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Abstract

In this paper, we study the problem of maximizing social welfare in combinatorial markets
through pricing schemes. We consider the existence of prices that are capable to achieve optimal
social welfare without a central tie-breaking coordinator. In the case of two buyers with rank
valuations, we give polynomial-time algorithms that always find such prices when one of the
matroids is a simple partition matroid or both matroids are strongly base orderable. This
result partially answers a question raised by Düetting and Végh in 2017. We further formalize a
weighted variant of the conjecture of Düetting and Végh, and show that the weighted variant can
be reduced to the unweighted one based on the weight-splitting theorem for weighted matroid
intersection by Frank. We also show that a similar reduction technique works for M♮-concave
functions, or equivalently, gross substitutes functions.

1 Introduction

In this paper, we study the problem of maximizing social welfare in combinatorial markets through
pricing schemes. Let us consider a combinatorial market consisting of indivisible goods and buyers,
where each buyer has a valuation function that describes the buyer’s preferences over the subsets
of items. The goal is to allocate the items to buyers in such a way that the social welfare, that is,
the total sum of the buyers’ values, is maximized. Such an allocation can be found efficiently under
reasonable assumptions on the valuations [32]. As an application of the Vickrey–Clarke–Groves
(VCG) mechanism [6, 21, 37] for welfare maximization, the VCG auction is another illustrious
example. However, the problem becomes much more intricate if the optimal welfare is ought to be
achieved using simpler mechanisms employed in real world markets, such as pricing.

In a pricing scheme, the seller sets the item prices, and the utility of a buyer for a given bundle
of items is defined as the value of the bundle with respect to the buyer’s valuation, minus the
total price of the items in the bundle. Ideally, the prices are set in such a way that there exists
an allocation of the items to buyers in which the market clears and everyone receives a bundle
that maximizes her utility. A pair of pricing and allocation possessing these properties is called
a Walrasian equilibrium1, while we will refer to the price vector itself as Walrasian pricing. The
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fundamental notion of Walrasian equilibrium first appeared in [38], and the definition immediately
implies that the allocation in a Walrasian equilibrium maximizes social welfare. Therefore, the
problem might seem to be settled for markets that admit such an equilibrium.

Cohen-Addad et al. [7] observed that Walrasian prices alone are not sufficient to coordinate the
market. The reason is that ties among different bundles have to be broken up carefully by a central
coordinator, in a manner consistent with the corresponding optimal allocation. However, in real
markets, buyers walk into the shop in an arbitrary sequential order and choose an arbitrary best
bundle for themselves without caring about social optimum. In their paper, it is shown that the
absence of a tie-braking rule may result in an arbitrary bad allocation.

To overcome these difficulties, Cohen-Addad et al. [7] introduced the notion of dynamic pricing
schemes. In this setting, the seller is allowed to dynamically update the prices between buyer
arrivals. Achieving optimal social welfare based on dynamic pricing would be clearly possible if the
order in which buyers arrive was known in advance. Nevertheless, determining an optimal dynamic
pricing scheme is highly non-trivial when the prices need to be set before getting access to the
preferences of the next buyer.

The main open problem in [7] asked whether any market with gross substitutes valuations has
a dynamic pricing scheme that achieves optimal social welfare. A market with gross substitutes
valuations is known to be an important class of markets having Walrasian prices [25]. It is worth
noting that the existence of an optimal scheme reduces to the existence of an appropriate initial
price vector; an optimal allocation then can be determined by induction. For a formal definition,
we refer the reader to [1].

As a starting step towards understanding the general case, Dütting and Végh [11] suggested to
look at matroid rank functions as valuations, because a matroid rank function is a fundamental
example of gross substitutes valuations. In particular, they proposed the following conjecture for
the case of two buyers.2 Here, a matroid with a ground set S and a base family B is denoted by
M = (S,B) and we denote p(X) :=

∑

s∈X p(s) for p : S → R and X ⊆ S.

Conjecture 1. Let M1 = (S,B1) and M2 = (S,B2) be matroids with a common ground set S such
that there exist disjoint bases B1 ∈ B1 and B2 ∈ B2 with B1∪B2 = S. Then, there exists a function
p : S → R (called a price vector) satisfying the following conditions.

1. For any B1 ∈ argminX∈B1
p(X), it holds that S \B1 ∈ B2.

2. For any B2 ∈ argminX∈B2
p(X), it holds that S \B2 ∈ B1.

The requirements in the conjecture can be interpreted as follows. There are two buyers and
each buyer i ∈ {1, 2} wants to buy a set of items that forms a basis in Bi. If buyer i comes to a
shop first, then she chooses a cheapest set Bi in Bi with an arbitrary tie-breaking rule. Regardless
of the choice of Bi, the remaining set S \Bi is a desired set for the other buyer.

Actually, Conjecture 1 resolves the existence of a static pricing scheme for a two-buyer market
with matroid rank valuations. That is, if Conjecture 1 is true, then the following conjecture is also
true. See Lemma 10 for the details.

Conjecture 2. Let M1 = (S,B1) and M2 = (S,B2) be matroids with rank functions r1 and r2,
respectively. Then, there exists a function p : S → R satisfying the following conditions.

2Dütting and Végh conjectured that the price vector p can be chosen to have all different values, that is, p(s1) 6=
p(s2) for s1 6= s2. This difference is not essential, because we can apply a perturbation to p without affecting the
requirements in Conjecture 1.
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1. For any B1 ∈ argmaxX⊆S(r1(X) − p(X)) and for any B2 ∈ argmaxY⊆S\B1
(r2(Y ) − p(Y )),

r1(B1) + r2(B2) = max{r1(X) + r2(Y ) | X,Y ⊆ S, X ∩ Y = ∅}.

2. For any B2 ∈ argmaxY⊆S(r2(Y ) − p(Y )) and for any B1 ∈ argmaxX⊆S\B2
(r1(X) − p(X)),

r1(B1) + r2(B2) = max{r1(X) + r2(Y ) | X,Y ⊆ S, X ∩ Y = ∅}.

In the conjecture, if buyer i comes to a shop first, then she chooses an arbitrary bundle Bi that
maximizes her utility ri−p, and the second buyer chooses a best bundle in S\Bi. The requirements
mean that any choice of Bi results in an allocation maximizing the social welfare. Thus, whoever
comes first, we can achieve the optimal social welfare.

