
This version is available at https://doi.org/10.14279/depositonce-10545

Copyright applies. A non-exclusive, non-transferable and limited 
right to use is granted. This document is intended solely for 
personal, non-commercial use.

Terms of Use

Meng, Xiangmeng; Bachmann, Marcel; Artinov, Antoni; Rethmeier, Michael (2019). Experimental and 
numerical assessment of weld pool behavior and final microstructure in wire feed laser beam welding with 
electromagnetic stirring. Journal of Manufacturing Processes, 45, 408–418.  
https://doi.org/10.1016/j.jmapro.2019.07.021.

Xiangmeng Meng, Marcel Bachmann, Antoni Artinov, Michael Rethmeier

Experimental and numerical assessment 
of weld pool behavior and final 
microstructure in wire feed laser beam 
welding with electromagnetic stirring

Accepted manuscript (Postprint)Journal article     |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/334779476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

 

Experimental and numerical assessment of weld pool behavior and final 

microstructure in wire feed laser beam welding with electromagnetic stirring 

 

Xiangmeng Menga,*, Marcel Bachmanna, Antoni Artinova, Michael Rethmeiera,b 

a BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany 

b Technical University Berlin, Institute of Machine Tools and Factory Management, Pascalstraße 8-9, 10587 

Berlin, Germany 

Corresponding author: xiangmeng.meng@bam.de 

 

Abstract 

 Advantages such as element homogenization and grain refinement can be realized by 

introducing electromagnetic stirring into laser beam welding. However, the involved weld pool 

behavior and its direct role on determining the final microstructure have not been revealed 

quantitatively. In this paper, a 3D transient heat transfer and fluid flow model coupled with element 

transport and magnetic induction is developed for wire feed laser beam welding with electromagnetic 

stirring. The magnetohydrodynamics, temperature profile, velocity field, keyhole evolution and 

element distribution are calculated and analyzed. The model is well tested against the experimental 

results. It is suggested that a significant electromagnetic stirring can be produced in the weld pool by 

the induced Lorentz force under suitable electromagnetic parameters, and it shows important 

influences on the thermal fluid flow and the solidification parameter. The forward and downward 

flow along the longitudinal plane of the weld pool is enhanced, which can bring the additional filler 

wire material to the root of the weld pool. The integrated thermal and mechanical impacts of 

electromagnetic stirring on grain refinement which is confirmed experimentally by electron 

backscatter diffraction analysis are decoupled using the calculated solidification parameters and a 

criterion of dendrite fragmentation. 

 

Keywords: Magnetohydrodynamics; weld pool behavior; grain structure; laser beam welding; 

numerical simulation 

 

1. Introduction 

 The availability of high-power laser sources makes the laser beam welding (LBW) performed 

in deep penetration mode (keyhole mode) become one of the most promising metal joining processes 

in modern manufacturing industry, e. g. aerospace, ship-building and large high-pressure or vacuum 
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vessels. In comparison to conventional arc welding, the LBW has well-known advantages such as 

good penetration capacity, low heat input, high reachable welding speed, narrow heat affected zone 

(HAZ) and low welding distortion. The use of filler wire in LBW, namely wire feed LBW (WFLBW), 

brings further advantages: (i) better capacity of gap bridging, (ii) improvement of metallurgical 

properties by adding suitable chemical composition through additional filler material, (iii) possibility 

to fulfill heavy section welding by multi-pass technique [1]. However, there are still challenges in 

WFLBW making the realization of the advantages difficult, especially for thick plate welding. The 

additional elements from filler wire can hardly be distributed homogeneously in the final weld due to 

the high cooling rate of weld pool (up to 1×106 K/s) [2]. They mainly concentrate at the upper part of 

weld, which may deteriorate the homogeneity of the resultant property. 

 The electromagnetic control which is a contactless technique provides a possible way to solve 

the issues occurring in the WFLBW process. The magnetohydrodynamics (MHD) theory shows that 

a current density will be induced if an external magnetic filed is applied to flowing electrically 

conducting material, for example liquid metal [3]. A volumetric Lorentz force will be generated by 

the magnetic field and its induced current. By choosing a proper external magnetic field, supporting, 

deceleration or stirring can be produced to control the weld pool behavior.  

 The positive effect of a magnetic field (e.g. flow control and grain structure refinement) in 

material processing has been well accepted, especially for the casting [4]. Kern et al. first found that 

the humping defect in high-speed LBW was eliminated by the external magnetic field because the 

strong backward flow of liquid metal was decelerated under the Lorentz force [5]. The oscillating 

magnetic field was used by Avilov et al. to provide effective support against the gravity, and thereby, 

the root sagging in the full penetration LBW was suppressed [6]. The work of Fritzsche et al. 

suggested that the high-frequency oscillating magnetic field at transverse direction made a dramatical 

reduction of process porosity in the partial penetration LBW of Aluminium [7]. Gatzen employed a 

low-frequency coaxial alternating magnetic field to enhance the material mixing in the weld pool of 

WFLBW. A more homogeneous distribution of Si from the filler wire in the resultant weld was 

obtained because of the electromagnetic stirring [8]. The magnetic field also showed beneficial effects 

on the improvement of microstructure, for example refinement of grain structure in the laser + arc 

hybrid welding of austenitic steel steel [9] and suppression of brittle intermetallic compounds in the 

laser welding of steel to Aluminium [10].  

