Regular graphs are antimagic

Kristóf Bérczi*

Attila Bernáth[†]

Máté Vizer[‡]

May 1, 2015

Abstract

In this note we prove - with a slight modification of an argument of Cranston et al. [2] - that k-regular graphs are antimagic for $k \ge 2$.

1 Introduction

Throughout the note graphs are assumed to be simple. Given an undirected graph G = (V, E) and a subset of edges $F \subseteq E$, F(v) denotes the set of edges in F incident to node $v \in V$, and $d_F(v) := |F(v)|$ is the **degree** of v in F. A **labeling** is an injective function $f : E \to \{1, 2, \ldots, |E|\}$. Given a labeling f and a subset of edges F, let $f(F) = \sum_{e \in F} f(e)$. A labeling is **antimagic** if $f(E(u)) \neq f(E(v))$ for any pair of different nodes $u, v \in V$. A graph is said to be **antimagic** if it admits an antimagic labeling.

Hartsfield and Ringel conjectured [4] that all connected graphs on at least 3 nodes are antimagic. The conjecture has been verified for several classes of graphs (see e.g. [3]), but is widely open in general. In [2] Cranston et al. proved that every k-regular graph is antimagic if $k \ge 3$ is odd. Note that 1-regular graphs are trivially not antimagic. We have observed that a slight modification of their argument also works for even regular graphs, hence we prove the following.

Theorem 1. For $k \geq 2$, every k-regular graph is antimagic.

It is worth mentioning the following conjecture of Liang [5]. Let G = (S, T; E) be a bipartite graph. A path $P = \{uv, vw\}$ of length 2 with $u, w \in S$ is called an S-link.

Conjecture 2. Let G = (S,T; E) be a bipartite graph such that each node in S has degree at most 4 and each node in T has degree at most 3. Then G has a matching M and a family \mathcal{P} of node-disjoint S-links such that every node $v \in T$ of degree 3 is incident to an edge in $M \cup (\bigcup_{P \in \mathcal{P}} P)$.

Liang showed that if the conjecture holds then it implies that every 4-regular graph is antimagic. The starting point of our investigations was proving Conjecture 2. As Theorem 1 provides a more general result, we leave the proof of Conjecture 2 for a forthcoming paper [1].

2 Proof of Theorem 1

A trail in a graph G = (V, E) is an alternating sequence of nodes and edges $v_0, e_1, v_1, \ldots, e_t, v_t$ such that e_i is an edge connecting v_{i-1} and v_i for $i = 1, 2, \ldots, t$, and the edges are all distinct (but there might be repetitions among the nodes). The trail is **open** if $v_0 \neq v_t$, and **closed** otherwise. The **length** of a trail is the number of edges in it. A closed trail containing every edge of the graph is called an **Eulerian trail**. It is well known that a graph has an Eulerian trail if and only if it is connected and every node has even degree.

Lemma 3. Given a connected graph G = (V, E), let $T = \{v \in V : d_E(v) \text{ is odd}\}$. If $T \neq \emptyset$, then E can be partitioned into |T|/2 open trails.

Proof. Note that |T| is even. Arrange the nodes of T into pairs in an arbitrary manner and add a new edge between the members of every pair. Take an Eulerian trail of the resulting graph and delete the new edges to get the |T|/2 open trails.

^{*}MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Budapest, Hungary. E-mail: berkri@cs.elte.hu.

[†]MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Budapest, Hungary. E-mail: bernath@cs.elte.hu.

[‡]MTA Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary. Email: vizermate@gmail.com

The main advantage of Lemma 3 is that the edge set of the graph can be partitioned into open trails such that at most one trail starts at every node of V. Indeed, there is a trail starting at v if and only if v has odd degree in G. This is how we see the Helpful Lemma of [2].

Corollary 4 (Helpful Lemma of [2]). Given a bipartite graph G = (U, W; E) with no isolated nodes in U, E can be partitioned into subsets $E^{\sigma}, T_1, T_2, \ldots, T_l$ such that $d_{E^{\sigma}}(u) = 1$ for every $u \in U, T_i$ is an open trail for every $i = 1, 2, \ldots, l$, and the endpoints of T_i and T_j are different for every $i \neq j$.