Previous work The notion of Walrasian equilibrium dates back to 1874 [38], originally defined
for divisible goods. In their analysis of the matching problem, Kelso and Crawford [25] introduced
the so-called gross substitutes condition, and showed the existence of Walrasian prices for gross
substitutes valuations. Gul and Stacchetti [22] later verified that, in a sense, this condition is
necessary to ensure the existence of a Walrasian equilibrium.3

It was first observed by Cohen-Addad et al. [7] and Hsu et al. [23] that Walrasian prices are not
sufficient to control the market as ties must be broken in a coordinated fashion that is consistent
with maximizing social welfare. A natural idea for resolving this issue would be trying to find
Walrasian prices where ties do not occur. However, Hsu et al. showed that minimal Walrasian
prices always induce ties. Even more, Cohen-Addad et al. proved that no static prices can give
more than 2/3 of the social welfare when buyers arrive sequentially. As a workaround, they proposed
a dynamic pricing scheme for matching markets (i.e., unit-demand valuations), where the prices
are updated between buyer-arrivals based upon the current inventory without knowing the identity
of the next buyer. On the negative side, they presented a market with coverage valuations where
Walrasian prices do exist, but no dynamic pricing scheme can achieve the optimal social welfare.
Meanwhile, Hsu et al. showed that, under certain conditions, minimal Walrasian equilibrium prices
induce low over-demand and high welfare. Recently, Berger et al. [1] considered markets beyond
unit-demand valuations, and gave a characterization of all optimal allocations in multi-demand
markets. Based on this, they provided a polynomial-time algorithm for finding optimal dynamic
prices up to three multi-demand buyers.

To overcome the limitations of Walrasian equilibrium, Feldman et al. [16] proposed a relaxation
called combinatorial Walrasian equilibrium in which the seller can partition the items into indivisible
bundles prior to sale, and they provided an algorithm that determines bundle prices obtaining at
least half of the optimal social welfare.

Another line of research concentrated on posted-price mechanisms in online settings. As alter-
natives to optimal auctions, Blumrosen and Holenstein [2] studied posted-price mechanisms and
dynamic auctions in Bayesian settings under the objective of maximizing revenue. They gave a
characterization of the optimal revenue for general distributions, and provided algorithms that
achieve the optimal solution. Chawla et al. [3, 4] developed a theory of sequential posted-price
mechanisms, and provided constant-factor approximation algorithms for several multi-dimensional
multi-unit auction problems and generalizations to matroid feasibility constraints. In [15], Feld-
man et el. verified the existence of prices that, in expectation, achieve at least half of the optimal

3The simplest example of gross substitutes valuations are unit demand preferences, when each agent can enjoy
at most one item. Gul and Stacchetti showed that gross substitutes preferences form the largest set containing unit
demand preferences for which an existence theorem can be obtained.
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social welfare for fractionally subadditive valuations, a class that includes all submodular func-
tions. Dütting et al. [9,10] provided a general framework for posted-price mechanisms in Bayesian
settings. Chawla et al. [5] showed that static, anonymous bundle pricing mechanisms are useful
when buyers’ preferences have complementarities. Ezra et al. [14] provided upper and lower bounds
on the largest fraction of the optimal social welfare that can be guaranteed with static prices for
several classes of valuations, such as submodular, XOS, or subadditive. A setting related to online
bipartite matching, called the Max-Min Greedy matching, was considered in [12].

Our results In the present paper, we concentrate on combinatorial markets with two buyers
having matroid rank valuations, where the matroid corresponding to buyer i is denoted by Mi =
(S,Bi) for i = 1, 2. Since this setting is reduced to Conjecture 1, in which each buyer has to buy a
set of items that forms a basis of a matroid, we focus on Conjecture 1.

While Conjecture 1 remains open in general, we give polynomial-time4 algorithms for two
important special cases. In the first one, one of the matroids is a partition matorid. Although
partition matroids have relatively simple structure, finding the proper price vector p is non-trivial
even in this seemingly simple case.

Theorem 1. Let M1 be a partition matroid with partition classes of size at most 2 and with all-
ones upper bound on the partition classes, and let M2 be an arbitrary matroid. Then Conjectures 1
and 2 hold, and a price vector p satisfying the conditions can be computed in polynomial time.

Next we consider strongly base orderable matroids, a class of matroids with distinctive structural
properties. Roughly, in a strongly base orderable matroid, for any pair of bases, there exists a
bijection between them satisfying a certain property (see Section 2 for the formal definition). Note
that various matroids appearing in combinatorial and graph optimization problems belong to this
class, such as partition, laminar, transversal matroids, or more generally, gammoids.

Theorem 2. If both M1 and M2 are strongly base orderable, then Conjectures 1 and 2 hold.
Furthermore, a price vector p satisfying the conditions can be computed in polynomial time if, for
any pair of bases, the bijection between them can be computed in polynomial time.

Another contribution of this paper is to show the equivalence between Conjecture 1 and its
weighted counterpart as below.

Conjecture 3. For i ∈ {1, 2}, let Mi = (S,Bi) be a matroid and wi : S → R be a weight function.
Assume that there exist disjoint bases B1 ∈ B1 and B2 ∈ B2 with B1 ∪ B2 = S. Then, there exists
a function p : S → R satisfying the following conditions.

1. For any B1 ∈ argmaxX∈B1
(w1(X)−p(X)), we have that B1 is a maximizer of w1(X)+w2(S\

X) subject to X ∈ B1 and S \X ∈ B2.

2. For any B2 ∈ argmaxX∈B2
(w2(X) − p(X)), we have that B2 is a maximizer of w1(S \X) +

w2(X) subject to S \X ∈ B1 and X ∈ B2.

Clearly, Conjecture 1 is a special case of Conjecture 3; this follows easily by setting w1 ≡ w2 ≡ 0.
Somewhat surprisingly, the reverse implication also holds for arbitrary matroids.

4In matroid algorithms, it is usually assumed that the matroids are accessed through independence oracles, and
the complexity of an algorithm is measured by the number of oracle calls and other conventional elementary steps.
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Theorem 3. If Conjecture 1 is true, then Conjecture 3 is also true.

More generally, we prove that Theorem 3 can be generalized to the case with gross substitutes
valuations, i.e., M♮-concave functions. See Theorem 19 in Section 6 for the details.

Based on Theorem 3 and the properties of partition and strongly base orderable matroids, we
have the following corollaries.

Corollary 4. Let M1 be a partition matroid with partition classes of size at most 2 and with all-
ones upper bound on the partition classes, and let M2 be an arbitrary matroid. Then Conjecture 3
holds, and a price vector p satisfying the conditions can be computed in polynomial time.