 The thermal process and liquid flow in the weld pool play an important role on determining 

the weld geometry, element distribution and solidification microstructure. Integrated and quantitative 

description of the weld pool behavior is necessary to provide a deeper insight of the physical 
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mechanism of LBW with magnetic field. Some experimental investigations e. g. high-speed imaging 

with quartz glass [11] or microfocused X-ray transmission with tracer particles [12], have been 

conducted. However, quantitative experimental characterization of the thermophysical information in 

the weld pool, which varies temporally and spatially, is still an extremely difficult task because of the 

intensive light of the laser induced plasma, the small dimension of the weld pool and the non-

transparent nature of the liquid metal.  

 Some multi-physical modelling works have been conducted to study the physical relationship 

between the weld pool behavior and applied magnetic field in LBW. A three-dimensional steady-state 

numerical model was developed by Bachmann et al. to calculate the MHD behavior and thermal fluid 

flow in the weld pool of LBW with external magnetic field [13, 14]. The thermoelectric-magnetic 

phenomena in a full penetration LBW of aluminum with steady magnetic support was investigated 

using a steady-state numerical model, and it was found that the thermoelectric current caused by 

Seebeck effect showed a non-negligible influence on the material flow and weld morphology [15]. 

Gatzen et al. studied the influence of coaxial magnetic field on the liquid flow and the final element 

distribution in WFLBW numerically. The mixing of additional element in the weld pool was enhanced 

by the electromagnetic stirring [16]. Although a few of numerical works have been reported, a fixed 

keyhole surface whose temperature was set as the boiling point of material was used in most of these 

models. They failed to consider the important impact of dynamic keyhole evolution. Lately, Chen et 

al. used a numerical LBW model with dynamic keyhole to study the influence of thermoelectric force 

from a steady magnetic field on the weld microstructure [17].  

 The influence of magnetic field on the weld pool behavior in LBW is still not clear. 

Furthermore, the direct role of crucial physical phenomena, such as temperature gradient, 

solidification rate and mechanical fragmentation, on determining the final microstructure in the LBW 

with magnetic field has not been discussed quantitatively either. This paper provides an experimental 

and modelling study of WFLBW with electromagnetic stirring (EMS-WFLBW). The induced eddy 

current, Lorentz force as well as the temperature and velocity profiles, solidification parameters, 

keyhole evolution and element transport are calculated by a three-dimensional transient multi-

physical model. The weld pool behavior in WFLBW and EMS-WFLBW are compared and analysed. 

The grain structure is rationalized using numerical data and results from optical micrograph (OM) 

and electron backscatter diffraction (EBSD) analysis. 

 

2. Materials and experimental methods 

 The base metal material is AISI 304 austenitic steel, and the filler material is nickel-based 
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Inconel 625 wire. The dimension of base metal is 200 mm × 60 mm × 10 mm, and the diameter of 

the filler wire is 1.2 mm. Their nominal chemical compositions are given in Table 1. There is a huge 

difference of Ni content between the base metal and the filler material, so the mixing in the weld pool 

can be characterized by the distribution of Ni. 

 A fiber laser system (IPG YLR 20000) was used as the laser source with a wavelength of 1070 

nm, a spot diameter of 0.52 mm and a focal length of 350 mm. Butt configuration with zero gap was 

performed. The laser power was 7.5 kW, the welding speed was 1.3 m/min and the focal plane was 3 

mm below the base metal surface. The cold filler wire was fed in front of the laser spot with 33° angle 

with respect to the workpiece, and the wire feeding speed was 2.1 m/min. The shielding gas of pure 

Argon was provided behind the laser spot in a flow rate of 20 l/min. An AC electromagnet was fixed 

above the base metal and had a 75° angle with respect to the welding direction, as shown in Fig. 1(a). 

This configuration was chosen to produce an asymmetric Lorentz force distribution and thus enhance 

the stirring of molten metal.  The cross-section of the core has a dimension of 16mm × 16 mm, and 

the distance between two poles are 20 mm. An oscillating magnetic field with a frequency of 3600 

Hz was produced. Before welding, the root-mean-square value of magnetic flux density was measured 

by a Hall sensor in cold metal condition, as shown in Fig. 1(b). 

