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Abstract— This work introduces a methodology to consider
preemption and migration overhead in hard real-time cyclic
executives on multicore architectures. The approach performs
two iterative stages. The first stage takes a cyclic executive, from
which the number and timing of all preemptions and migrations
for every task is known. Then, it includes this overhead by
updating the worst-case execution time (WCET) of the tasks.
The second stage calculates a new cyclic executive considering
the new WCET of tasks. The stages iterate until the preemption
and migration overhead keeps constant.

Index Terms— Real-Time, embedded systems, cyclic executive,
scheduling, clustering algorithms, multiprocessors, worst case
execution time

I. INTRODUCTION

Current automotive and aerospace systems encompass a large
and increasing number of electronic control units (ECUs),
and ECU consolidation is a desirable objective to reduce
size, weight, power and cost. The usage of multicore systems
on chip (MPSoCs) helps to consolidate components into
single miniaturized solutions. They can also provide major
improvements for some demanding applications such as en-
gine controllers, real-time (RT) image processing or advance
driving assistance (ADA) systems. However, ensuring the
accomplishment of hard RT (HRT) and safety constraints
on multicores can easily lead to overprovisioning, requiring
more cores, and more powerful, than the ones actually
demanded. The latter problem comes out from a variety of
sources, with two of them standing out: worst-case execution
time (WCET) estimation for each task, and task scheduling.

Algorithms for RT multiprocessor scheduling can be broadly
classified into partitioned, global, and hybrid schemes (semi-
partitioned, clustered) [1], [2]. Partitioned schedulers [3],
[4] statically allocate tasks to processors. They can leverage
well-known RT uniprocessor schedulers such as RM, which
limits CPU utilization to a 69.3% in uniprocessors [5], or
EDF which is optimal on uniprocessors. Unfortunately, a
partitioned approach on multiprocessors decreases utilization
to 50% [6] under a sufficient schedulability condition.

Global schedulers allocate tasks to any CPU. They are mostly
preemptive and allow task migration among CPUs. A well-
known example is gEDF, which guarantees soft real-time
(SRT) schedulability for implicit-deadline task sets [7] but is
not HRT optimal [8], [9]. Aiming to achieve maximum CPU
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utilization, fluid global schedulers leverage the theoretical
principle of instantly sharing all CPUs among all active
jobs. In this vein, pfair algorithms [10] achieve HRT optimal
schedulability for implicit-deadline tasks sets, but they incur
in an unfeasible number of context switches. Approaches like
deadline partitioning can notably reduce such overhead [11].
Howbeit, global schedulers are considered too complex to be
practical, whereas hybrid approaches combined with ad-hoc
heuristics can achieve similar optimality [12].

Meanwhile, the industry remains understandably conserva-
tive with the implementation of these algorithms in critical
systems, where the use of static scheduling is pervasive [13],
[14]. Thus, in ARINC 653 [15] a cyclic executive (CE) is a
deterministic scheme of repeated execution of a series of
minor frames. Each minor frame (MIF) define a sequence of
jobs, that execute within the frame. The collection of minor
frames is referred as a major frame (MAF). CEs are usually
implemented as tables with invocation times for each job. A
CE offers two significant advantages: its predictability and
low run-time overhead.

Recent research shows that we can get best of two worlds
by calculating a predictable, low-overhead CE while obtain-
ing the optimal utilization provided by global or clustered
schemes [2], [13]. However, there remain two non-negligible
problems to solve. One of them is WCET estimation on
multiprocessors, and it is common to every RT multipro-
cessor scheduler. The other one is the inclusion of context-
switch overheads; it is common to any preemptive scheduling
scheme used for calculating a CE, and is just the problem
we address and solve in this paper.

WCET can be estimated using probabilistic and statistical
methods [16], or by calculating the longest possible path
in the instruction execution flow of a task as far as tasks
do not share resources. In the latter case, the WCET must
account for safe time bounds over shared resource such as
the memory hierarchy and its interconnection on a multicore
system. Conservative approaches multiply the time cost of
a memory reference (instruction or data) by the number
of cores, yielding safe but unrealistic upper bounds which
are hard to narrow [17]. The problem exacerbates when the
scheduling scheme allows task instances (jobs) to migrate
among cores.

The cost of preemptions and migrations is usually neglected
or assumed part of the WCET [11], [18]. This is a major
problem because task sets which are schedulable under a
given global scheduler may become not schedulable when
accounting for such overhead. Authors from [19] provide an



in-depth study on practical issues regarding semi-partitioned
algorithms. They report that ignoring overheads when as-
signing tasks may cause overutilization. Thus, a task set that
exhausts the capacity of the processors would be unschedu-
lable. They recommend to add a worst-case bound for the
overheads to prevent this problem.