Corollary 5. If both M1 and M2 are strongly base orderable, then Conjecture 3 holds. Furthermore,
a price vector p satisfying the conditions can be computed in polynomial time if, for any pair of
bases, the bijection between them can be computed in polynomial time.

Paper organization The rest of the paper is organized as follows. Basic definitions and notation
are given in Section 2. Theorems 1 and 2 are proved in Sections 3 and 4, respectively. The
connection between unweighted and weighted variants of the problem is discussed in Section 5.
The reduction technique is extended to gross substitutes valuations in Section 6. We conclude the
paper in Section 7.

2 Preliminaries

Basic notation The sets of reals, non-negative reals, integers, and non-negative integers are
denoted by R, R+, Z, and Z+, respectively. Let S be a finite set. Given a subset B ⊆ S and
elements x, y ∈ S, we write B − x+ y for short to denote the set (B \ {x}) ∪ {y}. The symmetric
difference of two sets X and Y is X△Y := (X \ Y ) ∪ (Y \X). For a function f : S → R, we use
f(X) :=

∑

x∈X f(x). For two vectors x, y ∈ R
S, we denote x · y :=

∑

s∈S x(s)y(s).

Matroids and matroid intersection Matroids were introduced as an abstract generalization
of linear independence in vector spaces [33,39]. A matroid M is a pair (S,I) where S is the ground
set of the matroid and I ⊆ 2S is the family of independent sets satisfying the independence axioms:
(I1) ∅ ∈ I, (I2) X ⊆ Y ∈ I ⇒ X ∈ I, and (I3) X,Y ∈ I, |X| < |Y | ⇒ ∃e ∈ Y \X s.t. X + e ∈
I. A loop is an element that is non-independent on its own. The rank of a set X ⊆ S is the
maximum size of an independent set contained in X, and is denoted by r(X). Here r is called
the rank function of M . Maximal independent sets of M are called bases and their set is denoted
by B. Alternatively, matroids can be defined through the basis axioms: (B1) B 6= ∅, and (B2)
B1, B2 ∈ B, x ∈ B1 \B2 ⇒ ∃y ∈ B2 \ B1 s.t. B1 − x + y ∈ B. In this paper, a matroid is denoted
by a pair (S,B), where S is a ground set and B is a base family.

For a matroid M = (S,B) and for T ⊆ S, deleting T gives a matroid M ′ on the ground set
S \ T such that a subset of S \ T is independent in M ′ if and only if it is independent in M .
For T ⊆ S, contracting T gives a matroid M ′ on the ground set S \ T whose rank function is
r′(X) = r(X ∪ T )− r(T ), where r is the rank function of M . Adding a parallel copy of an element
s ∈ S gives a new matroid M ′ = (S′,B′) on ground set S′ = S+s′ where B′ = {X ⊆ S′ : either X ∈
B, or s /∈ X, s′ ∈ X and X − s′ + s ∈ B}. The direct sum M1 ⊕M2 of matroids M1 = (S1,B1)
and M2 = (S2,B2) on disjoint ground sets is a matroid M = (S1 ∪ S2,B) whose bases are the
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disjoint unions of a basis M1 and a basis of M2. The sum or union M1 + M2 of M1 = (S,B1)
and M2 = (S,B2) on the same ground set is a matroid M = (S,B) whose independent sets are the
disjoint unions of an independent set of M1 and an independent set of M2.

For a basis B ∈ B, let us consider the bipartite graph G = (S,E[B]) defined by E[B] :=
{(x, y) | x ∈ B, y ∈ S \ B, B − x + y ∈ B}. Krogdahl [26, 27, 28] verified the following statement
(see also [35, Theorem 39.13]).

Theorem 6 (Krogdahl). Let M = (S,B) be a matroid and let B ∈ B. Let B′ ⊆ S be such that
|B| = |B′| and E[B] contains a unique perfect matching on B△B′. Then B′ ∈ B.

In the weighted matroid intersection problem, we are given two matroids M1 = (S,B1) and
M2 = (S,B2) on the same ground set together with a weight function w : S → R, and the
goal is to find a common basis maximizing w(B), that is, B ∈ argmax{w(B) | B ∈ B1 ∩ B2}. The
celebrated weight-splitting theorem of Frank [17] gives a min-max relation for the weighted matroid
intersection.

Theorem 7 (Frank). The maximum w-weight of a common basis of M1 = (S,B1) and M2 = (S,B2)
is equal to the minimum of max{w1(B) | B ∈ B1}+max{w2(B) | B ∈ B2} subject to w = w1 +w2.
In particular, for an optimal weight-splitting w = w1 + w2, it holds that argmax{w(B) | B ∈
B1 ∩ B2} = argmax{w1(B) | B ∈ B1} ∩ argmax{w2(B) | B ∈ B2}.

A k-uniform matroid is a matroid M = (S,B) where B = {X ⊆ S | |X| = k} for some
k ∈ Z+. A partition matroid M = (S,B) is the direct sum of uniform matroids, or in other words,
B = {X ⊆ S | |X∩Si| = ki for i = 1, . . . , q} for some partition S = S1∪· · ·∪Sq of S and ki ∈ Z+ for
i = 1, . . . , q. Each Si is called a partition class. In the paper, we will work with partition matroids
satisfying |Si| ≤ 2 and ki = 1 for i = 1, . . . , q.

For further details on matroids and the matroid intersection problem, we refer the reader to
[34,35].

Dual matroids The dual of a matroid M = (S,B) is the matroid M∗ = (S,B∗) where B∗ =
{B∗ ⊆ S | S\B∗ ∈ B}. Given one of the standard oracles for M , the same oracle can be constructed
for M∗ as well.

We now rephrase Conjecture 1 by using dual matroids. Suppose thatM1 andM2 are matroids as
in Conjecture 1 and let M∗

2 = (S,B∗2) be the dual matroid of M2. Then, we can see that S \B1 ∈ B2
is equivalent to B1 ∈ B

∗
2, and B2 ∈ argminX∈B2

p(X) is equivalent to S \B2 ∈ argmaxX∈B∗
2
p(X).

Therefore, by replacing M2 and S \B2 with M∗
2 and B2, respectively, Conjecture 1 is equivalent to

the following conjecture.

Conjecture 4. Let M1 = (S,B1) and M2 = (S,B2) be matroids with a common ground set S such
that there exists a common basis B ∈ B1 ∩ B2. Then, there exists a function p : S → R satisfying
the following conditions.