 

 

-20 -15 -10 -5 0 5 10 15 20
0

2

4

6

8

10

Z
(m

m
)

X (mm)

47.0 70.5 94.0 117.5 141.0 164.5 188.0 211.5 235.0

Magnetic flux density

Optical axis of laser beam

(b)

 

Fig. 1 Experimental system: (a) schematic of EMS-WFLBW, (b) distribution of magnetic flux 

density. 
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Table 1 Nominal chemical composition of 304 steel and Inconel 625 

Alloy Ni Cr Mo Nb C Si S Fe 

304 steel 8.0-10.0 17.5-19.0 - - <0.07 <0.75 <0.015 Bal. 

Inconel 625 Bal. 20.0-23.0 8.0-10.0 3.2-4.2 <0.10 <0.50 <0.015 <5 

 

 A Photron FASTCAM SA4 camera was used to capture the high-speed images of weld pool 

and filler material transfer with a frequency of 500 frames per second. The distance between the weld 

pool and the lens was 400 mm. The principal optical axis of the camera was vertical to X-axis 

(welding direction) and had a 10° angle with respect to the weld pool (XOY plane). The specimens 

were grinded and polished mechanically first, and etched by a solution of 100 ml H2O, 100 ml HNO3 

and 10 ml HCl at a temperature of 50 ℃ for 30 seconds. Then the fusion line shape on the transverse 

section of weld was observed by an optical microscope. An EDX line scanning was conducted to 

measure the Ni content along the center line of the transverse section. The EBSD analysis was 

performed to measure the grain structure and orientation. The surface of the specimen was treated by 

electropolishing to ensure that no additional stress was introduced.  

 

3. Mathematical modelling 

 The nomenclatures used are listed in Table 2. Considering the highly non-linear and multi-

coupled phenomena occurring in the EMS-WFLBW, several key simplifications are made to make 

the model tractable in this study:  

(1) The liquid metal flow is laminar, Newtonian and incompressible. The buoyance term is treated by 

Boussinesq approximation. 

(2) The relative magnetic permeability of solid 304 stainless steel is one [13]. 

(3) The metal vapor in the keyhole is weakly ionized, so the gaseous phase in the model is considered 

as non-conductive [18].  

(4) The thermoelectric effect and the Joule heat are not taken into consideration. The Lorentz force 

acting on the liquid filler material is neglected [19].  

 

Table 2 Nomenclature in the simulation model. 

Symbol Nomenclature Symbol Nomenclature 

as Sulfur activity S
m  Momentum source term 

A, B  Evaporation coefficients s  Tangential vector 
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AT Surface tension gradient t Time 

0B  
Externally imposed magnetic field in 

Fig. 1(b) 
T Temperature 

b  

Secondarily induced magnetic field 

from temporal variation of 0B and 

liquid flow 

TS, TL Solidus and liquidus temperature 

CNi  Weight percentage of Ni T0 Ambient temperature 

cp Specific heat Tw 
Temperature of liquid filler 

material 

cpw Specific heat of filler material vevp 
Evaporation recession speed of 

the free surface 

d 
Distance between solidification front 

and magnet center 
v  Velocity vector 

Cw Ni source from filler wire vfeed Wire feeding speed 

DNi Diffusion coefficient of Ni in iron vn Normal velocity 

Dp Penetration depth vmax Maximum velocity in weld pool 

LF  Vector of Lorentz force vt Tangential velocity 

F Focal length vspeed  Welding speed 

g  Vector of gravity acceleration wv  
Velocity vector of the liquid 

filler material 

H Time-dependent keyhole depth x, y, z Coordinates 

hc Convection heat transfer coefficient  α 

Angle between welding direction 

and maximum heat flow 

direction 

h Enthalpy β Expansion coefficient  

hw 
Energy source from the liquid filler 

material 
Γs Surface excess at saturation 

j  Current density ΔLv Evaporation latent heat 

k Thermal conductivity ΔHw 
Melting latent heat of filler 

material  

K Carman–Kozeny equation coefficient ΔH0  Heat of absorption. 

kb Boltzmann constant δ A small number for convergence 

kl Entropy factor γ0 
Surface tension at the melting 

point 

ma Molar mass γ Surface tension 

mw Mass source from filler wire εr Emissivity 

n  Normal vector 
ηw, ηwloss, 

ηk, ηkloss 
Allocation of laser energy 

Na Avogadro constant κ Curvature 

p Hydrodynamic pressure μ Dynamic viscosity 

pca Capillary pressure μ0 Permeability of vacuum 

pr Recoil pressure μm Permeability 

pvapor Stagnation pressure of metal vapor ρ Density 

PL Laser power ρw Density of filler wire 
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qL Laser energy density σ Stefan-Boltzmann constant  

qplume  
Heat flux from the high-temperature 

plume  
σe Electrical conductivity 

qrecond 
Heat flux from the metal vapor’s re-

condensation 
  Volume fraction 

rw Radius of filler wire w  
Volume source from the filler 

material 

R0 Distribution radius of heat source steel  Volume fraction of the steel 

Rg Gas constant τma Marangoni stress 

Sq Heat source term τvapor Shear stress of metal vaopr 

 

3.1 Governing equations 

 Under the above assumptions, the governing equations in a fixed Cartesian coordinate are 

written as below:  

▪ Mass equation 

 
wm

v


 =   (1) 

▪ Momentum equation 

2

0( )
v

v v p v T T g g Kv m v S
t

    
 

+  = − +  + − − − + + 
 

w w m   (2) 

 The third to sixth term in right hand side of Eq. (2) represent the buoyance, gravity, frictional 

dissipation in the mushy zone and momentum impact from the liquid filler material, respectively. 