There is a context switch whenever a job is released or
terminates. The number of such compulsory context switches
is just the number of jobs per tasks, and is independent on
the scheduler, which can differ in CPU allocation of course.
Thus, it is trivial to account for the cost of such context
switches either with non-preemptive or preemptive sched-
ulers, because we can add it beforehand to the WCET. How-
ever, preemptive schedulers introduce new context switches
/migrations which largely vary with the scheduler. Account-
ing for such preemption costs is not trivial. We can either
consider upper bounds or run into a causality dilemma,
because we only know the precise number of preemptions
and migrations after calculating the CE. In priority-driven
scheduling algorithms, such as RM or EDF, we can find an
upper bound for the number of preemptions, which is strictly
less than the number of jobs that are being scheduled; this
result also holds for the number of job migrations among
CPUs [20]. In global scheduling policies, the upper bound
for preemptions and for job migrations per minor frame are,
respectively, the number of tasks minus one, and the number
of CPU minus one [11]. Nevertheless, these numbers may
be very pessimistic, worsening the WCET overestimation
problem.

Another approach is to calculate the CE considering the
WCET of tasks obviating any overhead, then compute the
overhead, add it to the CE, and increase the frequency to
augment system capacity accordingly. However, this naive
approach leads to missing task deadlines as we can see in
the following example.

Motivational example Fig. 1a shows a CE for the set of
tasks in Table I, where preemption and migration costs are
neglected. Illustratively, Fig. 1b highlights the four preemp-
tions and four migrations, adding their computing time to the
CE such that the overall execution overflows the hyperperiod.
Now, assume a worst-case preemption (migration) cost pcost
(mcost) of 10 and 20 cycles, respectively. Let’s first compute
the associated utilization overhead on the system uoverhead

and then update the frequency accordingly. The increment of
the utilization system rate can be calculate as u′ = uoverhead

Utasks

such that uoverhead is the utilization of the overhead up to
the hyperperiod, uoverhead = 4pcost+4mcost

Hf . If we increase
the frequency by this amount to achieve a 100% utilization,
we can expect that the added overhead now fits in the
system up to the hyperperiod. The frequency increment is

3f
2000f = 3

2000 , i.e. the new frequency is f = 1001.5.
However, this approach leads to deadline misses. Both τ1 and
τ2 should complete their first job by time=10. On processor
P2, the first job of τ1 (j1) completes its WCET (9000 cycles),
afterwards the first job of τ2 (j5), previously allocated
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Fig. 1: Motivational example. CE of task set on Tab. I. j1 to
j4 are τ1 jobs, j5 to j8 are τ2 jobs, and j9 is the only job of
τ3. The black thin line represents a job boundary, the black
bar indicates a preemption and the hatched bar indicates a
migration.

on P1, resumes and completes its remaining 1000 cycles.
Considering the corresponding migration cost, the execution
ends at 9000+20+1000

1001.5 = 10.005, missing τ2 deadline at 10.

Tasks τ1 τ2 τ3 Utot 2
cci 9000 9000 8000
di 10 10 40
ui 0.9 0.9 0.8

TABLE I: Task set, WCET (cci) given in cycles and relative
deadlines (di) in time units. Utilization value ui is computed
assuming a frequency f = 1000

This research The main contribution of this work is an
iterative methodology to compute a CE on a multicore
processor considering the overhead costs due to preemptions
and migrations ensuring no deadline misses. The proposed
algorithm AdWCET starts by computing a CE upon the
WCET obtained from static code analysis. From this CE
the number and temporal localization of all preemptions and
migrations are known for every job and core, then the WCET
of each task is adjusted by adding up the corresponding over-
head. The stages iterate until the preemption and migration
overhead keeps constant, thus concluding the adjustment.

Novelty As far as we know, this paper introduces the first
method to improve the calculation of CEs considering the
migration preemption costs, providing a more realistic path
to obtain predictable HRT CEs with optimal utilization and
minimum overhead on a multicore architecture.The proposed
methodology can be applied to any multiprocessor RT pre-
emptive scheduler ( [13]) but in this work we consider
implicit-deadline HRT task set and leverage CAlECS [2].
This hybrid RT scheduler optimizes processor utilization at
the lowest possible energy to comply thermal and temporal
constraints, obtaining a CE with very few preemptions and
migrations, but obviates the aggregated overhead. The algo-
rithm tries to find fully partitioned clusters, and resorts to a
global scheduler to complete the scheduling when required.

