44 research outputs found

    Adaptive System Identification using Markov Chain Monte Carlo

    Full text link
    One of the major problems in adaptive filtering is the problem of system identification. It has been studied extensively due to its immense practical importance in a variety of fields. The underlying goal is to identify the impulse response of an unknown system. This is accomplished by placing a known system in parallel and feeding both systems with the same input. Due to initial disparity in their impulse responses, an error is generated between their outputs. This error is set to tune the impulse response of known system in a way that every change in impulse response reduces the magnitude of prospective error. This process is repeated until the error becomes negligible and the responses of both systems match. To specifically minimize the error, numerous adaptive algorithms are available. They are noteworthy either for their low computational complexity or high convergence speed. Recently, a method, known as Markov Chain Monte Carlo (MCMC), has gained much attention due to its remarkably low computational complexity. But despite this colossal advantage, properties of MCMC method have not been investigated for adaptive system identification problem. This article bridges this gap by providing a complete treatment of MCMC method in the aforementioned context

    An annotated checklist of Coccinellidae with four new records from Pakistan (Coleoptera, Coccinellidae)

    Get PDF
    Some new ladybird (Coleoptera: Coccinellidae) records collected during the last four years across Sindh are reported. A first preliminary checklist of ladybirds from Sindh is presented, consisting of one subfamily, ten tribes, 21 genera, and 29 species including four new records, namely Bulaea lichatschovii (Hummel), Exochomus pubescens Küster, Scymnus (Pullus) latemaculatus Motschulsky, Scymnus (Pullus) syriacus Marseul, and four varieties of the species Cheilomenes sexmaculatus (Fabricius)

    Carbon nanotubes incorporated Z-scheme assembly of AgBr/TiO2 for photocatalytic hydrogen production under visible light irradiations

    Get PDF
    Photocatalytic H2 production is a promising strategy toward green energy and alternative to carbon-based fuels which are the root cause of global warming and pollution. In this study, carbon nanotubes (CNTs) incorporated Z-scheme assembly of AgBr/TiO2 was developed for photocatalytic H2 production under visible light irradiations. Synthesized photocatalysts were characterized through transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), X-ray diffractometer (XRD), Fourier transform infrared (FTIR), photoluminescence spectra (PL), Brunauer Emmet-Teller(BET), and UV-vis spectroscopy analysis techniques. The composite photocatalysts exhibited a H2 production of 477 ppm which was three-folds higher than that produced by TiO2. The good performance was attributed to the strong interaction of three components and the reduced charge recombination, which was 89 and 56.3 times lower than the TiO2 and AgBr/TiO2. Furthermore, the role of surface acidic and basic groups was assessed and the photocatalytic results demonstrated the importance of surface functional groups. In addition, the composites exhibited stability and reusability for five consecutive cycles of reaction. Thus, improved performance of the photocatalyst was credited to the CNTs as an electron mediator, surface functional groups, higher surface area, enhanced charge separation and extended visible light absorption edge. This work provides new development of Z-scheme photocatalysts for sustainable H2 production

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    High-resolution multidimensional parametric estimation for nuclear magnetic resonance spectroscopy

    No full text
    Nuclear Magnetic Resonance spectroscopy (NMR) is a powerful technique for rapid and efficient quantitation of compounds in chemical samples. NMR causes the nuclei in the molecules to resonate and various chemical arrangements appear as peaks in the Fourier spectrum of a free induction decay (FID). The spectral parameters elicited from the peaks serve as a fingerprint of the chemical components contained in the molecule. These fingerprints can be employed to understand the chemical structure. Signal acquired from a NMR spectrometer is ideally modelled as a superposition of multiple damped complex exponentials (cisoids) in Additive White Gaussian Noise (AWGN). The number as well as the spectral parameters of the cisoids need to be estimated for characterisation of the underlying chemicals. The estimation, however, suffers from numerous difficulties in practice. These include: unknown number of cisoids, large signal length, large dynamic range, large peak density, and numerous distortions caused by experimental artefacts. This thesis aims at the development of estimators that, in view of the above-mentioned practical features, are capable of rapid, high-resolution and apriori-information-free quantitation of NMR signals. Moreover, for the analytic evaluation of the performance of such estimators, the thesis aims to derive interpretable analytic results for the fundamental estimation theory tool for assessing the performance of an unbiased estimator: the Cramer Rao Lower Bound (CRLB). By such results, we mean those that analytically allow the determination, in terms of the CRLB, of the impact of the free model parameters on the estimator performance. For the CRLB, we report analytic expressions on the variance of unbiased parameter estimates of damping factors, frequencies and complex amplitudes of an arbitrary number of damped cisoids embedded in AWGN. In addition to the CRLB, analytic expressions for the determinant and the condition number of the associated Fisher Information Matrix (FIM) are also reported. Further results, in similar order, are reported for two special cases of the damped cisosid model: the Magnetic Resonance Relaxometry model and the amplitude-only model (employed in quantitative NMR - qNMR). Some auxiliary results for the above-mentioned models are also presented, i.e., on the multiplicity of the eigenvalues and the factorisation of the characteristic polynomial associated with their respective FIMs. These results have not been previously reported. The reported theoretical results successfully account for various physical and chemical phenomena observed in experimental NMR data, and quantify their impact on the accuracy of an unbiased estimator as a function of both model and experimental parameters, e.g., influence of prior knowledge, peak multiplicity, multiplet symmetry, solvent peak, carbon satellites, etc. For rapid, high-resolution and apriori-information-free quantitation of NMR signals, a sub-band Steiglitz-McBride algorithm is reported. The developed algorithm directly converts the time-domain FID data into a table of estimated amplitudes, phases, frequencies and damping factors, without requiring any previous knowledge or pre-processing. A 2D sub-band Steiglitz-McBride algorithm, for the quantitation of 2D NMR data in a similar manner, is also reported. The performance of the developed algorithms is validated by their application to experimental data, which manifests that they outperform the state-of-the-art in terms of speed, resolution and apriori-information-free operation
    corecore