▪ Energy equation 

( ) ( ) w q

h
v h k T h S

t


 
+  =  + +  

  (3) 

▪ Volume-of-fluid (VOF) equation 

wv
t


 


+ =


（ ）   (4) 

▪ Element transport equation 

( )steel steel Ni
steel steel Ni steel Ni Ni w

C
vC D C C

t

 
  


+ −  =


  (5) 

▪ Magnetic induction equation 

 The magnetic induction method is used to calculate the electromagnetic field. From the Ohm’s 

law and the Maxwell’s equations, the induction equations can be derived as: 

( ) ( )( ) ( )2

0 0

e

1

m

b
v b b B b v v B

t  


+  =  + +  − 


  (6) 
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 The secondary induced magnetic field b  which is the variable to be calculated in Eq. (6) 

comes from temporal variation of 0B  and liquid flow. Considering that the geometry of electro-

magnet is not physically included in the model, the experimentally-measured 0B  from Fig. 1(b) is 

imposed into the model directly during the calculation. 

 After b  is solved, the current density and the Lorentz force can be calculated as: 

( )0

1

m

j B b


=  +   (7)  

( )0LF j B b=  +   (8) 

 

3.2 Boundary conditions 

 The laser energy, heat loss and the secondary heat flux from the high-temperature plume and 

the metal vapor’s re-condensation are implemented on the keyhole wall: 

4 4

0 r 0 evp plume recond( ) ( )L c v

T
k q h T T T T v L q q

n
 


= − − − − −  + +


  (9) 

The second to fourth term at the right hand side represent the heat loss from convection, radiation and 

evaporation, respectively. The evaporation recession speed vevp can be calculated from the velocity 

jump across the Knudsen layer [20].  

 The recoil pressure, the stagnation pressure of high-velocity metal vapor and the capillary 

pressure are applied on the normal direction of keyhole wall. The Marangoni force and the shear 

stress of metal vapor are applied on the tangential direction of keyhole wall.  

n
vapor2 r ca

v
p p p p

n



− + = − − +


  (10) 

t
vaporma

v

n
  


− = +


  (11) 

 Compared with the realistic workpiece, the simulation domain is small in X and Y directions. 

Hence, continuum boundary is used on the side surface of the steel workpiece, which makes the 

simulation domain semi-infinitely large for thermal conduction [21]. The side surfaces of steel 

workpiece are set as electrically conducting, and the other surfaces are set as insulating. The melting 

of the filler wire is not simulated in the model. A moving mass inlet of liquid filler material is set at 

the top of the model. The temperature is taken from literature [22] and the velocity is measured from 

high-speed images. A summary of the boundary conditions is shown in Fig.2.  
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Fig. 2 Boundary conditions of simulation model 

 

3.3 Welding models 

 Compared with autogenous LBW, the energy allocation in the WFLBW is more complex. 

Four coefficients should be given to describe the energy allocation: the absorption coefficient at the 

filler wire ηw, the loss coefficient from the filler wire ηwloss, the absorption coefficient on the keyhole 

wall ηk and the loss coefficient from the keyhole wall ηkloss.  

 According to the study of Arata et al., the average temperature of the liquid filler material is 

assumed to be 2900 K under current welding parameter [22]. The absorption coefficient at the filler 

wire are calculated as follows: 

( )2

feed w w pw w 0 w

w

L

7.2%
v r c T T H

P

 


 − + =    (12)  

 The energy loss due to laser reflection on the filler wire is a function of laser power, wire 

feeding speed and focal length, which can be fitted into the following equation [23]: 

-2.11 0.82 0.76

wloss L feed2.07 5.5%P F v =   (13) 

 More than 85% of the laser entering the keyhole will be absorbed because of the multi-

reflections between the keyhole wall, so the absorption coefficient on the keyhole wall is determined 

as [24]: 

( )w wloss0.85 1 70%k  =  − −   

 A rotary Gauss volumetric heat source is used in the model to represent the spatial distribution 

of the laser energy in the keyhole [25]. 
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20
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9
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k L
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P
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 −

 
− − + 
 =

−   
    

  (14) 

 The temperature of vapor plume in the fiber laser welding of steel can reach up to 6000 K 

[26], and it provides an additional heating effect on the keyhole, influencing the fusion line shape, 

especially on the upper part. Although severe evaporation occurs in the keyhole, 90% of the metal 

vapor is condensed back to the weld pool [27]. The release of the evaporation latent heat also acts as 

an additional heat source. In this study, the spatial distribution of qplume and qrecond are determined 

based on the work of Muhammad et al.[28].  