Organization The next section defines the system and



problem. Section III provides an overview of CAlECS. The
methodology to adjust the WCET is presented on Section IV.
Experimental results are shown on Section V. Finally, some
conclusions are drawn on Section VI.

II. PROBLEM AND SYSTEM DEFINITION

We assume an independent periodic task set [5] to be
scheduled upon an homogeneous m-processor platform.

Definition 1: Let T = {τ1, ..., τn} be a set of n independent
periodic tasks under hard real time (HRT) constraints. Each
task is identified by the 3 − tuple τi = (cci, di, ωi), where
cci is the worst-case execution time in processor cycles
(WCET) which takes to complete any instance of the task
(job), ωi its period and di its deadline (di = ωi). We only
consider ωi = di (implicit deadlines) in this work and
therefore we define a task as the pair τi = (cci, ωi).

According to this definition we generally use ω (the period)
throughout the paper, referring to d (the deadline) when in
the context of deadline partitioning.

Definition 2: Let P = {P1, . . . , Pm} be a set of m identical
processors, which can work at different, but discrete clock
frequencies f ∈ F = {f1, . . . , fmax}.

A task τi executed on a processor Pj at its maximum
frequency fmax, requires ci = cci

fmax
processor time at

every ωi interval, such that its utilization is calculated as:
ui =

cci
ωifmax

. A task set with implicit deadlines is feasible
if the following (sufficient) condition holds [10]:

U =

n∑
i=1

cci
ωifmax

≤ m (1)

U is the system utilization and m is the number of proces-
sors.

Definition 3: The hyperperiod (H) of task set T is the least
common multiple (lcm) of the periods of all the tasks in T
and the quantum is the greatest common divisor (gcd) of the
periods of all tasks in T .

A job is any instance of a periodic task τi. Therefore, a
periodic task can produce an infinite number of jobs.

Definition 4: Let J = {j1, . . . , jx} denote all the jobs
generated by task set T that have their arrival times and
deadlines within H , such that each τi generates H

ωi
jobs.

We also declare the mapping L : J → T where jx ∈ J and
τi ∈ T , such that L relates a job to its task.

Definition 5: A cyclic executive (CE) is a schedule deter-
mined prior to run-time. It describes a sequence of jobs to
be executed on a fixed period of time called minor cycle.
The complete execution of the task set is defined in several
minor cycles, which are then grouped in a major cycle, also
called major frame.

Fig. 2: CAlECS offline modules used to compute a cyclic
executive

On [13], the major cycle is selected as the hyperperiod
and the minor cycle as the quantum. Formally, the problem
addressed in this work is stated as follows.

Problem 1: Given the sets T and P of tasks and CPUs,
respectively, the problem consists in designing a CE that ac-
counts for the overhead of both migrations and preemptions.

III. THERMAL-AWARE CYCLIC EXECUTIVE WITH
OPTIMAL UTILIZATION

AdWCET can virtually use any appropriate scheduler to
compute a CE at each iteration. This section summarizes
CAlECS [2], the scheduler we leverage in this paper because
of its properties (Sec. I). Fig. 2 shows CALEC’s modules.
The task set conditioner receives the task set T and processor
set P , and outputs a subset F ⊆ F of frequencies such that
the task set is feasible, thermal safe and energy efficient [2].
Then, the task clustering module tries to partition the task
set into subsets (Qk) that could fit in clusters of sizes
sj ≤ m. If the cluster has size equal to one, then it is
scheduled using EDF [21], otherwise the cluster is scheduled
using AlECS [22], which is an strategy that encompasses a
deadline partitioned scheme, a linear programming problem
and a zero-laxity policy.

The individual schedules per each cluster are then put
together into a single CE within the same major frame.
For every CE under CAlECS, the major cycle is selected
as the hyperperiod H of the task set. The minor cycles
are selected as the time intervals defined from the set SD
of deadlines of the task set. The example in Fig. 1 entails
SD = {0, 10, 20, 30, 40}; therefore the set of minor cycles
results in {[0, 10), [10, 20), [20, 30), [30, 40)}.

