1,843 research outputs found

    Interpreting feedback: a discourse analysis of teacher feedback and student identity

    Get PDF
    Feedback has typically been studied as a means of improving academic performance. Few studies inquire into the processes by which feedback shapes student identity. The authors carry out a discourse analysis of written comments to explore how feedback is discursively constructed by both teachers and students. Analysis of written feedback, think-aloud protocols, and semi-structured interviews work to arrive at an understanding of how feedback is interpreted by both teachers and students, paying special attention to how such interpretations contribute to a student’s identity. The following themes emerged as likely interpretations: feedback as a discourse of correction, feedback as a set of ontological metaphors, and feedback as a process of rhetorical listening. The discourse analysis reveals that while teachers tend to interpret feedback as a means of correcting a student’s text, students’ interpretations of feedback contribute to the construction of their selves. Reflecting on these results, the authors suggest teachers construct feedback as a personal conversation that remains sensitive to the immediate personal effects on students

    Using APOGEE Wide Binaries to Test Chemical Tagging with Dwarf Stars

    Full text link
    Stars of a common origin are thought to have similar, if not nearly identical, chemistry. Chemical tagging seeks to exploit this fact to identify Milky Way subpopulations through their unique chemical fingerprints. In this work, we compare the chemical abundances of dwarf stars in wide binaries to test the abundance consistency of stars of a common origin. Our sample of 31 wide binaries is identified from a catalog produced by cross-matching APOGEE stars with UCAC5 astrometry, and we confirm the fidelity of this sample with precision parallaxes from Gaia DR2. For as many as 14 separate elements, we compare the abundances between components of our wide binaries, finding they have very similar chemistry (typically within 0.1 dex). This level of consistency is more similar than can be expected from stars with different origins (which show typical abundance differences of 0.3-0.4 dex within our sample). For the best measured elements, Fe, Si, K, Ca, Mn, and Ni, these differences are reduced to 0.05-0.08 dex when selecting pairs of dwarf stars with similar temperatures. Our results suggest that APOGEE dwarf stars may currently be used for chemical tagging at the level of ∼\sim0.1 dex or at the level of ∼\sim0.05 dex when restricting for the best-measured elements in stars of similar temperatures. Larger wide binary catalogs may provide calibration sets, in complement to open cluster samples, for on-going spectroscopic surveys.Comment: 21 pages, 14 figures, accepted for publication in Ap

    A model for two-proton emission induced by electron scattering

    Get PDF
    A model to study two-proton emission processes induced by electron scattering is developed. The process is induced by one-body electromagnetic operators acting together with short-range correlations, and by two-body Δ\Delta currents. The model includes all the diagrams containing a single correlation function. A test of the sensitivity of the model to the various theoretical inputs is done. An investigation of the relevance of the Δ\Delta currents is done by changing the final state angular momentum, excitation energy and momentum transfer. The sensitivity of the cross section to the details of the correlation function is studied by using realistic and schematic correlations. Results for 12^{12}C, 16^{16}O and 40^{40}Ca nuclei are presented.Comment: 30 pages, 18 figures, 3 table

    Accounting for preemption and migration costs in the calculation of hard real-time cyclic executives for MPSoCs

    Get PDF
    This work introduces a methodology to consider preemption and migration overhead in hard real-time cyclic executives on multicore architectures. The approach performs two iterative stages. The first stage takes a cyclic executive, from which the number and timing of all preemptions and migrations for every task is known. Then, it includes this overhead by updating the worst-case execution time (WCET) of the tasks. The second stage calculates a new cyclic executive considering the new WCET of tasks. The stages iterate until the preemption and migration overhead keeps constant. © 2016 IEEE

    Superscaling in electroweak excitation of nuclei

    Full text link
    Superscaling properties of 12C, 16O and 40Ca nuclear responses, induced by electron and neutrino scattering, are studied for momentum transfer values between 300 and 700 MeV/c. We have defined two indexes to have quantitative estimates of the scaling quality. We have analyzed experimental responses to get the empirical values of the two indexes. We have then investigated the effects of finite dimensions, collective excitations, meson exchange currents, short-range correlations and final state interactions. These effects strongly modify the relativistic Fermi gas scaling functions, but they conserve the scaling properties. We used the scaling functions to predict electron and neutrino cross sections and we tested their validity by comparing them with the cross sections obtained with a full calculation. For electron scattering we also made a comparison with data. We have calculated the total charge-exchange neutrino cross sections for neutrino energies up to 300 MeV.Comment: 19 pages, 12 figures, 1 table; to be published in Physical Review

    Magnetic excitations in nuclei with neutron excess

    Full text link
    The excitation of the 1+1^+, 2−2^- and 3+3^+ modes in 16^{16}O, 22^{22}O, 24^{24}O, 28^{28}O, 40^{40}Ca, 48^{48}Ca, 52^{52}Ca and 60^{60}Ca nuclei is studied with self-consistent random phase approximation calculations. Finite-range interactions of Gogny type, containing also tensor-isospin terms, are used. We analyze the evolution of the magnetic resonances with the increasing number of neutrons, the relevance of collective effects, the need of a correct treatment of the continuum and the role of the tensor force.Comment: 18 pages, 12 figures, 2 tables, accepted for publication in Physical Review

    Multiple shape coexistence in the nucleus 80^{80}Zr

    Get PDF
    We study the low-lying energy spectrum of the rp-process waiting point nucleus 80Zr with state-of-the-art beyond mean field methods with the Gogny D1S interaction. Symmetry restoration and configuration mixing of axial and triaxial shapes are included in the calculations. Five 0+ states corresponding to different nuclear shapes are obtained below 2.25 MeV and several rotational and {\gamma}- bands built upon them are identified. Nevertheless, these states do not modify the {\beta}-decay half-life having a negligible effect in the rp-process. A good agreement with the available experimental data is obtained.Comment: 6 pages, 3 figures, submitted to Physics Letters
    • …
    corecore