 The keyhole formation is mainly driven by the recoil pressure involving the evaporation of 

material. It can be calculated by the following equation [29]: 

= exp a v
r

a b

m LAB
p

N k TT

 
− 
 

  (15) 

 The dependency of surface tension coefficient on temperature can be expressed as 

0 L g s s s- ( ) ln(1 )TA T T R T K a = − −  +   (16) 

0expl

H
K k

R T

 −
=   

 
s

g

  (17) 

 Then, the capillary pressure and the Marangoni stress are calculated as: 

p =
ca   (18) 

T

T s




 
=
 

ma   (19) 

  The high-velocity metal vapor also shows non-negligible impact on the transient evolution 

of the keyhole [30]. In this study, the stagnation pressure and the shear stress produced by the metal 

vapor are employed by an empirical model developed by Cho et al., in which the velocity of the metal 

vapor is assumed to have a linear increase from the keyhole bottom to the keyhole entrance [31].  

 

3.3 Numerical algorithm  

 The geometric model has dimensions of 30 mm in length, 8 mm in width and 12 mm in 

thickness, as shown in Fig. 2. A gaseous phase layer (10 mm ≤ z ≤ 12 mm) is initialized above the 

workpiece for using the VOF method to track the free surface. The center domain (-2.5 mm ≤ y ≤ 2.5 
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mm) has a fixed cell size of 0.2 mm. The other domains are divided into coarser cells, expanding 

from 0.2 mm to 1 mm gradually. 

 All the transport equations are solved by the commercial finite volume method software 

ANSYS Fluent. The magnetic field, energy, momentum and Ni content scalar are discretised spatially 

by the second order upwind method. The PISO algorithm is applied for the velocity-pressure coupling. 

A high performance computing cluster in the Federal Institute for Materials Research and Testing 

(BAM) is used to run the calculation program, and it takes about sixty hours to simulate around 0.9 s 

real time WFLBW. The physical properties of base metal and filler wire are taken from the literature 

[32-36]. The steel properties in the model are percentage-weighted averages of the base metal and the 

filler material. 

 

4. Results and discussion 

4.1 MHD behavior and weld pool behavior 

 Two circulating electric currents are induced in the workpiece, as shown in Fig. 3, and their 

directions could be either clockwise or counter-clockwise depending on the oscillating magnetic field. 

These two circulating currents are almost separated by the keyhole because the electric conductivity 

of 304 steel decreases with temperature rising and the gaseous phase in the keyhole is non-conducting. 

The peak value of current density is around 1.2 ×107 A/m2. 

 

 

Fig. 3 Induced electric current density at longitudinal section 

 

 Fig. 4 shows the secondary magnetic field from temporal variation of external magnetic field 

and liquid flow. Typically, its maximum value occurs at the cold metal region before the weld pool 

due to the high electrical conductivity. However, only the secondary magnetic field in the weld pool 

is plotted in Fig. 4 for a better clarity, and the value in the solid region is set as 0. The secondary 
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magnetic field is small at the surface region and becomes larger near the solid/liquid boundary. The 

maximum value in the weld pool is only 19mT which is quite negligible compared with the external 

magnetic field.  

 

Fig. 4 Secondary magnetic field in the wed pool. 

 

 The oscillating magnetic field and its self-induced eddy current will produce an oscillating 

Lorentz force in the workpiece. Fig. 5 also only gives the distribution of Lorentz force in the weld 

pool. The Lorentz force becomes expanding or contractive alternatively in a frequency of 7200 Hz 

which is double of the magnetic field frequency. Since the magnetic flux density is larger at the upper 

part of the weld pool, the induced Lorentz force is also much stronger there. In the expanding period, 

the Lorentz force at the top region is nearly upward with a peak value around 1.6 ×106 N/m3. In 

contrast, it is downward with a peak value around 1.9 ×106 N/m3 in the contractive period. The time-

averaged Lorentz force at the top region is downward and in the order of magnitude of 105 N/m3. The 

calculated value is coincident with other simulation study from Bachman et al. [13]. An 

electromagnetic stirring will be generated in the weld pool to enhance the material mixing. 
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Fig. 5 Distribution of the Lorentz force in the weld pool: (a) t0 (b) t0+1/4×magnetic field period 

 

 The calculated temperature profile and velocity field are given in Fig. 6. The free surface of 

weld pool is considerably depressed under the recoil pressure, and a deep and narrow keyhole with 

an extremely thin liquid metal layer on its front wall forms in the WFLBW, as shown in Fig. 6(a). 

