic order, that is, by = by. It follows from Lemma 7.1.9 that 7 thus
obtained is a Turan (n,t,r)-system.

The following lemma shows the connection between Sidorenko’s construction and that of AL.

Lemma 7.1.10. Assume that the n elements are divided into t—1 groups A1, A1, ..., Ai_1. Anr-element
subset B is included into T if and only if (by,...,bi_1) € AL.

Proof. Consider a set B with b = (by,...,b—1) € AL. Then b € CO(blow(a)) for some a € A, where A,
is defined by (7.1), say b = Afblow(a). Let p be the tip of a and define m = p+j. We claim that m and b
satisfies (7.2). Indirectly, assume that there is an 1 < s < r—1 violating (7.2), that is, Y ;_; by—iy1 < s.
From s < r — 1 and the definitions of b and m, Y ;| bp—iy1 = »_;_; @p—i+1. Choose s to be maximal.
Then s <7 —1 as Z::_ll ap—it1 =r.Indeed, a € A, s0 > ap—ip1 =7, and a # (1,...,1) as it can be
reduced to (1).

Recall that o’ = red(a) is obtained from a"? by deleting its zero entries, where a}®

min; sum(j,7)} and sum(j, k) = Z?:_jl(ai — 1) (we defined sum(k, k) as 0). However, > 7 | ap—it1 < s

4 = max{0,a; +

means that in fact Y7 | ap—ip1 = s, otherwise a;fd = 0 contradicting p being a tip. The maximal
choice of s implies Y7 a,_s—iy1 > gfor 1 <g<rand Y | [ap_s—iy1 =7 —s > 0. Hence ared >0,

contradicting a € A,.

Now take a B € T and an index m satisfying (7.2). W.lL.o.g. assume that m = r. That is,
i b1 > s+1forl < s <r—1 As Zf;} br_ir1 = r, we immediately have b.,1 = ... =
bi_1 =by =0.Let a = (a1,...,a,) = (by,...,b). Then > i ar—iy1 =7 and > ; jar_iy1 > s+ 1 for
1 <s<r—1. We claim that a € A,. To see this, it suffices to show that a;fd =0forp=1,...,r— 1L
Assume indirectly that aged > 0 for some p. This implies Y7 ;ap_;4+1 > ¢ for 1 < g < r. We have
T= a4 => b pit1+ Yoiy Ar_it+1 > p+r—p+1=r+1, a contradiction. O

In the proof of Theorem 1.5.4, we took a uniform random colouring of the ground set with ¢ — 1
colours and showed that the expected number of r-element subsets whose colour profile is contained in
Al is ‘small enough’. Sidorenko’s construction takes a deterministic colouring instead with almost equal

groups, that is,

|A;| — ]AjH <1for1<i<j<t—1,and shows that for such a colouring the number

of r-element subsets with colour profile in AL does not exceeds the bound, thus proving (1.11).

7.2 Weighted Turan number

Recall the definition of the weighted Turdn number tw(t,r) from the Introduction. The following

easy observation shows that the presence of weights does not affect the upper bound for tw(t,r).
Theorem 7.2.1. For any integers t > r, we have tw(t,r) = t(t,r), and therefore tw(t,r) < (E)ril.

Proof. Clearly, tw(t,r) > t(t,r) as the unweighted Turan number corresponds to the special case w = 1.
To see the other direction, take an arbitrary Turan (n, ¢, r)-system (without taking weights into account).

