2,934 research outputs found

    PARAS program: Phased array radio astronomy from space

    Get PDF
    An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg

    Phage display selection of HIV specific conserved mimotopes with IgG from long-term non-progressors

    Get PDF
    Poster presentation Background The aim of this study is to identify conserved epitopes of HIV-1 neutralizing antibodies in polyclonal plasma from LTNP to finally derive vaccine candidates. Materials and methods The presence of neutralizing antibodies in 9 LTNP sera was proved by in vitro neutralization assays. Phage displayed peptide libraries were screened with LTNP IgG. HIV-specific mimotopes were analyzed for homology to the gp120 structure by a software (3DEX) especially developed for this purpose. Mice were immunized with interesting phages and their sera were analyzed for neutralizing activities against HIV-1. Results After biopannings, between 19% and 75% HIV-specific phage clones were identified by ELISA. Mimotope sequences were identified and could be aligned by 3DEX to linear or conformational epitopes on gp120. A peptide specific immune response was detected in sera of immunized mice. The first mice sera analyzed showed neutralizing activities against HIV-1. Conclusion Mimotopes could be selected from LTNP sera that represent conformational epitopes on gp120. Those ones inducing neutralizing antibodies upon immunization potentially are suited to derive vaccine candidates

    Pemanfaatan Bottom Ash Dan Fly Ash Tipe C Sebagai Bahan Pengganti Dalam Pembuatan Paving Block

    Full text link
    PT. PLTU Paiton menghasilkan 7.5 ton fly ash dan 2.5 ton bottom ash setiap jam. Pemanfaatan bottom ash masih sangat minimal, sehingga mengakibatkkan timbunan bottom ash yang semakin meningkat, dan cendrung mencemari lingkungan dan kesehatan. Berdasarkan alasan tersebut maka perlu adanya USAha untuk memanfaatkan limbah batu bara, salah satunya melalui pembuatan paving block. Sampel tahap pertama terbuat dari campuran semen dan bottom ash (lolos ayakan 2 atau 5 mm) dengan perbandingan massa 1:3, 1:4, dan 1:5. Komposisi campuran dengan properti paling baik (kuat tekan, serapan air, dan ketahanan aus) dimodifikasi dalam tahap kedua, yaitu mengganti porsi semen sebanyak 10, 20, 30, 40, 50, 60, 70, dan 80% dengan fly ash tipe C. Pada tahap ketiga, sampel dengan 30 dan 50% fly ash dibuat kembali menggunakan gabungan bottom ash lolos ayakan 5 dan 10 mm. Hasil penelitian menunjukkan bahwa setelah curing selama 28 hari, penggunaan bottom ash lolos ayakan 5 mm menghasilkan paving dengan properti lebih baik dibanding bottom ash lolos ayakan 2mm. Penambahan jumlah bottom ash menurunkan properti paving dan penggantian fly ash atas semen paling optimum adalah sebesar 20-50%. Penggunaan 50% bottom ash lolos ayakan 10 mm dan 50% lolos ayakan 5 mm meningkatkan properti paving dengan kuat tekan melampaui 40 MPa

    Optimal control of oscillatory neuronal models with applications to communication through coherence

    Full text link
    Macroscopic oscillations in the brain are involved in various cognitive and physiological processes, yet their precise function is not not completely understood. Communication Through Coherence (CTC) theory proposes that these rhythmic electrical patterns might serve to regulate the information flow between neural populations. Thus, to communicate effectively, neural populations must synchronize their oscillatory activity, ensuring that input volleys from the presynaptic population reach the postsynaptic one at its maximum phase of excitability. We consider an Excitatory-Inhibitory (E-I) network whose macroscopic activity is described by an exact mean-field model. The E-I network receives periodic inputs from either one or two external sources, for which effective communication will not be achieved in the absence of control. We explore strategies based on optimal control theory for phase-amplitude dynamics to design a control that sets the target population in the optimal phase to synchronize its activity with a specific presynaptic input signal and establish communication. The control mechanism resembles the role of a higher cortical area in the context of selective attention. To design the control, we use the phase-amplitude reduction of a limit cycle and leverage recent developments in this field in order to find the most effective control strategy regarding a defined cost function. Furthermore, we present results that guarantee the local controllability of the system close to the limit cycle

    Peculiar properties of phase transitions in Na0.5Bi0.5TiO3-xBaTiO3 (0<x<6) lead-free relaxor ferroelectrics seen via acoustic emission