Proof. Take an arbitrary $E' \subseteq E$ with the property $d_{E'}(u) = 1$ for every $u \in U$. A component of G - E' containing more than one node is called **nontrivial**. If there exists a nontrivial component of G - E' that only contains even degree nodes then let $uw_1 \in E - E'$ be an edge in this component with $u \in U$ and $w_1 \in W$, and let $uw_2 \in E'$. Replace uw_2 with uw_1 in E'. After this modification, the component of G - E' that contains u has an odd degree node, namely w_1 . Iterate this step until every nontrivial component of G - E' has some odd degree nodes. Let $E^{\sigma} = E'$ and apply Lemma 3 to get the decomposition of $E - E^{\sigma}$ into open trails.

In what follows we prove that regular graphs are antimagic: for sake of completeness we include the odd regular case, too. We emphasize the differences from the proof appearing in [2].

Proof of Theorem 1. Note that it suffices to prove the theorem for connected regular graphs. Let G = (V, E) be a connected k-regular graph and let $v^* \in V$ be an arbitrary node. Denote the set of nodes at distance exactly *i* from v^* by V_i and let *q* denote the largest distance from v^* . We denote the edge-set of $G[V_i]$ by E_i . Apply Corollary 4 to the induced bipartite graph $G[V_{i-1}, V_i]$ with $U = V_i$ to get E_i^{σ} and the trail decomposition of $G[V_{i-1}, V_i] - E_i^{\sigma}$ for every $i = 1, \ldots, q$. The edge set of $G[V_{i-1}, V_i] - E_i^{\sigma}$ is denoted by E'_i .

Now we define the antimagic labeling f of G as follows. We reserve the $|E_q|$ smallest labels for labeling E_q , the next $|E_q^{\sigma}|$ smallest labels for labeling $E_{q-1}|$ smallest labels for labeling E_{q-1} , etc. There is an important difference here between our approach and that of [2] as we switched the order of labeling E_i^{σ} and E_i' , and we don't yet define the labels, we only reserve the intervals to label the edge sets. Next we prove a claim that tells us how to label the edges in E_i' .

Claim 5. Assume that we have to label the edges of E'_i from interval $s, s + 1, \ldots, \ell$ (where $|E'_i| = \ell - s + 1$), and that we are given a trail decomposition of E'_i into open trails. We can label E'_i so that successive labels (in a trail) incident to a node $v_i \in V_i$ have sum at most $s + \ell$, and successive labels (in a trail) incident to a node $v_{i-1} \in V_{i-1}$ have sum at least $s + \ell$.

Proof. Our proof of this claim is essentially the same as the proof in [2]: we merely restate it for selfcontainedness. Let \mathcal{T} be the trail decomposition of E'_i into open trails. Take an arbitrary trail $T = u_0, e_1, u_1, \ldots, e_t, u_t$ of length t from \mathcal{T} and consider the following two cases (see Figure 1 for an illustration).

- Case A: If $u_0 \in V_{i-1}$ then label e_1, \ldots, e_t by $s, \ell, s+1, \ell-1, \ldots$ in this order. In this case the sum of 2 successive labels is $s+\ell$ at a node in V_i , and it is $s+\ell+1$ at a node in V_{i-1} .
- Case B: If $u_0 \in V_i$ then label e_1, \ldots, e_t by $\ell, s, \ell 1, s + 1, \ldots$ in this order. In this case the sum of 2 successive labels is $s + \ell 1$ at a node in V_i , and it is $s + \ell$ at a node in V_{i-1} .

We prove by induction on $|\mathcal{T}|$. The proof is finished by the following cases.

- 1. If \mathcal{T} contains a trail of even length, then let T be such a trail (and again t denotes the length of T). If the endpoints of T fall in V_{i-1} then apply Case A. On the other hand, if the endpoints of T fall in V_i then apply Case B. In both cases we use $\frac{t}{2}$ labels from the lower end of the interval, and $\frac{t}{2}$ labels from the upper end, therefore we can label the edges of the trails in $\mathcal{T} - T$ from the (remaining) interval $s + \frac{t}{2}, s + \frac{t}{2} + 1, \ldots, \ell - \frac{t}{2}$, so that the lower bound $s + \frac{t}{2} + \ell - \frac{t}{2} = s + \ell$ holds for the sum of two successive labels at every $v_{i-1} \in V_{i-1}$, and the same upper bound holds at each node $v_i \in V_i$.
- 2. Every trail in \mathcal{T} has odd length. If \mathcal{T} contains only one trail then label it using either of the two cases above and we are done. Otherwise let T_1 and T_2 be two trails from \mathcal{T} , and let t_i be the length of T_i for both i = 1, 2. Label first the edges of T_1 using Case A (starting at the endpoint of T_1 that lies in V_{i-1}). Note that the remaining labels form the interval $s + \frac{t_1+1}{2}, \ldots, \ell - \frac{t_1-1}{2}$. Next label the edges of T_2 using Case B (starting at the endpoint of T_2 that lies in V_i). Note that the sum of successive labels in the trail T_2 becomes $s + \frac{t_1+1}{2} + (\ell - \frac{t_1-1}{2}) - 1 = s + \ell$ at a node in V_i , and it is $s + \frac{t_1+1}{2} + (\ell - \frac{t_1-1}{2}) = s + \ell + 1$ at a node in V_{i-1} , which is fine for us. Finally, the remaining labels form the interval $s + \frac{t_1+1}{2} + \frac{t_2-1}{2}, \ldots, \ell - \frac{t_1-1}{2} - \frac{t_2+1}{2}$, therefore we can label the edges of the trails in $\mathcal{T} - \{T_1, T_2\}$ from the remaining interval so that the lower bound $s + \frac{t_1+1}{2} + \frac{t_2-1}{2} + \ell - \frac{t_1-2}{2} - \frac{t_2+1}{2} = s + \ell$ holds for the sum of two successive labels at every node of V_{i-1} , and the same upper bound holds at every node of V_i .