If we consider the weight of this system in a random permutation of the elements, then the expected
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value of its weight is exactly M - w*, which means that there exists a Turan (n,t,r)-system with

weight at most that, completing the proof. The second half follows by Theorem 1.5.4. U

Theorem 7.2.1 ensures the existence of a Turan (n,t,r)-system with ‘small’ weight. However, it is
still not clear how to find and represent such a system. For t = 3 and k = 2, Theorems 1.5.4 and 7.2.1
imply that in a weighted graph, we can choose a set of edges whose weight is at most the half of the
total weight w* covering every triangle. Indeed, the most simple maximum cut algorithm delivers such
an edge set. Let us colour the nodes of the graph by two colours uniformly at random, and choose the
set of edges whose two endpoints receive the same colour. Clearly, these edges must cover every triangle.
Since every individual edge gets chosen by probability %, the expected cost of the chosen edge set will
be “é
The proof of Theorem 1.5.4 using Theorem 7.1.2 presented in the Introduction also yields a simple

randomized algorithm for finding an (n,t,r)-Turdn system in question. We colour the nodes uniformly
at random by (¢ — 1)-colours, and choose r-element subsets according to their colour profiles. Note that
we must obtain a Turan system of cost at most (E)r_lw* with probability at least (%11)7"_1. The
construction of the (¢,7;¢ — 1)-shadow system AL in Theorem 7.1.2 will give a simple and efficient way
to decide whether a colour vector is contained in A%. Consequently, although the size of the construction

is O(n"), the colouring provides a simple linear representation.

7.3 Tuza’s conjecture

As outlined earlier, the minimum number of edges covering all of the triangles in an arbitrary graph
is the weighted Turdn number Ty,(n,3,2) for w. = 1 on the edges of the graph and w, = 0 otherwise.
Given an undirected graph G = (V, E), a set of pairwise edge-disjoint triangles is called a triangle

packing, while a set of edges sharing an edge with all triangles is called a triangle cover. Let

v(G) = maximum cardinality of a triangle packing in G,

7(G) = minimum cardinality of a triangle cover in G.

Hence the unweighted Turdan number T'(n,3,2) is the same as 7(K,). The problem of determining
the exact values of v(G) and 7(G) is showed to be NP-complete by Holyer [68] and Yannakakis [136],
respectively. Still, it would be interesting to give a connection between these parameters. Clearly, v(G) <
7(G) holds so a natural approach would be to give an upper bound for 7(G) as a function of v(G).

In [127], Tuza proposed the following conjecture.
Conjecture 7.3.1 (Tuza). 7(G) < 2v(G) for any simple undirected graph G.

It is worth mentioning that equality holds for infinitely many graphs. Indeed, take any graph with
all maximal two-connected subgraphs isomorphic to either Ko, K4 or K5. That is, if Conjecture 7.3.1 is
true then it is sharp.

The conjecture has been proved for various classes of graphs (see [24,56,65,66,67,99,128|). The
first nontrivial bound for general graphs was given by Haxell by proving that for any graph G, we
have 7(G) < (3 — e)v(G), where & > 2 [64]. A fractional weakening of the conjecture was given by
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Krivelevich [99] who showed that 7(G) < 27%(G) and v*(G) < 2v(G) where 7*(G) and v*(G) stand for
the optimal fractional solutions of the corresponding covering and packing problems, respectively.

The problem of determining v(G) and 7(G) can be generalized in two ways. In [37], Erdds and Tuza
proposed a ‘clique version’ of the original problem by considering the covering of complete subgraphs
with complete subgraphs, while in [17] Chapuy et al. studied an edge-weighted version of the conjecture,
and weighted analogues of results of Tuza, Krivelevich and Haxell were proved. Putting together these
two ideas, we formalize a more general version of the problem.

For an (r — 1)-uniform simple hypergraph H = (V, ), an r-block is a subset of  nodes spanning a
complete subhypergraph. The set of r-blocks is denoted by B,.. A r-packing is a set of disjoint r-blocks,
while an r-cover is a set of hyperedges such that each r-block spans at least one of them. Assume now
that a weight function w : £ — R is also given. A weighted r-packing is a family of - not necessarily
disjoint - 7r-blocks such that each hyperedge e is contained in at most w(e) of them. For the weighted

case, let

vy (H) = maximum cardinality of a weighted r-packing in H,

Tw(H) = minimum weight of a r-cover in H.