The metal flow on the keyhole front wall is quite irregular. The metal melted at the keyhole front wall 

and the liquid metal from the filler wire flow backward round the keyhole, and continue to flow 

backward along the periphery of the weld pool. Then the liquid metal changes the direction at the 

middle part of the weld pool, and flows forward along the longitudinal section. The dominant flowing 

routine of liquid metal is marked with white arrows. The upper part of the weld pool is considerably 

elongated up to 20 mm, and the lower part is relatively shorter. Fig. 7 gives the high-speed image of 

weld pool. There is a good agreement between the calculated weld pool length and the experimental 

one. The electromagnetic stirring does not show a remarkable influence on the fundamental routine 

of material flow in EMS-WFLBW, comparing Fig. 5(a) and (b). However, the Lorentz force pushes 

the liquid metal to flow downward. When the liquid metal flows along the longitudinal section, its 

direction changes from forward to downward. 
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Fig. 6 Calculated temperature profile and velocity field: (a) WFLBW, (b) EMS-WFLBW 

 

 

Fig. 7 Image of weld pool captured by high-speed camera 

 

 Fig. 8 presents the comparison of velocity magnitude between WFLBW and EMS-WFLBW. 

The averaged velocity inside the weld pool of WFLBW is around 0.2 m/s ~ 0.4 m/s, which agrees 

with the experimental data [37]. For both processes, the peak velocity is located at the keyhole wall 

because the recoil pressure is the predominant driving force. In region A, there is no apparent 

influence on the velocity magnitude from the Lorentz force. In the rear part (region B) and lower part 

(region C) of the weld pool, the velocity magnitude is increased under the stirring. According to the 

MHD theory, there are two components in the Lorentz force, one from the temporal variation of 

magnetic field and one from the liquid flow. The Lorentz force from liquid flow is always opposite 

to the flowing direction to decelerate the melt flow, namely magnetic braking. However, the effect 

magnetic braking is masked by the stirring effect from the temporal variation of magnetic field in this 

study. 
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Fig. 8 Velocity magnitude at the longitudinal section: (a) WFLBW, (b) EMS-WFLBW 

 

 Fig. 9 shows the comparison between the numerically calculated fusion line shape and the 

experimental one. An accurate prediction of fusion zone profile is achieved for both processes, which 

proves the reasonability of the numerical model. The predicted contour line of reinforcement for 

WFLBW also shows a good agreement with the experimental result, but a larger error exists in the 

simulation of EMS-WFLBW. It is because that the weld bead surface of EMS-WFLBW has more 

fluctuation which cannot be reproduced by the model so far.  

 

 

Fig. 9 Experimental and numerical fusion line shape: (a) WFLBW, (b) EMS-WFLBW 

 

 The Ni distribution can be used to characterize the mixing in the weld pool. The simulated 

distribution of Ni content in the final weld is plotted in Fig. 10. It can be seen intuitively in Fig. 10(a) 
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that the added Ni from the filler wire concentrates on the upper part in WFLBW. After the 

electromagnetic stirring is introduced, the Ni can be transferred to the lower part of the weld, as shown 

in Fig. 10(b). The Ni content along the center line of transverse section is shown in Fig. 11 and the 

experimental data are measured by the EDX line scanning and averaged over a distance of 500 μm. 

The depth of uniform region is only 3.5 mm in WFLBW. A transition region can be observed below 

the uniform region, in which the Ni content decreases from 16% to the level of base metal. The depth 

of uniform region increases to 5.5 mm under the stirring of Lorentz force. Correspondingly, the 

transition region is also narrowed. The comparison between calculated and numerical results also 

shows a good agreement. 

 The element transport is directly determined by the thermal process and fluid flow in weld 

pool. It can be divided into two factors: diffusion and advection. The ratio of advection to diffusion 

can be evaluated by the Peclet number (Pe), which gives Pe = Dpvmax/DNi ≈ 1×106. It indicates that 

the diffusion is quite negligible and the Ni distribution is determined by the advection (fluid flow). 

Although the filler material with high Ni content impacts the upper region of keyhole front wall first, 

the keyhole front wall is not the main transfer routine considering the irregular flow direction. The 

filler material is transferred along the dominant flowing routine, as shown in Fig. 6. In WFLBW, the 

forward flow along the longitudinal section is nearly parallel to the welding direction and the velocity 

component in z direction is small, which is not beneficial for the downward transfer of the additional 

material. In the EMS-WFLBW, the downward flow which is enhanced by the electromagnetic stirring 

can bring the Ni to the root of weld pool. 

 

 

Fig. 10 Calculated Ni distribution on transverse section: (a) WFLBW, (b) EMS-WFLBW 
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Fig. 11 Comparison of calculated and experimental Ni content along center line of transverse 

section: (a) WFLBW, (b) EMS-WFLBW 

 

4.2 Solidification microstructure 

 The above-mentioned results indicate that the electromagnetic stirring enhances the thermal 

fluid flow significantly. It is reasonable to infer that it influences the solidification parameter as well, 

and consequently, changes the final microstructure. Usually, the grain shape and size are determined 

by several key solidification parameters including the temperature gradient ahead of the solidification 

front ( | |G ), solidification rate (R), cooling rate | |G R and morphology factor | |G /R. They are calculated 

by the following equations [38]. 

