325 research outputs found

    Neutrino Experiments: Status, Recent Progress, and Prospects

    Get PDF
    Neutrino physics has seen an explosion of activity and new results in the last decade. In this report the current state of the field is summarized, with a particular focus on progress in the last two years. Prospects for the near term (roughly 5 years) are also described.Comment: 14 pages, 10 figures, proceedings of plenary talk at EPS HEP 2007 Conference, Manchester, UK. Updated with citation added to Figure 1

    The Cross Section of 3He(3He,2p)4He measured at Solar Energies

    Get PDF
    We report on the results of the \hethet\ experiment at the underground accelerator facility LUNA (Gran Sasso). For the first time the lowest projectile energies utilized for the cross section measurement correspond to energies below the center of the solar Gamow peak (E0E_{\rm 0}=22 keV). The data provide no evidence for the existence of a hypothetical resonance in the energy range investigated. Although no extrapolation is needed anymore (except for energies at the low-energy tail of the Gamow peak), the data must be corrected for the effects of electron screening, clearly observed the first time for the \hethet\ reaction. The effects are however larger than expected and not understood, leading presently to the largest uncertainty on the quoted Sb(E0)S_{\rm b}(E_{\rm 0}) value for bare nuclides (=5.40 MeV b).Comment: 18 pages, 10 postscript figures, Calculations concerning hypothetical resonanz added, Submitted to Phys. Rev. C., available at this URL: HTTP://www.lngs.infn.it/lngs/htexts/luna/luna.htm

    Neutrino Magnetic Moment and Solar Neutrino Experiments

    Get PDF
    We have studied the effect of a non-vanishing neutrino magnetic moment \ (μν\mu_{\nu}) on the νx\nu_{\rm x} ({x=e,μ,τe,\mu,\tau}) elastic scattering off electrons for the Super-Kamiokande detector. The bounds on the μν\mu_{\nu} we have obtained are comparable to that extracted from laboratory experiments. Furthemore, we outline the potential of the Borexino experiment which may be sensitive to neutrino magnetic moments \lsim 10^{-10}\mu_B. In our analysis we have considered both cases of Majorana and Dirac neutrinos.Comment: latex file, 4 pages, including 3 postscript figures. Talk given by A. Mourao at the Neutrino 98 Conference (Japan). To appear in the Proceeding

    Observation of beta decay of In-115 to the first excited level of Sn-115

    Full text link
    In the context of the LENS R&D solar neutrino project, the gamma spectrum of a sample of metallic indium was measured using a single experimental setup of 4 HP-Ge detectors located underground at the Gran Sasso National Laboratories (LNGS), Italy. A gamma line at the energy (497.48 +/- 0.21) keV was found that is not present in the background spectrum and that can be identified as a gamma quantum following the beta decay of In-115 to the first excited state of Sn-115 (9/2+ --> 3/2+). This decay channel of In-115, which is reported here for the first time, has an extremely low Q-value, Q = (2 +/- 4) keV, and has a much lower probability than the well-known ground state-ground state transition, being the branching ratio b = (1.18 +/- 0.31) 10^-6. This could be the beta decay with the lowest known Q-value. The limit on charge non-conserving beta decay of In-115 is set at 90% C.L. as tau > 4.1 10^20 y.Comment: 19 pages, 5 figures, 2 table

    Constraining Non-Standard Interactions of the Neutrino with Borexino

    Full text link
    We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainty in the 7Be solar neutrino flux, and backgrounds due to 85Kr and 210Bi beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the 85Kr background.Comment: 21 pages, 16 pdf figures, 2 tables. Analysis updated including the uncertainty in sin^2\theta_{23}. Accepted in JHE

    Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Among the radio-isotopes, \k40 is one of the most abundant and yet whose signatures are difficult to reject. Procedures were devised to measure trace potassium concentrations in the inorganic salt CsI as well as in organic liquid scintillator (LS) with Accelerator Mass Spectrometry (AMS), giving, respectively, the \k40-contamination levels of 1010\sim 10^{-10} and 1013\sim 10^{-13} g/g. Measurement flexibilities and sensitivities are improved over conventional methods. The projected limiting sensitivities if no excess of potassium signals had been observed over background are 8×10138 \times 10^{-13} g/g and 3×10173 \times 10^{-17} g/g for the CsI and LS, respectively. Studies of the LS samples indicate that the radioactive contaminations come mainly in the dye solutes, while the base solvents are orders of magnitude cleaner. The work demonstrate the possibilities of measuring naturally-occurring isotopes with the AMS techniques.Comment: 18 pages, 4 figures, 3 table

    Last Hope for an astrophysical solution to the solar neutrino problem

    Get PDF
    We discuss what appears the last hope for an astrophysical solution to the solar neutrino problem: a correlated variation of the astrophysical factors for the helium burning cross sections (S33S_{33} and S34S_{34}) and either S17S_{17} or the central temperature TcT_c. In this context, we recognize the important role played by the CNO neutrinos. In fact, we can obtain a fair fit to the experimental data only if three conditions are met simultaneously: the astrophysical factor S33S_{33} is about 200 times what is presently estimated, the astrophysical factor S17S_{17} is about 3 times larger and the 13^{13}N and 15^{15}O neutrino fluxes are negligible compared to the ones predicted by standard solar models. These conditions are not supported by the present data and their correlated combination is improbable.Comment: 11 pages, ReVTeX, plus 3 figures added as uuencoded compressed postscript files. The postscript file with the text and 3 figures is available at ftp://risc0.ca.infn.it/pub/private/lissia/infnca-th9511.p

    Geoneutrinos in Borexino

    Full text link
    This paper describes the Borexino detector and the high-radiopurity studies and tests that are integral part of the Borexino technology and development. The application of Borexino to the detection and studies of geoneutrinos is discussed.Comment: Conference: Neutrino Geophysics Honolulu, Hawaii December 14-16, 200

    GEMMA experiment: three years of the search for the neutrino magnetic moment

    Full text link
    The result of the 3-year neutrino magnetic moment measurement at the Kalinin Nuclear Power Plant with the GEMMA spectrometer is presented. Antineutrino-electron scattering is investigated. A high-purity germanium detector of 1.5 kg placed at a distance of 13.9 m from the 3 GW(th) reactor core is used in the spectrometer. The antineutrino flux is 2.7E13 1/scm/s. The differential method is used to extract (nu-e) electromagnetic scattering events. The scattered electron spectra taken in 5184+6798 and 1853+1021 hours for the reactor ON and OFF periods are compared. The upper limit for the neutrino magnetic moment < 3.2E-11 Bohr magneton at 90% CL is derived from the data processing.Comment: 4 pages, 4 figure

    Mimicking diffuse supernova antineutrinos with the Sun as a source

    Full text link
    Measuring the electron antineutrino component of the cosmic diffuse supernova neutrino background (DSNB) is the next ambitious goal for low-energy neutrino astronomy. The largest flux is expected in the lowest accessible energy bin. However, for E < 15 MeV a possible signal can be mimicked by a solar electron antineutrino flux that originates from the usual 8B neutrinos by spin-flavor oscillations. We show that such an interpretation is possible within the allowed range of neutrino electromagnetic transition moments and solar turbulent field strengths and distributions. Therefore, an unambiguous detection of the DSNB requires a significant number of events at E > 15 MeV.Comment: 4 pages, 1 figur
    corecore