Here v, (H) and 7,,(H) are called weighted r-packing and weighted r-covering numbers, respec-
tively. These parameters can be interpreted as optimal solutions to the following integer programs. Let
A be the hyperedge - r-block incidence matrix of H, that is, Ac r = 1 if e € £ is spanned by r-block R,

and 0 otherwise. Then

vy(H) =max{l-z| Az <w, z € Zﬁ’"},

Tw(H) = min{w - y| ATy > 1, y € Z%}.
By relaxing the integrality constraints we get the following primal-dual pair of linear programs.

By
V(H) = max{1-z| Az <w, v € RT"},

w

7o(H) =min{w - y| ATy > 1, y e R},

where v (H) and 75 (H) are called the weighted fractional r-packing and weighted fractional

r-covering numbers, respectively. The linear programming duality theorem gives

As a generalization of Tuza’s, we propose the following conjecture.

Conjecture 7.3.2. Let H = (V,&) be a simple (r — 1)-uniform hypergraph and w : € — Ry a weight
function. Then 7,(H) < [Z v, (H).

Tuza’s conjecture corresponds to the case when r = 3, w = 1 and H is a simple graph. Similarly
to the original conjecture, if Conjecture 7.3.2 is true then it is sharp. Indeed, let w = 1 and take
an (r — 1)-uniform complete hypergraph H = (V,&) on r + 1 nodes. We claim that v,(H) = 1 and
ru(H) = [2£1].

It is easy to see that v, (H) = 1 as the graph has only r + 1 nodes, so any two r-blocks share r — 1
nodes in common. As the graph is complete, there is a hyperedge spanned by these nodes, so w = 1

implies that at most one r-block is contained in any weighted r-packing.
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To see 7,(H) > [Z5] it suffices to show that for any set C of r-blocks with cardinality at most
[%] — 1 there exists a node v which is contained in all members of C. That would clearly prove the
lower bound as C does not cover the r-block H — v. Assume indirectly that there is no such node, that

is, each node is contained in at most |C| — 1 of them. We have

Y H{eeC: veel| < (r+1)(C-1).

veV
On the other hand,
d HeecC: veel =) lel=(r—1C|.

veV ecC
These together gives (r +1)(|C| — 1) > (r — 1)|C|, hence |C| > [“£1], a contradiction.

It remains to show an r-cover with cardinality [ZH]. Let V = {vi,...,v,41} and C = {V \
{voi_1,v9;i}| 7 = 1,...,[%]} where indices are meant in cyclic order, so v,yo = v1. Then for any
v € V there is at least one e € C not containing v. Hence C is an r-cover as for any r-block B there is
an e € C not containing V' \ B, thus e C B.

Conjecture 7.3.2 is widely open. With the help of the shadow system appearing in Theorem 7.1.2,
we prove a fractional weakening of the conjecture which can be considered as a weighted counterpart of

Krivelevich’s result.

Theorem 7.3.3. Let H = (V,&) be a simple (r — 1)-uniform hypergraph and w : £ — Ry a weight
function. Then 1,(H) < (r — 1)1 (H).

Proof. Suppose that the theorem does not hold and let H be a minimal counterexample, that is, 7,(H) >
(r— 1)1 (H) but 7, (H') < (r — 1)75(H') for every proper subhypergraph H' of H. This implies that
each hyperedge e € F is contained in an r-block as otherwise it could be left out from H thus giving
a smaller counterexample. Take a pair of optimal solutions of the weighted fractional r-packing and

r-cover problems denoted by z* and y*, respectively.

Case 1. yi > r—% for some e € £.
Let H' be the graph obtained by deleting the hyperedge e from H. Clearly, 7,(H") > 7, (H) —w(e).
On the other hand, z* is a fractional r-cover in H' where z*(¢/) = y*(€’) for ¢’ # e. Hence 7} (H') <

T (H) — w By the minimal choice of H we get

w -1
Tw(H) < 7(H') +w(e) < (r = Dy (H') + w(e) < (r = D)7y (H),

a contradiction.

Case 2. y; < ﬁ for each e € €.