1. For any B1 ∈ argminX∈B1
p(X), it holds that B1 ∈ B2.

2. For any B2 ∈ argmaxX∈B2
p(X), it holds that B2 ∈ B1.

Conjecture 4 bears a lot of similarities with the problem of packing common bases in the
intersection of two matroids. If M1 and M2 share two disjoint common bases then setting the
prices low on one of them and high on the other gives a desired p. If S can be partitioned into
two disjoint bases in both M1 and M2, then the statement may be reminiscent of Rota’s famous
conjecture concerning rearrangements of bases [24].
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Strongly base orderable matroids A matroid M = (S,B) is strongly base orderable if for any
two bases B1, B2 ∈ B, there exists a bijection f : B1 → B2 such that (B1 \ X) ∪ f(X) ∈ B for
any X ⊆ B1, where we denote f(X) := {f(e) | e ∈ X}. Davies and McDiarmid [8] observed the
following (see also [35, Theorem 42.13]).

Theorem 8 (Davies and McDiarmid). Let M1 = (S,B1) and M2 = (S,B2) be strongly base or-
derable matroids. If X ⊆ S can be partitioned into k bases in both M1 and M2, then X can be
partitioned into k common bases. Furthermore, such k common bases can be computed in polynomial
time if the bijection f can be computed in polynomial time for any pair of bases.

The following technical lemma about strongly base orderable matroids will be used in the proof
of Corollary 5.

Lemma 9. Let M = (S,B) be a strongly base orderable matroid, q : S → R be a function, and
define a matroid M̂ = (S, B̂) by B̂ = argmaxX∈B q(X). Then M̂ is strongly base orderable.

Proof. Let B1, B2 ∈ B̂. Since both B1 and B2 are bases of M = (S,B), there exists a bijection
f : B1 → B2 such that (B1 \X) ∪ f(X) ∈ B for any X ⊆ B1. Since q(B1) ≥ q((B1 \X) ∪ f(X))
for any X ⊆ B1 by B1 ∈ B̂, it holds that q(X) ≥ q(f(X)). In particular, q(x) ≥ q(f(x)) for any
x ∈ B1. Since B2 ∈ B̂, we obtain q(B1) = q(B2) = q(f(B1)), which shows that q(x) = q(f(x)) for
any x ∈ B1. Therefore, q(B1) = q((B1\X)∪f(X)) for any X ⊆ B1, and hence (B1\X)∪f(X) ∈ B̂.
This shows that M̂ is strongly base orderable.

Market model In a combinatorial market, we are given a set S of indivisible items and a set
J of buyers. Each buyer i ∈ J has a valuation function vi : 2

S → R that describes the buyer’s
preferences over the subsets of items. Given prices p : S → R, the utility of buyer i ∈ J for a subset
X ⊆ S is defined by ui(X) = vi(X) − p(X). The buyers arrive in an undetermined order, and the
next buyer always picks a subset of items that maximizes her utility. The goal is to set the prices
in such a way that no matter which buyer arrives next, the final allocation of items maximizes
the social welfare. In a dynamic pricing scheme, the prices can be updated between buyer arrivals
based on the remaining sets of items and buyers.

We focus on the case of two buyers with matroid rank functions as valuations. Let M1 = (S,B1)
and M2 = (S,B2) be matroids with rank functions r1 and r2, respectively. The valuation of agent
i is ri for i = 1, 2. The valuations are accessed through one of the standard matroid oracles (e.g.
independence or rank oracle). As described in the introduction, this setting can be reduced to the
case in which each buyer always chooses a basis that maximizes her utility, that is, Conjecture 2
can be reduced to Conjecture 1.

Lemma 10. If Conjecture 1 is true, then Conjecture 2 is also true.

Proof. Let M1 = (S,B1) and M2 = (S,B2) be matroids as in Conjecture 2 and let B̂1 ∈ B1 and
B̂2 ∈ B2 be a pair of bases that maximizes |B̂1∪ B̂2|. For i ∈ {1, 2}, let M

′
i be the matroid obtained

from Mi by deleting S \ (B̂1∪ B̂2) and contracting B̂1∩ B̂2. Then, M
′
1 = (S′,B′1) and M ′

2 = (S′,B′2)
are matroids with a common ground set S′ := (B̂1 ∪ B̂2) \ (B̂1 ∩ B̂2) such that there exist disjoint
bases B̂1 \ B̂2 ∈ B

′
1 and B̂2 \ B̂1 ∈ B

′
2 whose union is S′. Hence, by assuming that Conjecture 1 is

true, there exists a price vector p′ : S′ → R with the following conditions.

1. For any B′
1 ∈ argminX∈B′

1
p′(X), it holds that S′ \B′

1 ∈ B
′
2.
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2. For any B′
2 ∈ argminX∈B′

2
p′(X), it holds that S′ \B′

2 ∈ B
′
1.

We observe that we can modify the price vector p′ so that 0 < p′(s) < 1 for every s ∈ S′, by
replacing p′(s) with α · p′(s) + β for some α > 0 and β ∈ R. By using such a function p′, define
p : S → R by

p(s) =











p′(s) if s ∈ S′,

0 if s ∈ B̂1 ∩ B̂2,

1 if s ∈ S \ (B̂1 ∪ B̂2).

For B1 ∈ argmaxX⊆S(r1(X) − p(X)), the definition of p shows that B1 = B′
1 ∪ (B̂1 ∩ B̂2)

for some B′
1 ∈ argminX∈B′

1
p′(X). Since this implies S′ \ B′

1 ∈ B
′
2, it holds that S′ \ B′

1 is

a maximal independent set of M1 in S \ B1 by the maximality of |B̂1 ∪ B̂2|. Therefore, if
B2 ∈ argmaxY⊆S\B1

(r2(Y )− p(Y )), then B2 = S′ \B′
1 and hence

r1(B1) + r2(B2) = |B
′
1|+ |B̂1 ∩ B̂2|+ |S

′ \B′
1| = |B̂1 ∪ B̂2|

= max{r1(X) + r2(Y ) | X,Y ⊆ S, X ∩ Y = ∅},

which shows the first requirement of Conjecture 2. The same argument works forB2 ∈ argmaxX⊆S(r2(X)−
p(X)). Therefore, p satisfies the requirements in Conjecture 2.

Note that a pair of bases B̂1 ∈ B1 and B̂2 ∈ B2 maximizing |B̂1 ∪ B̂2| can be computed in
polynomial time by applying a matroid intersection algorithm to M1 and M∗

2 . Note also that the
price vector p obtained in the above proof is not necessarily a Walrasian price.