    Get PDF
    Na0.5Bi0.5TiO3-xBaTiO3 (0<x<6) relaxor ferroelectrics crystals were investigated by means of dielectric and acoustic emission methods. Dielectric curves exhibit the slightly visible small maxima near the depolarization temperatures, Td, and the wide maxima at the temperatures of Tm, whereas the acoustic emission exhibits the sharp bursts, corresponding to Td, Tlm, which is known to be a temperature exhibiting a strong frequency dispersion, TRE, which is known to be a temperature above which a frequency dispersion vanishes, and the Tm and the Tp manifesting a transition to the paraelectric phase. Based on the AE data it was established that all these characteristic temperatures shift down as x increases, but with different slopes. A mechanism of such the differences is discussed

    Experimental and numerical assessment of weld pool behavior and final microstructure in wire feed laser beam welding with electromagnetic stirring

    Get PDF
    Advantages such as element homogenization and grain refinement can be realized by introducing electromagnetic stirring into laser beam welding. However, the involved weld pool behavior and its direct role on determining the final microstructure have not been revealed quantitatively. In this paper, a 3D transient heat transfer and fluid flow model coupled with element transport and magnetic induction is developed for wire feed laser beam welding with electromagnetic stirring. The magnetohydrodynamics, temperature profile, velocity field, keyhole evolution and element distribution are calculated and analyzed. The model is well tested against the experimental results. It is suggested that a significant electromagnetic stirring can be produced in the weld pool by the induced Lorentz force under suitable electromagnetic parameters, and it shows important influences on the thermal fluid flow and the solidification parameter. The forward and downward flow along the longitudinal plane of the weld pool is enhanced, which can bring the additional filler wire material to the root of the weld pool. The integrated thermal and mechanical impacts of electromagnetic stirring on grain refinement which is confirmed experimentally by electron backscatter diffraction analysis are decoupled using the calculated solidification parameters and a criterion of dendrite fragmentation.DFG, 416014189, Simulation des Einflusses der elektromagnetisch unterstützten Durchmischung beim Laserstrahlschweißen dickwandiger Stahlbauteile mit Zusatzmateria

    Numerical and experimental investigation of thermo-fluid flow and element transport in electromagnetic stirring enhanced wire feed laser beam welding

    Get PDF
    The introduction of electromagnetic stirring to laser beam welding can bring several beneficial effects e.g. element homogenization and grain refinement. However, the underlying physics has not been fully explored due to the absence of quantitative data of heat and mass transfer in the molten pool. In this paper, the influence of electromagnetic stirring on the thermo-fluid flow and element transport in the wire feed laser beam welding is studied numerically and experimentally. A three-dimensional transient heat transfer and fluid flow model coupled with dynamic keyhole, magnetic induction and element transport is developed for the first time. The results suggest that the Lorentz force produced by an oscillating magnetic field and its induced eddy current shows an important influence on the thermo-fluid flow and the keyhole stability. The melt flow velocity is increased by the electromagnetic stirring at the rear and lower regions of molten pool. The keyhole collapses more frequently at the upper part. The additional elements from the filler wire are significantly homogenized because of the enhanced forward and downward flow. The model is well verified by fusion line shape, high-speed images of molten pool and measured element distribution. This work provides a deeper understanding of the transport phenomena in the laser beam welding with magnetic field.DFG, 416014189, Simulation des Einflusses der elektromagnetisch unterstützten Durchmischung beim Laserstrahlschweißen dickwandiger Stahlbauteile mit Zusatzmateria

    The use of bottom ash for replacing fine aggregate in concrete paving blocks

    Get PDF
    Bottom ash that results from coal burning for electrical generation is still much underutilized in Indonesia and it is necessary to increase the usage of this waste. The manufacture of paving blocks using bottom ash, which is normally associated with high water absorption due to its high porosity and carbon content, was examined in this study with the aim to increase the usage of this waste material. The study was done in three phases: (1) the mixture of cement and bottom ash passing sieves of 2 and 5 mm were done with ratios of 1:3, 1:4, and 1:5; from the best proportion, fly ash was used to replace the cement material from 10&#65533;80%, and (3) samples with 30% and 50% fly ash replacement ratios were used in combination with 5 mm and 10 mm sieved bottom ash. Compressive strength, water absorption, and abrasion resistance tests were conducted to assess the properties of the resultant paving block. From the result, bottom ash is used to replace natural sand in making paving blocks. By optimizing the particle packing density and using fly ash as a cement replacement, the compressive strength of paving blocks can exceed 40 MPa
    corecore