We claim that y} > 0 for each e € £. Indeed, an r-block spans r different hyperedges. If one of these
hyperedges had y* value 0 then the total y* sum on them would be strictly smaller than 1, contradicting
the assumption that y* is a fractional r-cover. As mentioned earlier, each hyperedge is spanned by one

of the r-blocks, hence the statement follows. By complementary slackness, we have

Z x*(B) = w(e) for each e € &.

BGB’I‘
Bspans e
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That also implies that the exact value of the optimum for the fractional problem can be computed as

To(H)=vo(H)= > a*"(B)=1>" > 2*(B)=1> w(e) = tuw".

BeB; ec€ BeB, ec&
B spans e

So it suffices to show that 7,(H) < TT_lw*. We do the same as in the proof of Theorem 7.2.1: colour the
nodes uniformly at random with the colours 1,...,r — 1 and define the r-cover as the set of hyperedges
e with colour profile in A7 _, defined in (SHA). We have already seen that there exist a colouring of the

nodes such that the total weight of the covering is at most (%)T_lw* < ”%110*, and we are done. [
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Abstract

The thesis has two main topics, the first of them is arborescence packing. We consider extensions of
Edmonds’ fundamental result on packing disjoint spanning arborescences. The problem can be naturally
generalized in two directions: the edge-disjointness condition may be strengthened, and the set of nodes

spanned by the arborescences may be decreased.

o We give a disproof of the conjecture of Colussi, Conforti and Zambelli on strongly edge-disjoint
arborescences. For k = 2 the conjecture is true; we give its generalization for dicycle-disjoint Steiner
arborescences.

o We present a linear time algorithm for finding a pair of disjoint in- and out-arborescences in
an acyclic digraph. Deciding the existence of such arborescences is NP-complete in general. Our
algorithm is based on a reduction to bipartite matching in an associated bipartite graph.

o We present a strongly polynomial time algorithm for finding disjoint arborescences spanning convex
sets under capacity constraints. Our solution is based on the deep understanding of the connection
between packing arborescences and covering intersecting bi-set families.

o We give a polyhedral description of arborescence packable subgraphs and prove that the system is
TDI. The proof strongly relies on the special intersecting bi-set families appearing in the proof of

Fujishige’s theorem.

The second part of the thesis deals with restricted b-matchings, mainly with Cj-free k-matchings.
It has been known that the Cj-free 2-matching problem is NP-complete for k& > 5. We consider the
Cs-free and the Cy-free 2-matching, and the K;;- and K4 -free t-matching problems in graphs that

satisfy certain degree bounds.

o We give a min-max theorem and an algorithm for the square-free 2-matching problem in subcubic
graphs. We show that the weighted version of the problem is NP-hard even in planar bipartite cubic
graphs, but is polynomially solvable when the weight function is node-induced on each square.

o We give a min-maz theorem and an algorithm for the Ki;- and Kii1-free t-matching problem
i degree bounded graphs. Note that this problem is a generalization of the Cjs-free, Cy-free and
C<y-free 2-matching problems.

o We give a description of the triangle-free 2-matching polytope of subcubic graphs. The descrip-
tion was conjectured by Hartvigsen and Li; the complete proof appeared recently. We give an

independent proof of the result which relies on a shrinking method.

The last chapter examines arbitrary triangle-free subgraphs, that is, when the degree bound on
the nodes in the subgraph is omitted. The problem is approached through shadow systems and Turan
numbers.

o We prove that the set of multisets with size k over a ground set with size also k has the so-called

splitting property. From this, we show that a weighted extension of the Turdn number admits the

same upper bounds as the unweighted one. We also prove a combinatorial colouring theorem and

a fractional version of an extension of Tuza’s conjecture to hypergraphs.

The results are based on the papers [7], [8], [10], [11], [12], [13] and [14].