We can consider a weighted variant of Conjecture 1 in which we are given weight functions
w1 : S → R and w2 : S → R. For a buyer i ∈ {1, 2} and for a basis X ∈ Bi, the valuation vi(X) is
defined as wi(X). Each buyer chooses a basis that maximizes her utility. Note that choosing a basis
is a hard constraint, and hence we do not have to define vi(X) for X 6∈ Bi. The goal is to find a price
vector p that achieves the optimal social welfare max{w1(X) + w2(S \X) | X ∈ B1, S \X ∈ B2}.

Recently, Berger et al. [1] investigated the existence of optimal dynamic pricing schemes for
k-demand valuations. A valuation v : 2S → R+ is k-demand if v(X) = max{

∑

s∈Z v(s) | Z ⊆
X, |Z| ≤ k}. Although this setting is similar to our weighted variant for k-uniform matroids, our
results do not directly generalize their work because of our assumption on the buyers’ choices.

3 Partition matroids

The aim of this section is to prove the existence of a required price vector p for instances where M1

is a partition matroid of special type.

Theorem 1. Let M1 be a partition matroid with partition classes of size at most 2 and with all-
ones upper bound on the partition classes, and let M2 be an arbitrary matroid. Then Conjectures 1
and 2 hold, and a price vector p satisfying the conditions can be computed in polynomial time.

Proof. Since Conjectures 1 and 4 are equivalent by replacing M2 with its dual M∗
2 , we show Con-

jecture 4. Let M1 = (S,B1) be a partition matroid defined by partition S = S1 ∪ · · · ∪ Sq where
|Si| ≤ 2 for i = 1, . . . , q, that is, B1 = {X ⊆ S | |X ∩ Si| = 1 for i = 1, . . . , q}. Let M2 = (S,B2) be
an arbitrary matroid such that M1 and M2 have a common basis.
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Let B1 ∈ B1 ∩ B2 be an arbitrary common basis. Take another common basis B2 ∈ B1 ∩ B2
(possibly B2 = B1) such that |B1 ∩B2| is minimized. We consider a bipartite digraph D = (V,E)
defined by

V = (B1 ∩B2) ∪ (S \ (B1 ∪B2)),

E = {(x, y) | x ∈ B1 ∩B2, y ∈ S \ (B1 ∪B2), B1 − x+ y ∈ B1} (1)

∪ {(y, x) | x ∈ B1 ∩B2, y ∈ S \ (B1 ∪B2), B2 − x+ y ∈ B2}.

Claim 11. The digraph D is acyclic.

Proof. Let x ∈ B1 ∩B2 and y ∈ S \ (B1 ∪B2). As M1 is defined on a partition consisting of classes
of size at most 2, B − x + y ∈ B1 implies that {x, y} is one of the partition classes. This implies
that B1 − x+ y ∈ B1 if and only if B2 + x− y ∈ B1.

Now suppose to the contrary that D contains a dicycle. Choose a dicycle C with the smallest
number of vertices, which implies that C has no chord. Then, B′

2 := B2△V (C) is a common
basis of M1 and M2 by the above observation and Theorem 6. Since |B1 ∩ B′

2| < |B1 ∩ B2|, this
contradicts that |B1 ∩B2| is minimized.

Let n = |S|. We now consider a function p : S → R satisfying the following: p(x) := 0 for
x ∈ B1 \B2, p(x) := n+ 1 for x ∈ B2 \B1, p(x) are distinct values in {1, 2, . . . , n} for x ∈ V , and
p(x) < p(y) for (x, y) ∈ E. Note that such a function exists by Claim 11, which can be found easily
by the topological sorting. In what follows, we show that p satisfies that argminX∈B1

p(X) = {B1}
and argmaxX∈B2

p(X) = {B2}.

Claim 12. argminX∈B1
p(X) = {B1} and argmaxX∈B2

p(X) = {B2}.

Proof. For a non-negative integer k, let Sk := {x ∈ S | p(x) ≤ k} and let Ik be a minimizer of p(X)
subject to X being a maximal independent set of M1 and X ⊆ Sk. Note that Ik can be computed
by a greedy algorithm. Since Sn contains a basis B1, the greedy algorithm chooses no element
in B2 \ B1, which means that Ik ∩ (B2 \ B1) = ∅ for every k. We also note that Ik is uniquely
determined for each k, since p(x)’s are distinct for x ∈ V .

We show that Ik = B1 ∩Sk for every k by induction on k. Since I0 = B1 \B2, it is obvious that
I0 = B1 ∩ S0. Fix k ≥ 1 and assume that Ik−1 = B1 ∩ Sk−1. Then, we have the following.

• If there exists x ∈ B1 ∩B2 with p(x) = k, then Ik = Ik−1 + x, and hence Ik = B1 ∩ Sk.

• Suppose that there exists y ∈ S \ (B1 ∪ B2) with p(y) = k. We show that Ik−1 + y is not
independent in M1. Suppose to the contrary that Ik−1+ y is independent. Then, there exists
x ∈ B1 \ Ik−1 such that B1 − x+ y ∈ B1, and hence (x, y) ∈ E. By the choice of p, we obtain
p(x) < p(y), i.e., x ∈ Sk−1. This contradicts x ∈ B1 \ Ik−1, because Sk−1 ∩ (B1 \ Ik−1) = ∅
by the induction hypothesis. Therefore, Ik−1+ y is not independent in M1, which shows that
Ik = Ik−1 and Ik = B1 ∩ Sk.

• If there exists no x ∈ V with p(x) = k, then Ik = Ik−1, and hence Ik = B1 ∩ Sk.

Therefore, Ik = B1 ∩ Sk holds for every k by induction. This shows that In+1 = B1 ∩ Sn+1 = B1,
and hence argminX∈B1

p(X) = {In+1} = {B1}.
By a similar argument, we obtain argmaxX∈B2

p(X) = {B2}.
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Since B1, B2 ∈ B1∩B2, this claim shows that p satisfies the requirements in Conjecture 4. Thus,
Conjecture 4 holds, and hence Conjecture 1 also holds.

This together with Lemma 10 shows that Conjecture 2 also holds. Note that, in the proof
of Lemma 10, we modify given matroids by deleting and contracting some elements, but this
modification does not affect the assumption on M1. That is, if M1 is a partition matroid with
partition classes of size at most 2 and with all-ones upper bound on the partition classes, then the
obtained matroid M ′

1 is also a partition matroid of this type.