22 2

| |
T T T

G
x y z

      
= + +    

      
  (20) 

speed cosR v =   (21) 

 Fig. 12 shows the vector field of G  at z = 9 mm and z = 6 mm, along with the weld pool 

geometry. The red region represents the solidified weld zone, and the vector at each point is calculated 
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at the moment when the solidification front passes through, i.e. solidification starts. The weld pool in 

WFLBW has a narrow and tear-dropped shape. Therefore, the direction of G  (i. e. the maximum 

local heat flow direction) along which the columnar grain grows is mainly along the transverse plane 

at the position of z =9 mm. It means that the grain growth direction will have a very small inclination 

angle to the transverse plane. The direction of G  is almost vertical to the longitudinal plane in the 

position of z = 6 mm, and thereby the grain may grow along the y direction. By comparing the Fig. 

12 (a) and (b), it is suggested that the electromagnetic stirring does not bring noticeable variation on 

the direction of G, and correspondingly, on the orientation of grain. 

 

 

Fig. 12 Calculated 3D vector of temperature gradient ahead of the solidification front at z = 9 mm 

and z = 6 mm: (a) WFLBW, (b) EMS-WFLBW. 

 

 Fig. 13 shows the grain morphology at the horizontal plane which is 1 mm from the top surface. 

For both processes, the grains only have a small inclination angle with respect to the transverse plane, 

which is well coincident with the numerical results. It could be a confusion that the upper fusion zone 

is composed of columnar grains and equiaxial grains. Actually, the “equiaxial grains” are small cross 



19 

 

sectional areas of the columnar grains. It means that the realistic grain size cannot be reflected from 

the horizontal metallograph. 

 

 

 

Fig. 13 Microstructure morphology at horizontal plane z = 9 mm: (a) WFLBW, (b) EMS-WFLBW 

 

 The EBSD maps at different positions of transverse section are shown in Fig. 14. The fusion 

zone is dominated by columnar grains which grows epitaxially from the fusion line to the center line 

of weld, and few equiaxed grains are observed for both welding processes. By comparing Fig. 14 

(a)~(f), it can be confirmed that the grains at the upper part of the weld are significantly refined in the 

EMS-WFLBW. The averaged grain size reduces from 72 µm to 60 µm in region I, and from 123 µm 

to 91 µm in region II. However, it is worth noting that no refinement occurs in region III in the EMS-

LBW, instead, the grains become even coarser, from 91 µm to 124 µm.  
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Fig. 14 EBSD maps at different positions of transverse section: (a), (c) and (e) from WFBLW, (b), 

(d) and (f) from EMS-WFLBW 

 

 The grain refinement was also reported in the laser + arc hybrid welding of austenitic stainless 

steel with steady magnetic field and it was supposed that the dendrite fragmentation was responsible 

for the refinement [9]. However, the grain refinement by an oscillating magnetic field in the LBW 

results from more complex phenomena. The | |G  and R will be influenced by the enhanced convection. 

The columnar growth may also be supressed directly by the mechanical fragmentation from 

electromagnetic stirring [39]. These influences are integrated, and can not be decoupled without the 

accurate data of the thermal fluid dynamics.  

 In this paper, the calculated weld pool data are used to explain the refining or coarsening of 

grain. Fig. 15 shows the temperature gradient and the solidification rate in the transverse section, in 

which the reinforcement part is excluded. The effect of electromagnetic stirring on the dendrite 

fragmentation can be evaluated by a factor based on Flemings’ criterion for local remelting when the 

fluid flow velocity along the temperature gradient is larger than the solidification rate [40], which 

gives 

2

rms
cr

L 0

1 BK
F

R f d 
   (22) 

If Fcr>1, the dendrite arm will be fragmentated by the electromagnetic stirring to suppress the growth 

of columnar grain. The contour of Fcr on the transverse section is shown in Fig. 16, and the black line 
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represents the isoline of Fcr =1. Similar to Fig. 12, each point in Fig. 15 and Fig. 16 is calculated when 

the solidification front passes through.  

 The different positions on the transverse section solidify at different times. The region near 

the fusion line usually solidifies before the region near the central line. R is low near the fusion line 

because the maximum heat flow direction is almost perpendicular to the welding direction in this 

region. The region near the central line solidifies later with a small α angle, and thus has a high 

solidification rate. | |G  is found to be high at the bottom of weld as well as the region near the fusion 

line. The peak value is about 1×106 K/m, which is close to the calculated value in Ref.[2]. It decreases 

gradually as the solidification front advances towards the top region near the central line.  