IV. THE ADWECT ALGORITHM

At every iteration, the input to AdWCET is a CE (computed
with CAlECS in this paper). Then AdWCET updates the
WCET according to this CE. When the WCET stabilize, the
algorithm finishes. Otherwise a new iteration of AdWCET is
executed. We assume that the WCET of each task used to cal-
culate the first CE is obtained from static tools and accounts
for memory conflicts but not for scheduling overheads. Alg. 1
formalizes the steps, which we outline as follows:



Tasks τ1 τ2 τ3 τ4 Utot 2
cci 3000 4000 5000 4000
di 4 6 12 24

TABLE II: Task set in the example. WCET (cci) given in
cycles, relative deadlines (di) in time units.

1) Adjust WCET at every task with the new task over-
head. For the first iteration this overhead is zero.

2) Check if the adjusted task set is still schedulable
with the current frequency. Otherwise increase the
frequency to make the task set schedulable again.

3) Compute a CE and the appropriate frequency for the
adjusted task set.

4) Count the number of preemptions and migrations per
job on the resulting schedule.

5) Given a preemption cost (pcost) and a migration cost
(mcost), compute the overhead of each job (jx) as pcost
times its number of preemptions (prejx ) plus the mcost

times its number of migrations (migjx ):

overheadjx = (pcost×prejx)+(mcost×migjx) (2)

6) For each task, select the job that produced the maxi-
mum overhead and take this as the task overhead

7) For each task, check if its new overhead is greater than
the previous overhead. If so, update the task with the
new, higher, overhead.

8) If any task overhead was changed at the previous step,
return to step 1.

9) Otherwise the algorithm has converged.

Line 13 in Alg. 1 specifies the computation of the new
operating frequency when the adjusted task set is no longer
schedulable due to the increased overhead. AdWCET re-
quires a minimum of two iterations. The first one calculates
a first schedule with its corresponding overheads; the second
one adjusts the WCET based on this overhead. We now
provide an example.

Example 1 Consider the task set in Tab. II, to schedule on
m = 2 processors with the available discrete frequencies f ∈
F = {1000, 1020, 1040, . . . , 2000} (Hz). The cost in cycles
per preemtpion is pcost = 10 and per migration is mcost =
20 (cycles). This task set spawns 13 jobs. Jobs j1 to j6 are
generated by τ1, j7 to j10 by τ2, j11 and j12 by τ3, and j13
is the only job of τ4. This example requires three iterations
to converge, but the overhead does not increase from the
second to the third iteration. Thus the resulting task set and
CE are the same. Fig. 3 displays the two CEs computed.
On each figure we highlight the preemptions (black bars)
and migrations (hatched bars). Both iterations are described
bellow.

Iteration 1 (Fig. 3a)

Step 1 Add overhead to original task set (none needed in
1st. iteration)

Step 2 Check schedulability. The system is schedulable
with f = 1000
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(a) Iteration 1, totalling 5 preemptions and 3 migrations
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(b) Iteration 2, totalling 9 preemptions and 5 migrations

Fig. 3: Iterations for AdWCET to adjust the WCET of task
set from Table II, using CAlECS as scheduling policy.

Step 3 Compute a cyclic executive: see Fig. 3a
Step 4 Count migrations and preemptions per job:

Migrations per job [(j8, 1), (j9, 1), (j10, 1)].
Preemptions per job:
[(j8, 1), (j9, 1), (j10, 1), (j11, 1), (j12, 1)]

Step 5 Calculate overhead per job: zero for every job but
[(j8, 30), (j9, 30), (j10, 30), (j11, 10), (j12, 10)]

Step 6 Select new overhead per task: [0, 30, 10, 10]
Step 7 Check if the new task overhead > current task

overhead: this is true because current overhead is
zero, since this is the first iteration.

Step 8 Update current task overhead: [0, 30, 10, 10]

End of iteration 1

Iteration 2 (Fig. 3b)

Step 1 Add overhead to original task set:
Adjusted WCET by task: [3000, 4030, 5010, 4010]

Step 2 Check schedulability: U = 2.00625, the system is no
longer schedulable with f = 1000, since U > m, then
the new f = 1

m

∑n
i=1

adjustedWCETi
ωi

= 1003.12, but
because of the discrete values f = 1020

Step 3 Compute a cyclic executive, see Fig. 3b
Step 4 Count migrations and preemptions per job:

Migrations by job:
[(j8, 1), (j10, 1), (j11, 1), (j12, 1), (j13, 1)].
Preemption by job:
[(j8, 1), (j9, 1), (j10, 1), (j11, 2), (j12, 2), (j13, 2)]

Step 5 Calculate overhead by job: zero for every job but
[(j8, 30), (j9, 10), (j10, 30), (j11, 40), (j12, 40), (j13, 40)]