Remark 13. Note that in the proof of Theorem 1, we fixed the basis B1 ∈ B1 arbitrarily. That
is, for any B1 ∈ B1, the optimal price vector p can be set in such a way that the maximum utility
of the buyer corresponding to M1 is attained on B1. It is not difficult to see that the analogous
statement holds for any basis B2 ∈ B2.

Remark 14. Even when B1 is a base family of a partition matroid as in Theorem 1, if B2 is an
arbitrary set family of S, then the requirements in Conjecture 1 do not necessarily hold. To see this,
suppose that S = {1, 2, 3, 4}, B1 = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, and B2 = {{2, 4}, {1, 2}, {3, 4}}.
Then, (B1, B2) = ({1, 3}, {2, 4}) is a unique pair of disjoint sets such that B1 ∈ B1, B2 ∈ B2, and
B1 ∪B2 = S. If p satisfies the requirements in Conjecture 1, then p(1) < p(2) and p(3) < p(4) hold
by the first requirement and p(4) < p(1) and p(2) < p(3) hold by the second requirement. This
shows that such p does not exist.

4 Strongly base orderable matroids

In this section, we show that Conjectures 1 and 2 hold for strongly base orderable matroids. The
proof is based on a similar approach to that of Theorem 1. Nevertheless, there are small but crucial
differences.

Theorem 2. If both M1 and M2 are strongly base orderable, then Conjectures 1 and 2 hold.
Furthermore, a price vector p satisfying the conditions can be computed in polynomial time if, for
any pair of bases, the bijection between them can be computed in polynomial time.

Proof. In order to show Conjecture 1, we first show Conjecture 4 under the assumption that M1

and M2 are strongly base orderable. Let M1 = (S,B1) and M2 = (S,B2) be strongly base orderable
matroids that have a common basis. We take two common bases B1, B2 ∈ B1 ∩ B2 (possibly
B1 = B2) such that |B1 ∩B2| is minimized. For each element x ∈ S, we add a parallel copy x′ of x
to the matroid Mi and denote the matroid thus obtained by M+

i = (S ∪ S′,B+i ) for i ∈ {1, 2}. We
denote X ′ := {x′ | x ∈ X} for X ⊆ S. Let 2M+

i = (S∪S′, 2B+i ) be the sum of two copies of M+

i . As
M+

i clearly has two disjoint bases, we have 2B+i := {Y1 ∪Y2 | Y1 and Y2 are disjoint bases of M+

i }.

Claim 15. For i ∈ {1, 2}, 2M+

i is a strongly base orderable matroid.

Proof. Fix i ∈ {1, 2}. We can easily see that M+

i is strongly base orderable. Suppose that we are
given two bases X1,X2 ∈ 2B+i , and suppose also that X1 = Y 1

1 ∪ Y 2
1 and X2 = Y 1

2 ∪ Y 2
2 , where

Y 1
1 , Y

2
1 , Y

1
2 , Y

2
2 ∈ B

+

i . Since M+

i is strongly base orderable, for j ∈ {1, 2}, there exists a bijection

fj : Y
j
1
→ Y j

2
such that (Y j

1
\X) ∪ fj(X) ∈ B+i for any X ⊆ Y j

1
. Then, f1 and f2 naturally define

a bijection f : X1 → X2 such that (X1 \X) ∪ f(X) ∈ 2B+i for any X ⊆ X1. This shows that 2M
+

i

is strongly base orderable.
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Let X0 := (B1 ∪B2)∪ (B1 ∩B2)
′. Then, X0 is a common basis of 2M+

1
and 2M+

2
. We consider

a bipartite digraph D+ = (V,E+) defined by

V = (B1 ∩B2) ∪ (S \ (B1 ∪B2)),

E+ = {(x, y) | x ∈ B1 ∩B2, y ∈ S \ (B1 ∪B2), X0 − x+ y ∈ 2B+
1
}

∪ {(y, x) | x ∈ B1 ∩B2, y ∈ S \ (B1 ∪B2), X0 − x+ y ∈ 2B+
2
}.

Claim 16. The digraph D+ is acyclic.

Proof. Suppose to the contrary that D+ contains a dicycle. Choose a dicycle C with the smallest
number of vertices, which implies that C has no chord. Then, X0△V (C) is a common basis of
2M+

1
and 2M+

2
by Theorem 6. By Theorem 8 and Claim 15, X0△V (C) can be partitioned into two

common bases of M+
1

and M+
2
. Let B̃1 and B̃2 be the sets in S corresponding to these common

bases. Then, B̃1, B̃2 ∈ B1 ∩ B2 and |B̃1 ∩ B̃2| < |B1 ∩ B2|. This contradicts that |B1 ∩ B2| is
minimized.

We now consider the digraph D = (V,E) defined by (1). For x ∈ B1∩B2 and y ∈ S \ (B1∪B2),
we observe that B1−x+y ∈ B1 impliesX0−x+y ∈ 2B+

1
andB2−x+y ∈ B2 impliesX0−x+y ∈ 2B+

2
.

This shows that D is a subgraph of D+, and hence D is acyclic by Claim 16. Therefore, we can
find a function p : S → R such that p(x) := 0 for x ∈ B1 \ B2, p(x) := |S| + 1 for x ∈ B2 \ B1,
p(x) are distinct values in {1, 2, . . . , |S|} for x ∈ V , and p(x) < p(y) for (x, y) ∈ E. Then, Claim 12
shows that argminX∈B1

p(X) = {B1} and argmaxX∈B2
p(X) = {B2}. Since B1, B2 ∈ B1 ∩ B2, p

satisfies the requirements in Conjecture 4. Thus, Conjecture 4 holds.
This proof can be converted to a polynomial-time algorithm for computing p as follows. We

first pick up two arbitrary common bases B1, B2 ∈ B1 ∩ B2 and construct a digraph D+ as above.
If D+ is acyclic, then we can find an appropriate function p. Otherwise, the proof of Claim 16
shows that we can find B̃1, B̃2 ∈ B1 ∩B2 with |B̃1 ∩ B̃2| < |B1 ∩B2|. Then, we update Bi ← B̃i for
i ∈ {1, 2}, construct D+, and repeat this procedure. Since |B1 ∩B2| decreases monotonically, this
procedure is executed at most |S| times.

Recall that Conjectures 1 and 4 are equivalent by replacing M2 with M∗
2 . Since M2 is strongly

base orderable if and only if M∗
2 is strongly base orderable, Conjecture 1 also holds for strongly

base orderable matroids.
This together with Lemma 10 shows that Conjecture 2 also holds. We note that, if M1 and

M2 are strongly base orderbale matroids, then the matroids M ′
1 and M ′

2 obtained by deletion and
contraction in the proof of Lemma 10 are also strongly base orderable.

