1,038 research outputs found

    Feedback-limited Accretion: Luminous Signatures from Growing Planets

    Full text link
    Planets form in discs of gas and dust around stars, and keep growing by accretion of disc material while available. Massive planets clear a gap in that protoplanetary disc, but still accrete through spiral wakes. On its way to the planet, the gas will settle on a \emph{circumplanetary} disc around the planet and slowly accrete on to it. The energy of the accreted gas will be released, heating the planet surroundings in a feedback process. For high enough accretion rates the planet should be detectable at infrared wavelengths. We aim to find whether detectable planet luminosities, 103L\gtrsim 10^{-3} \, \textrm{L}_\odot, can occur when considering that the planet luminosity is coupled to the accretion, and also to study which other effects has the feedback on the dynamics of the circumplanetary and the gap regions. We model a planet with mass ratio q=103q=10^{-3}, orbiting at 10 AU from a solar mass star, using a modified version of the 2D code FARGO-AD, which includes a prescription for the accretion and feedback luminosity of the planet. We find that the planetary feedback is able to partially deplete the circumplanetary disc, and to reduce the accretion rate onto the planet. However, detectable luminosities of Lp103LL_\textrm{p}\gtrsim 10^{-3}\, \textrm{L}_\odot are still produced. The feedback also contributes to partially refilling the gap, to heat up the coorbital region, and to perturb the orbital velocity of the gas.Comment: Submitted to MNRA

    On the Nature of X-ray Surface Brightness Fluctuations in M87

    Full text link
    X-ray images of galaxy clusters and gas-rich elliptical galaxies show a wealth of small-scale features which reflect fluctuations in density and/or temperature of the intra-cluster medium. In this paper we study these fluctuations in M87/Virgo, to establish whether sound waves/shocks, bubbles or uplifted cold gas dominate the structure. We exploit the strong dependence of the emissivity on density and temperature in different energy bands to distinguish between these processes. Using simulations we demonstrate that our analysis recovers the leading type of fluctuation even in the presence of projection effects and temperature gradients. We confirm the isobaric nature of cool filaments of gas entrained by buoyantly rising bubbles, extending to 7' to the east and south-west, and the adiabatic nature of the weak shocks at 40" and 3' from the center. For features of 5--10 kpc, we show that the central 4'x 4' region is dominated by cool structures in pressure equilibrium with the ambient hotter gas while up to 30 percent of the variance in this region can be ascribed to adiabatic fluctuations. The remaining part of the central 14'x14' region, excluding the arms and shocks described above, is dominated by apparently isothermal fluctuations (bubbles) with a possible admixture (at the level of about 30 percent) of adiabatic (sound waves) and by isobaric structures. Larger features, of about 30 kpc, show a stronger contribution from isobaric fluctuations. The results broadly agree with an AGN feedback model mediated by bubbles of relativistic plasma.Comment: 16 pages, submitted to Ap

    Discovery of multiple Lorentzian components in the X-ray timing properties of the Narrow Line Seyfert 1 Ark 564

    Full text link
    We present a power spectral analysis of a 100 ksec XMM-Newton observation of the narrow line Seyfert 1 galaxy Ark~564. When combined with earlier RXTE and ASCA observations, these data produce a power spectrum covering seven decades of frequency which is well described by a power law with two very clear breaks. This shape is unlike the power spectra of almost all other AGN observed so far, which have only one detected break, and resemble Galactic binary systems in a soft state. The power spectrum can also be well described by the sum of two Lorentzian-shaped components, the one at higher frequencies having a hard spectrum, similar to those seen in Galactic binary systems. Previously we have demonstrated that the lag of the hard band variations relative to the soft band in Ark 564 is dependent on variability time-scale, as seen in Galactic binary sources. Here we show that the time-scale dependence of the lags can be described well using the same two-Lorentzian model which describes the power spectrum, assuming that each Lorentzian component has a distinct time lag. Thus all X-ray timing evidence points strongly to two discrete, localised, regions as the origin of most of the variability. Similar behaviour is seen in Galactic X-ray binary systems in most states other than the soft state, i.e. in the low-hard and intermediate/very high states. Given the very high accretion rate of Ark 564 the closest analogy is with the very high (intermediate) state rather than the low-hard state. We therefore strengthen the comparison between AGN and Galactic binary sources beyond previous studies by extending it to the previously poorly studied very high accretion rate regime.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    Higher order glass-transition singularities in colloidal systems with attractive interactions

