34 research outputs found

    Human RioK3 is a novel component of cytoplasmic pre-40S pre-ribosomal particles

    Get PDF
    Maturation of the 40S ribosomal subunit precursors in mammals mobilizes several non-ribosomal proteins, including the atypical protein kinase RioK2. Here, we have investigated the involvement of another member of the RIO kinase family, RioK3, in human ribosome biogenesis. RioK3 is a cytoplasmic protein that does not seem to shuttle between nucleus and cytoplasm via a Crm1-dependent mechanism as does RioK2 and which sediments with cytoplasmic 40S ribosomal particles in a sucrose gradient. When the small ribosomal subunit biogenesis is impaired by depletion of either rpS15, rpS19 or RioK2, a concomitant decrease in the amount of RioK3 is observed. Surprisingly, we observed a dramatic and specific increase in the levels of RioK3 when the biogenesis of the large ribosomal subunit is impaired. A fraction of RioK3 is associated with the non ribosomal pre-40S particle components hLtv1 and hEnp1 as well as with the 18S-E pre-rRNA indicating that it belongs to a bona fide cytoplasmic pre-40S particle. Finally, RioK3 depletion leads to an increase in the levels of the 21S rRNA precursor in the 18S rRNA production pathway. Altogether, our results strongly suggest that RioK3 is a novel cytoplasmic component of pre-40S pre-ribosomal particle(s) in human cells, required for normal processing of the 21S pre-rRNA

    Structural and functional analysis of the Rous Sarcoma virus negative regulator of splicing and demonstration of its activation by the 9G8 SR protein

    Get PDF
    Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5′-part is considered as an ESE binding SR proteins. Its 3′-part contains a decoy 5′-splice site (ss), which inhibits splicing at the bona fide 5′-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity

    BC1-FMRP interaction is modulated by 2′-O-methylation: RNA-binding activity of the tudor domain and translational regulation at synapses

    Get PDF
    The brain cytoplasmic RNA, BC1, is a small non-coding RNA that is found in different RNP particles, some of which are involved in translational control. One component of BC1-containing RNP complexes is the fragile X mental retardation protein (FMRP) that is implicated in translational repression. Peptide mapping and computational simulations show that the tudor domain of FMRP makes specific contacts to BC1 RNA. Endogenous BC1 RNA is 2′-O-methylated in nucleotides that contact the FMRP interface, and methylation can affect this interaction. In the cell body BC1 2′-O-methylations are present in both the nucleus and the cytoplasm, but they are virtually absent at synapses where the FMRP–BC1–mRNA complex exerts its function. These results strongly suggest that subcellular region-specific modifications of BC1 affect the binding to FMRP and the interaction with its mRNA targets. We finally show that BC1 RNA has an important role in translation of certain mRNAs associated to FMRP. All together these findings provide further insights into the translational regulation by the FMRP–BC1 complex at synapses

    Platinaae : plateforme d’ingénieurie en chimie analytique au service de vos recherches

    No full text
    Platinaae : plateforme d’ingénieurie en chimie analytique au service de vos recherches. Congrès 2016 de la Société d'Ecotoxicologie Fondamentale et Appliqué

    An experimental study of Saccharomyces cerevisiae

    No full text

    The Cm56 tRNA modification in archaea is catalyzed either by a specific 2′-O-methylase, or a C/D sRNP

    No full text
    We identified the first archaeal tRNA ribose 2′-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2′-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2′-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2′-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs

    An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA

    No full text
    International audienceThe structure and accessibility of the S. cerevisiae U3A snoRNA was studied in semi-purified U3A snoRNPs using both chemical and enzymatic probes and in vivo using DMS as the probe. The results obtained show that S. cerevisiae U3A snoRNA is composed of a short 5' domain with two stem-loop structures containing the phylogenetically conserved boxes A' and A and a large cruciform 3' domain containing boxes B, C, C' and D. A precise identification of RNA-protein contacts is provided. Protection by proteins in the snoRNP and in vivo are nearly identical and were exclusively found in the 3' domain. There are two distinct protein anchoring sites: (i), box C' and its surrounding region, this site probably includes box D, (ii) the boxes B and C pair and the bases of stem-loop 2 and 4. Box C' is wrapped by the proteins. RNA-protein interactions are more loose at the level of boxes C and D and a box C and D interaction is preserved in the snoRNP. In accord with this location of the protein binding sites, an in vivo mutational analysis showed that box C' is important for U3A snoRNA accumulation, whereas mutations in the 5' domain have little effect on RNA stability. Our in vivo probing experiments strongly suggest that, in exponentially growing cells, most of the U3A snoRNA molecules are involved in the 10-bp interaction with the 5'-ETS region and in two of the interactions recently proposed with 18S rRNA sequences. Our experimental study leads to a slightly revised version of the model of interaction proposed by J. Hughes. Single-stranded segments linking the heterologous helices are highly sensitive to DMS in vivo and their functional importance was tested by a mutational analysis
    corecore