Finally in this section, we show an application of Theorem 2 to bipartite matching, which is of
independent interest. For a vertex v in a graph, let δ(v) denote the set of all the edges incident to
v.

Corollary 17. For a bipartite graph G = (U, V ;E) containing a perfect matching, there exists a
weight function w : E → R satisfying the following conditions.

1. For each u ∈ U , let eu be a lightest edge in δ(u) with respect to w. Then, {eu | u ∈ U} is a
perfect matching in G.

2. For each v ∈ V , let ev be a heaviest edge in δ(v) with respect to w. Then, {ev | v ∈ V } is a
perfect matching in G.
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Proof. Let B1 = {F ⊆ E | |F ∩ δ(u)| = 1 for any u ∈ U} and B2 = {F ⊆ E | |F ∩ δ(v)| =
1 for any v ∈ V }. By definition, (E,B1) and (E,B2) are partition matroids, and hence they are
strongly base orderable matroids. Since Conjecture 4 holds for strongly base orderable matroids
and B1 ∩ B2 is the set of perfect matchings in G, we obtain the corollary.

5 Reduction from the weighted case to the unweighted case

In this section, we show that the weighted problem can be reduced to the unweighted one, and
prove Theorem 3.

Theorem 3. If Conjecture 1 is true, then Conjecture 3 is also true.

Proof. Since Conjectures 1 and 4 are equivalent, it suffices to show that Conjecture 3 is true by
assuming that Conjecture 4 is true.

Suppose that we are given Mi = (S,Bi) and wi : S → R for i ∈ {1, 2} as in Conjecture 3. We
first consider the problem of finding a maximum weight common basis of M1 and M∗

2 with respect
to w1−w2, where M

∗
2 = (S,B∗2) is the dual matroid of M2. By Theorem 7, there exist two functions

q1 : S → R and q2 : S → R with q1 + q2 = w1 − w2 such that

argmax
X∈B1∩B∗

2

(w1(X)− w2(X)) =

(

argmax
X∈B1

q1(X)

)

∩

(

argmax
X∈B∗

2

q2(X)

)

. (2)

Define B̂1 = argmaxX∈B1
q1(X) and B̂2 = argmaxX∈B∗

2
q2(X). Then, it is known that M̂i =

(S, B̂i) is also a matroid for i ∈ {1, 2} (see [13]). By (2), we obtain

argmax
X∈B1∩B∗

2

(w1(X)− w2(X)) = B̂1 ∩ B̂2. (3)

This together with B1∩B
∗
2 6= ∅ shows that B̂1∩B̂2 6= ∅, and hence M̂1 and M̂2 satisfy the assumptions

in Conjecture 4. Therefore, by assuming that Conjecture 4 is true, there exists a function p̂ : S → R

satisfying the following conditions.

(a) For any B1 ∈ argmin
X∈B̂1

p̂(X), it holds that B1 ∈ B̂2.

(b) For any B2 ∈ argmax
X∈B̂2

p̂(X), it holds that B2 ∈ B̂1.

Let δ := min{|qi(X) − qi(Y )| | i ∈ {1, 2}, X, Y ⊆ S, qi(X) 6= qi(Y )} and let ε be a positive
number such that ε · |p̂(X)| < δ/2 for any X ⊆ S. We now show that p := w1 − q1 + ε · p̂
satisfies the requirements of Conjecture 3. Let B1 be a set in argmaxX∈B1

(w1(X) − p(X)) =
argmaxX∈B1

(q1(X) − ε · p̂(X)). Since −δ/2 < ε · p̂(X) < δ/2 for any X ⊆ S, we have that

B1 ∈ argmaxX∈B1
q1(X) = B̂1 and B1 ∈ argmin

X∈B̂1
p̂(X). Then (a) shows that B1 ∈ B̂2.

Therefore,

B1 ∈ B̂1 ∩ B̂2 = argmax
X∈B1∩B∗

2

(w1(X)− w2(X)) = argmax
X∈B1∩B∗

2

(w1(X) + w2(S \X))

holds by (3), which means that p satisfies the first requirement in Conjecture 3.
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Similarly, let B2 be a set in

argmax
X∈B2

(w2(X)− p(X)) = argmax
X∈B2

(−q2(X)− ε · p̂(X)) = argmax
X∈B2

(q2(S \X) + ε · p̂(S \X)).

This shows that S \ B2 ∈ argmaxX∈B∗
2
q2(X) = B̂2 and S \ B2 ∈ argmaxX∈B̂2

p̂(X). Then (b)

shows that S \B2 ∈ B̂1. Therefore,

S \B2 ∈ B̂1 ∩ B̂2 = argmax
X∈B1∩B∗

2

(w1(X)− w2(X)) = argmax
X∈B1∩B∗

2

(w1(X) + w2(S \X))

holds by (3), which means that p satisfies the second requirement in Conjecture 3. Therefore,
Conjecture 3 is true if Conjecture 4 is true.

Remark 18. Algorithmically, if we can compute p̂, then we can compute p efficiently as follows.
First, we may assume that w1 and w2 are integral by multiplying by the common denominator.
Then, we can take q1 and q2 so that they are integral [17]. Therefore, we have that δ ≥ 1, and hence
ε := 1/(1 + 2

∑

s∈S |p̂(s)|) satisfies the conditions in the proof. This shows that we can compute
p := w1 − q1 + ε · p̂.

By Theorem 3, we obtain Corollaries 4 and 5 as follows. In the proof of Theorem 3, we
consider Conjecture 4 for matroids M̂i = (S, B̂i), where B̂1 = argmaxX∈B1

q1(X) and B̂2 =
argmaxX∈B∗

2
q2(X). Observe that if M1 is a partition matroid with partition classes of size at

most 2 and with all-ones upper bound on the partition classes, then so is M̂1. Furthermore,
Lemma 9 shows that if Mi is strongly base orderable, then so is M̂i. Since Theorems 1 and 2 imply
that Conjecture 4 also holds for these cases, we obtain Corollaries 4 and 5.