132



Osszefoglalas

Az értekezés két f6 téméaval foglalkozik, melyek koziil az elsé a fenySk pakolasanak kérdéskore. A
probléma két irdnyban is altalanosithatd: egyrészt szigorithatd a fenySkre vonatkozd éldiszjunktsagi

megkdtés, mésrészt a fenyGk altal feszitett pontok halmaza is sziikithetd.

o Megcafoljuk Colussi, Conforti és Zambelli erdsen éldiszjunkt fenydkre vonatkozd sejtését. A sejtés
a k = 2 esetben igaz; ezt a zeredményt altalanositjuk irdnyitott kordiszjunkt Steiner fenyGkre.

e Linedris ideji algoritmust adunk eqy pdr éldiszjunkt ki- és be-fenyd megtaldldsdra aciklikus grd-
fokban. A kérdeéses fenytk létezésének eldontése altalaban NP-teljes probléma. Az altalunk adott
algoritmus visszavezeti a problémat egy paros grafban valé maximalis parositas megkeresésére.

e FErdsen polinomidlis algoritmust adunk adott konvex halmazokat feszitd éldiszjunkt fenydk meg-
keresésére eqy élkapacitisokkal rendelkezd grdfban. Megoldasunk a feny6-pakoldsok és a metsz6
parhalmazrendszerek fedése kozti szoros kapcsolaton alapul.

o Megadjuk o fenyd-pakolhatd részqrdfok poliéderes leirdsdt, €és igazoljuk, hogy a kapott rendszer
TDI. A bizonyitas a Fujishige tételének bizonyitasaban megjelend specialis parhalmaz csaladok

szerkezetére épiil.

A dolgozat masodik része tiltott részgrafokat nem tartalmazo b-matchingekkel foglalkoznak, kiilénos
tekintettel a Cy-mentes 2-matchingekre. Ismert volt korabban, hogy a Cj-mentes 2-matching probléma
NP-teljes £ > 5 esetén. Mi a Cs-mentes és Cy-mentes 2-matchingek, illetve a Ky ;- és K;yi-mentes

t-matchingek problémajat vizsgaljuk fokszamkorlatozott grafokban.

o Min-maz tételt és algoritmust adunk a négyszog-mentes 2-matching feladatra szubkubikus grdfok-
ban. Megmutatjuk, hogy a probléma silyozott valtozata mér sikbarajzolhaté paros kubikus grafok-
ban is NP-nehéz, ugyanakkor pont-indukalt koltségfiiggvény esetén polinomialis algoritmus adhato.

o Min-maz tételt és algoritmust adunk a K- és K 1-mentes t-matching feladatra fokszdmkorldto-
zott grafokban. Ez a probléma konnyen lathatdéan altalanositja a Cs-mentes, a Cy-mentes, illetve
a C<y-mentes 2-matching problémékat.

o Megadjuk a szubkubikus grdfok hdromszdg-mentes 2-matching poliéderének leirdsdt. A leird rend-
szert Hartvigsen és Li sejtette meg; teljes bizonyitdsa nemrégiben jelent meg. Egy fiiggetlen bi-

zonyitast adunk az emlitett leirds helyességére, mely egy 1j Osszehtizasi miiveleten alapul.

Az utolso fejezetben tetszéleges haromszog-mentes részgrafokkal foglalkozik, azaz mikor a vizsgalt
részgrafokban a pontokra vonatkozé fokszamkorlatot elhagyjuk. A problémat més ismert teriileteket

érintve kozelitjiik meg, mint példaul az arnyék-rendszerek, avagy a Turdn-szam.

e [gazoljuk, hogy eqg k méretd alaphalmazon értelmezett k elemd multihalmazok rendszere rendelkezik
az ugynevezett splitting tulajdonsdggal. Ennek segitségével bizonyitunk egy kombinatorikus szinezési
tételt, melybdl aztan a Tuza-sejtés egy hipergrafokra vald altalanositasanak tortirdnyu gyengitése

kovetkezik.

A bemutatott eredmeények a [7], [8], [10], [11], [12], [13] és [14] cikkekben jelentek meg.
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