Figure 1: An illustration for labeling trails.

Now we specify how the labels are determined to make sure $f(E(u)) \neq f(E(v))$ for every $u \neq v$. We label the edges of every E_i arbitrarily from their dedicated intervals. Label the edges of every E'_i in the manner described by Claim 5. For any node $v \in V_i$ with i > 0, let $\sigma(v)$ denote the unique edge of E'_i incident to v. Let $p(v) = f(E(v)) - f(\sigma(v))$ for every $v \in V - v^*$. We label the edges in $E^{\sigma}_q, E^{\sigma}_{q-1}, \ldots, E^{\sigma}_1$ as in [2]: if we already labeled $E^{\sigma}_q, E^{\sigma}_{q-1}, \ldots, E^{\sigma}_{i+1}$ then $p(v_i)$ is already determined for every $v_i \in V_i$. So we order the nodes of V_i in an increasing order according to their p-value and assign the label to their σ edge in this order. This ensures that $f(E(u)) \neq f(E(v))$ for an arbitrary pair $u, v \in V_i$.

We have fully described the labeling procedure. This labeling scheme ensures that $f(E(v_i)) < f(E(v_j))$ if $v_i \in V_i, v_j \in V_j$ and $i \ge j + 2$ since G is regular and the edges in $E(v_j)$ get larger labels than those in $E(v_i)$. Similarly, $f(E(v^*)) > f(E(v))$ for every $v \in V - v^*$ for the same reason. It is only left is to show that $f(E(v_i)) \ne f(E(v_{i-1}))$ for arbitrary $v_i \in V_i, v_{i-1} \in V_{i-1}$ and $i \ge 2$.

Claim 6. For arbitrary $v_i \in V_i, v_{i-1} \in V_{i-1}$ and $i \ge 2$ we have

(i) $p(v_i) \leq \frac{k-2}{2}(s+\ell) + \ell$ and $p(v_{i-1}) \geq \frac{k-2}{2}(s+\ell) + s$, if k is even, and

(ii)
$$p(v_i) \leq \frac{k-1}{2}(s+\ell)$$
 and $p(v_{i-1}) \geq \frac{k-1}{2}(s+\ell)$, if k is odd.

Proof. Assume first that k is even. In this case p(v) is the sum of an odd number of labels. We pair up all but one of these labels using the trail decomposition of E'_i to get the bounds needed.

- 1. Take a node $v_i \in V_i$. Note that f(e) < s for every $e \in E(v_i) E'_i$. Let $t = d_{E'_i}(v_i)$.
 - (a) If t is even then $\sum_{e \in E'_i \cap E(v_i)} f(e) \le \frac{t}{2}(s+\ell)$ by Claim 5, giving $p(v_i) \le \frac{t}{2}(s+\ell) + (k-1-t)s \le \frac{k-2}{2}(s+\ell) + \ell$.
 - (b) If t is odd then $\sum_{e \in E'_i \cap E(v_i)} f(e) \le \frac{t-1}{2}(s+\ell) + \ell$ by Claim 5, giving $p(v_i) \le \frac{t-1}{2}(s+\ell) + \ell + (k-1-t)s \le \frac{k-2}{2}(s+\ell) + \ell$.
- 2. Now take a node $v_{i-1} \in V_{i-1}$. Note that $f(e) > \ell$ for every $e \in E(v_{i-1}) E'_i$. Let again $t = d_{E'_i}(v_{i-1})$.
 - (a) If t is even then $\sum_{e \in E'_i \cap E(v_{i-1})} f(e) \ge \frac{t}{2}(s+\ell)$ by Claim 5, giving $p(v_{i-1}) \ge \frac{t}{2}(s+\ell) + (k-1-t)\ell \ge \frac{k-2}{2}(s+\ell) + s$.
 - (b) If t is odd then $\sum_{e \in E'_i \cap E(v_{i-1})} f(e) \ge \frac{t-1}{2}(s+\ell) + s$ by Claim 5, giving $p(v_{i-1}) \ge \frac{t-1}{2}(s+\ell) + s + (k-1-t)\ell \ge \frac{k-2}{2}(s+\ell) + s$.