 The WFLBW and the EMS-WFLBW have similar | |G  and R at the upper part of the weld, as 

shown in Fig. 15. It means that the grain refinement in region I and II is not dominated by the thermal 

factors. The Lorentz force is strong enough to fragmentate the dendrite arm near the fusion line at the 

upper part of weld (region I), as shown in Fig. 16. When the solidification front passes through the 

top region near the central line (region II), the electromagnet has moved to a far position. The 

magnetic flux density is below 80 mT, and the Fcr value decreases below 0.5. The dendrite arm can 

not be fragmentated by a weak Lorentz force. However, some broken dendrites in the region I can be 

carried into the region II by the transverse convection (Fig. 6), and may act as substrates for the 

nucleation of new grains [41]. Therefore, the columnar growth at upper part is suppressed and the 

grain size is refined.  

 As the fragmentation effect of electromagnetic stirring is proportional to the square of 

magnetic flux density which decreases rapidly along the thickness direction, no fragmentation occurs 

at region III (Fcr <0.65). The EMS-WFLBW has a similar | |G  with WFLBW, but its R is much lower 

than what in WFLBW (0.005 m/s vs. 0.014 m/s). The region III in EMS-WFLBW experiences a 

lower cooling rate ( | |G R), which produces coarser columnar grain. 
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Fig. 15 Solidification parameters on transverse section: (a) solidification rate, (b) temperature 

gradient 

 

Fig. 16 The criterion factor of dendrite fragmentation by electromagnetic stirring on transverse 

section (The black line is the isoline of Fcr =1). 

 

5. Conclusions 

 The weld pool behavior and its direct role on determining the final microstructure in the wire 

feed laser beam welding with electromagnetic stirring (EMS-WFLBW) are studied through 

experiment and numerical simulation in this paper. The conclusions can be summarised as below: 

 (1) A heat transfer and fluid flow model coupled with element transport and magnetic induction is 

developed for EMS-WFLBW to calculate the MHD behavior, temperature and velocity profiles, 
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solidification parameter, keyhole evolution and element distribution. The reasonability of the model 

is well tested against the experimental results. 

(2) Under the magnetic field of 235 mT and 3600 Hz, a Lorentz force with a peak value of 1.9 ×106 

N/m3 is induced in the weld pool. The resultant electromagnetic stirring shows a significant impact 

on the thermal fluid flow. 

(3) The added filler material is mixed more adequately in the weld pool because the downward and 

forward transfer along the longitudinal section is enhanced. The Ni content in the final weld can be 

predicted by the model. 

(4) The grain size at the upper part of the weld is reduced significantly in the EMS-WFLBW. The 

refinement is rationalized quantitatively by the calculated solidification parameter and the criterion 

of dendrite fragmentation by electromagnetic stirring. It is found that the dendrite fragmentation, 

rather than the change in temperature gradient and solidification rate, dominates the grain refinement.  
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Figure caption 

Fig. 1 Experimental system: (a) schematic of EMS-WFLBW, (b) distribution of magnetic flux density. 

Fig. 2 Boundary conditions of simulation model 

Fig. 3 Induced electric current density at longitudinal section 

Fig. 4 Secondary magnetic field in the wed pool. 

Fig. 5 Distribution of the Lorentz force in the weld pool: (a) t0 (b) t0+1/4×magnetic field period 

Fig. 6 Calculated temperature profile and velocity field: (a) WFLBW, (b) EMS-WFLBW 

Fig. 7 Image of weld pool captured by high-speed camera 

Fig. 8 Velocity magnitude at the longitudinal section: (a) WFLBW, (b) EMS-WFLBW 

Fig.9 Experimental and numerical fusion line shape: (a) WFLBW, (b) EMS-WFLBW 

Fig. 10 Calculated Ni distribution on transverse section: (a) WFLBW, (b) EMS-WFLBW 

Fig. 11 Comparison of calculated and experimental Ni content along center line of transverse section: 

(a) WFLBW, (b) EMS-WFLBW 

Fig. 12 Calculated 3D vector of temperature gradient ahead of the solidification front at z = 9 mm 

and z = 6 mm: (a) WFLBW, (b) EMS-WFLBW. 

Fig. 13 Microstructure morphology at horizontal plane z = 9 mm: (a) WFLBW, (b) EMS-WFLBW 

Fig. 14 EBSD maps at different positions of transverse section: (a), (c) and (e) from WFBLW, (b), 

(d) and (f) from EMS-WFLBW 

Fig. 15 Solidification parameters on transverse section: (a) solidification rate, (b) temperature 

gradient 

Fig. 16 The criterion factor of dendrite fragmentation by EMS on transverse section (The black line 

is the isoline of Fcr =1). 
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Table caption 

Table 1 Nominal chemical composition of 304 steel and Inconel 625 

Table 2 Nomenclature in the simulation model. 

 