6 Gross substitutes valuations

In this section, we show that the reduction technique in Section 5 works also for M♮-concave
functions, or equivalently, gross substitutes functions. M♮-concave functions are introduced by
Murota and Shioura [31] and play a central role in the theory of discrete convex analysis. A
function f : ZS → R∪{−∞} is said to be M♮-concave if it satisfies the following exchange property:

(M♮-EXC) ∀x, y ∈ domf, ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y) ∪ {0}:

f(x) + f(y) ≤ f(x− χi + χj) + f(y + χi − χj),

where domf = {x ∈ Z
S|f(x) > −∞}, supp+(x) = {i ∈ S | x(i) > 0}, supp−(x) = {i ∈ S | x(i) <

0} for x ∈ Z
S , χi is the characteristic vector of i ∈ S, and χ0 is the all-zero vector 0. When we

consider a function f on {0, 1}S , f can be regarded as a function on Z
S by setting f(x) = −∞ for

x ∈ Z
S \{0, 1}S . It is shown by Fujishige and Yang [?] that a function f on {0, 1}S is M♮-concave if

and only if it is a gross substitutes function (see also [29, Theorem 6.34]). See survey papers [30,36]
for more details on M♮-concave functions and gross substitutes functions. For a set Q ⊆ Z

S, we
define a function fQ on Z

S by fQ(x) = 0 if x ∈ Q and fQ(x) = −∞ otherwise. We say that a set
Q ⊆ Z

S is M♮-convex if fQ is an M♮-concave function. It is known that a set is M♮-convex if and
only if it is the set of integer points/vectors in an integral g-polymatroid [18,19]. Let 1 denote the
all-one vector in Z

S.
We are interested in the existence of a pricing scheme for the two-buyer case with gross substi-

tutes valuations (or equivalently, M♮-concave valuations), which is stated as follows.
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Conjecture 5. For i = 1, 2, let vi : {0, 1}
S → R ∪ {−∞} be an M♮-concave function. Then, there

exists a vector p ∈ R
S satisfying the following conditions.

1. For any x1 ∈ argmaxx∈{0,1}S (v1(x)−p·x), it holds that x1 ∈ argmaxx∈{0,1}S (v1(x)+v2(1−x)).

2. For any x2 ∈ argmaxx∈{0,1}S (v2(x)−p·x), it holds that x2 ∈ argmaxx∈{0,1}S (v1(1−x)+v2(x)).

In Conjecture 5, a subset of S is represented by its characteristic vector. If buyer i comes to a
shop first, then she chooses an arbitrary set xi maximizing her utility vi(x)−p ·x. Then, the second
buyer takes the set of all the remaining items whose characteristic vector is 1 − xi. Conjecture 5
asserts that, regardless of the choice of xi, this mechanism gives an allocation maximizing the social
welfare.

As an unweighted version of this conjecture, we consider the following conjecture.

Conjecture 6. For i = 1, 2, let Qi ⊆ {0, 1}
S be an M♮-convex set such that there exist x1 ∈ Q1 and

x2 ∈ Q2 with x1 + x2 = 1. Then, there exists a vector p ∈ R
S satisfying the following conditions.

1. For any x1 ∈ argminx∈Q1
(p · x), it holds that 1− x1 ∈ Q2.

2. For any x2 ∈ argminx∈Q2
(p · x), it holds that 1− x2 ∈ Q1.

In Conjecture 6, each buyer i has an admissible set Qi instead of a valuation. More precisely,
each buyer i wants to buy a set of items whose characteristic vector xi belongs to a given M♮-convex
set Qi. We can easily see that Conjecture 6 is a special case of Conjecture 5, in which vi = fQi

for
i = 1, 2. We now prove that the reverse implication also holds, which means that Conjecture 5 can
be reduced to the unweighted case.

Theorem 19. If Conjecture 6 is true, then Conjecture 5 is also true.

Proof. Let v∗2 : {0, 1}S → R ∪ {−∞} be the function defined by v∗2(x) = v2(1− x) for x ∈ {0, 1}S .
Then, v∗2 is also an M♮-concave function. Consider the problem of maximizing v1(x)+v∗2(x) subject
to x ∈ {0, 1}S . By the M-convex intersection theorem (see [29, Theorem 8.17]), there exists a vector
q ∈ R

S such that

argmax
x∈{0,1}S

(v1(x) + v∗2(x)) =

(

argmax
x∈{0,1}S

(v1(x)− q · x)

)

∩

(

argmax
x∈{0,1}S

(v∗2(x) + q · x)

)

. (4)

Define Q1 = argmaxx∈{0,1}S (v1(x)−q ·x), Q
∗
2 = argmaxx∈{0,1}S (v

∗
2(x)+q ·x), and Q2 = {1−x | x ∈

Q∗
2}. Then, it is known that Q1 and Q∗

2 are M
♮-convex sets (see [29, Theorem 6.30(2)]), and so is Q2

(see [29, Theorem 6.13(2)]). By (4), we obtain argmaxx∈{0,1}S (v1(x)+v∗2(x)) = Q1∩Q
∗
2. This shows

that Q1 ∩ Q∗
2 6= ∅, and hence Q1 and Q2 satisfy the assumptions in Conjecture 6. Therefore, by

assuming that Conjecture 6 is true, there exists a vector p̂ ∈ R
S satisfying the following conditions.

(a) For any x1 ∈ argminx∈Q1
(p̂ · x), it holds that 1− x1 ∈ Q2.

(b) For any x2 ∈ argminx∈Q2
(p̂ · x), it holds that 1− x2 ∈ Q1.

Then, by the same argument as the proof of Theorem 3, p := q + ε · p̂ satisfies the requirements in
Conjecture 5, where ε is a sufficiently small positive number.
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Remark 20. In a market model, it is common to assume that each valuation vi is monotone and
vi(∅) = 0. We note that these assumptions are not required in the proof of Theorem 19. In return
for this, the obtained price vector p is not necessarily non-negative.

We note that Conjecture 1 is a special case of Conjecture 5, as the characteristic vector of
all the bases of a matroid forms an M♮-convex set. This relationship supports the importance of
Conjecture 1.

7 Conclusion

We considered the existence of prices that are capable to achieve optimal social welfare without
a central tie-breaking coordinator. Although such pricing looks similar to well-known Walrasian
pricing, it is less understood even for two-buyer markets with gross substitute valuations. This
paper focuses on two-buyer markets with rank valuations, and we gave polynomial-time algorithms
that always find such prices when one of the matroids is a simple partition matroid or both matroids
are strongly base orderable. This result partially answers a question of Düetting and Végh. We
further formalized a weighted variant of the conjecture of Düetting and Végh, and showed that
the weighted variant can be reduced to the unweighted one based on the weight-splitting theorem
of Frank. We also showed that a similar reduction technique works for M♮-concave functions, or
equivalently, gross substitutes functions.
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