This concludes the proof of (i).

Although the proof of (ii) can be found in [2], we also present it here to make the paper self contained. The proof is very similar to the even case. So assume that k is odd. In this case p(v) is the sum of an even number of labels. We pair up these labels using the trail decomposition of E'_i to get the bounds needed.

- 1. Take a node $v_i \in V_i$. Note that f(e) < s for every $e \in E(v_i) E'_i$. Let $t = d_{E'_i}(v_i)$.
 - (a) If t is even then $\sum_{e \in E'_i \cap E(v_i)} f(e) \le \frac{t}{2}(s+\ell)$ by Claim 5, giving $p(v_i) \le \frac{t}{2}(s+\ell) + (k-1-t)s \le \frac{k-1}{2}(s+\ell)$.

- (b) If t is odd then $\sum_{e \in E'_i \cap E(v_i)} f(e) \le \frac{t-1}{2}(s+\ell) + \ell$ by Claim 5, giving $p(v_i) \le \frac{t-1}{2}(s+\ell) + \ell + (k-1-t)s \le \frac{k-1}{2}(s+\ell)$.
- 2. Now take a node $v_{i-1} \in V_{i-1}$. Note that $f(e) > \ell$ for every $e \in E(v_{i-1}) E'_i$. Let again $t = d_{E'_i}(v_{i-1})$.
 - (a) If t is even then $\sum_{e \in E'_i \cap E(v_{i-1})} f(e) \ge \frac{t}{2}(s+\ell)$ by Claim 5, giving $p(v_{i-1}) \ge \frac{t}{2}(s+\ell) + (k-1-t)\ell \ge \frac{k-1}{2}(s+\ell)$.
 - (b) If t is odd then $\sum_{e \in E'_i \cap E(v_{i-1})} f(e) \ge \frac{t-1}{2}(s+\ell) + s$ by Claim 5, giving $p(v_{i-1}) \ge \frac{t-1}{2}(s+\ell) + s + (k-1-t)\ell \ge \frac{k-1}{2}(s+\ell)$.

This concludes the proof of (ii), and we are done.

The assignment of the labels implies $f(\sigma(v_i)) < s$ and $f(\sigma(v_{i-1})) > \ell$ for $v_i \in V_i$ and $v_{i-1} \in V_{i-1}$. Claim 6 yields $f(E(v_i)) < f(E(v_{i-1}))$, finishing the proof of Theorem 1.

Remark 7. Observe that the proof of Theorem 1 does not really use the regularity of the graph, it merely relies on the fact that the degree of a node $v_i \in V_i$ is not smaller than that of a node $v_j \in V_j$ where i < j. Hence the following result immediately follows.

Theorem 8. Assume that a connected graph G = (V, E) ($|V| \ge 3$) has a node $v^* \in V$ of maximum degree such that $d_E(v_i) \ge d_E(v_j)$ whenever $v_i \in V_i, v_j \in V_j$ and i < j, where V_ℓ denotes the set of nodes at distance exactly ℓ from v^* . Then G is antimagic.

Acknowledgement

The first and the second authors were supported by the Hungarian Scientific Research Fund - OTKA, K109240. The third author would like to thank Zheijang Normal University, China - where he first heard about these problems - for their hospitality.

References

- [1] K. Bérczi, A. Bernáth, and M. Vizer. A note on v-free 2-matchings. Manuscript, 2015.
- [2] D. W. Cranston, Y.-C. Liang, and X. Zhu. Regular graphs of odd degree are antimagic. Journal of Graph Theory, 2014.
- [3] J. A. Gallian. A dynamic survey of graph labeling. The electronic journal of combinatorics, 16(6):1–219, 2009.
- [4] N. Hartsfield and G. Ringel. Pearls in graph theory. 1990.
- [5] Y.-C. Liang. Anti-magic labeling of graphs. PhD thesis, National Sun Yat-sen University, 2013.