    Get PDF
    The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass line, and a glass-glass-transition line are found in the temperature-density plane of the model. For small well-width values, the glass-glass-transition line terminates in a third order bifurcation point, i.e. in a A_3 (cusp) singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth order A_4 (swallow-tail) singularity at a critical well width. Close to the A_3 and A_4 singularities the decay of the density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.Comment: 19 pages, 12 figures, Phys. Rev. E, in prin

    PG 1211+143: probing high frequency lags in a high mass AGN

    Full text link
    We present the timing analysis of the four archived XMM-Newton observations of PG 1211+143. The source is well-known for its spectral complexity, comprising a strong soft-excess and different absorption systems. Soft energy band (0.3-0.7 keV) lags are detected over all the four observations, in the frequency range \nu \lsim 6 \times 10^{-4} Hz, where hard lags, similar to those observed in black hole X-ray binaries, are usually detected in smaller mass AGN. The lag magnitude is energy-dependent, showing two distinct trends apparently connectable to the two flux levels at which the source is observed. The results are discussed in the context of disk- and/or corona-reprocessing scenarios, and of disk wind models. Similarities with the high-frequency negative lag of 1H 0707-495 are highlighted, and, if confirmed, they would support the hypothesis that the lag in PG 1211+143 represents the signature of the same underlying mechanism, whose temporal characteristics scale with the mass of the central object.Comment: 6 pages, 6 figures, accepted for publication in MNRAS Letter

    Validity of Cognitive Assessment Tools for Older Adult Hispanics: A Systematic Review

    Get PDF
    A higher prevalence and incidence of dementia is found in Hispanic/Latino older adults. Therefore, valid instruments are necessary to assess cognitive functioning in this population group. Our aim was to review existing articles that have examined and reported on the validity of cognitive assessment tools in Hispanic/Latino population groups in the United States

    Correlated X-ray/Ultraviolet/Optical variability in the very low mass AGN NGC 4395

    Get PDF
    We report the results of a one year Swift X-ray/UV/optical programme monitoring the dwarf Seyfert nucleus in NGC 4395 in 2008-2009. The UV/optical flux from the nucleus was found to vary dramatically over the monitoring period, with a similar pattern of variation in each of the observed UV/optical bands (spanning 1900 - 5500 {\AA}). In particular, the luminosity of NGC 4395 in the 1900 {\AA} band changed by more than a factor of eight over the monitoring period. The fractional variability was smaller in the UV/optical bands than that seen in the X-rays, with the X-ray/optical ratio increasing with increasing flux. Pseudo-instantaneous flux measurements in the X-ray and each UV/optical band were well correlated, with cross correlation coefficients of >0.7, significant at 99.9 per cent confidence. Archival Swift observations from 2006 sample the intra-day X-ray/optical variability on NGC 4395. These archival data show a very strong correlation between the X-ray and b bands, with a cross-correlation coefficient of 0.84 (significant at >99 per cent confidence). The peak in the cross correlation function is marginally resolved and asymmetric, suggesting that X-rays lead the b band, but by 1 hour. In response to recent (August 2011) very high X-ray flux levels from NGC4395 we triggered Swift ToO observations, which sample the intra-hour X-ray/UV variability. These observations indicate, albeit with large uncertainties, a lag of the 1900 {\AA} band behind the X-ray flux of ~400 s. The tight correlation between the X-ray and UV/optical lightcurves, together with the constraints we place on lag time-scale are consistent with the UV/optical variability of NGC 4395 being primarily due to reprocessing of X-ray photons by the accretion disc.Comment: 11 pages, 9 figures, 3 tables. Accepted for publication in MNRA
    corecore