Step 6 Select new overhead per task: [0, 30, 40, 40]
Step 7 Check if the new task overhead > current task

overhead: 0 = 0, 30 = 30, 40 > 10, 40 > 10

Step 8 Update current overhead per task as: [0, 30, 40, 40]

End of iteration 2

In this second iteration the overhead of the tasks increased
from [0, 30, 10, 10] to [0, 30, 40, 40], therefore the adjustment
requires a third iteration, which we omit here for the sake of
space. On such third iteration the overhead does not increase



Algorithm 1 AdWCET - WCET adjustment
1: Input T :Task set; m: Number of CPUs; F : set of CPUs frequencies;

L: mapping of jobs to tasks, pcost: preemption cost, mcost: migration
cost

2: Output A set of adjusted WCET;
3: Aux. functions

· CE(task set, m, f ) – CE computes a CE;
· countPreemptionsMigrations(CE) – Returns the number of preemp-
tions and migrations per job from a given cyclic executive
· taskOverhead(L, overheadj ) – Returns the task’s overhead, as the
maximum overhead from its jobs;

4: adT = T , // each task adτi ∈ adT is a 3-tuple (adcci, wi, di)
5: converge = false,
6: overheadj = [0, ..., 0] // holds the overhead per job jx ∈ J
7: new overheadτ = [0, ..., 0] // holds new overhead per task τi ∈ T
8: current overheadτ=[0,...,0] // current overhead per task τi
9: while not converge do

10: adT = {adτi|adcci = cci + current overheadτ [i]}
// check schedulability of adjusted task set

11: U =
∑n

i=1
adcci
f ωi

12: if U > m then
13: f = min{f ∈ F |f ≥ 1

m

∑n
i=1

adcci
ωi

}
14: end if
15: CE(adT ,m, f)
16: [prej ,migj ]=countPreemptionsMigrations(CE)
17: for all j ∈ J do
18: overheadj [j] = (pcost × prej [j]) + (mcost ×migj [j])
19: end for
20: new overheadτ = task overhead(L, overheadj)
21: if any new overheadτ > current overheadτ then
22: current overheadτ =

max(current overheadτ , new overheadτ )
23: else
24: converge =true
25: end if
26: end while

anymore for any task, and the algorithm converges. The
resulting CE appears in Fig. 3b; the adjusted WCET of the
tasks are: [3000, 4030, 5040, 4040], with frequency f =
1020. The adjusted task set increments system utilization
by 0.5%, but this increase ensures the accomplishment of
temporal constraints.

A. Convergence of AdWCET algorithm

AdWCET algorithm will always converge due to the fact that
the overhead of the tasks is always increased or maintained,
even if the current iteration yields a smaller overhead.
Furthermore, the number of iterations is bounded because
the same scheduling policy holds throughout the adjustment.
Hence, the maximum overhead is bounded by the maximum
number of preemptions (ρ) and migrations (µ) of the pre-
ferred scheduling policy, i.e. n(ρ+µ) iterations on the worst
case, where n is the cardinality of T . Actually, this bound
is unlikely reached. The following section shows AdWCET
performance using CAlECS [2] as the scheduling policy.

V. EXPERIMENTAL RESULTS

This section shows empirically that AdWCET adjust the
CE in a few iterations. Also, we will show the maximum
percentage of WCET increment endured in each experiment
and the overall system utilization increase. We carry out the
experiments using Tertimuss [23], an open-source framework

to model a RT multiprocessor system, simulate different RT
schedulers, and process the results.

A. Experimental setup

Task sets are generated using the Dirichlet Rescale (DRS)
algorithm [24]. The total utilization of each task set is equal
to the number of processors in the experiment, with available
frequencies f ∈ F = {1000, 1020, 1040, . . . , 2000} (Hz).
Task periods are randomly selected between the divisors
of 60, to obtain a major cycle of at most 60 s. The task
sets are executed on systems with 2 and 4 cores, with task-
to-core ratios of 4, 8, 12, 16, 20, 24,28, 32, 36, 40, 44 and 48.
This amounts to 100 experiments per combination, totalling
2400 experiments in all.

B. Methodology for task generation

The task sets for the experiments are generated such that
they are valid and feasible under a m-processor system, i.e
U ≤ m and ui ≤ 1 ∀τi ∈ T .

We first calculate task utilization leveraging the DRS al-
gorithm, which produces n-dimensional vectors uniformly
distributed over the valid region, such that the components
sum to a specified value (total task set utilization). Each
component accepts lower and upper bounds. The algorithm
has the signature u = DRS(n, U , umax, umin), where
u = (U1, U2, . . . , Un) is the output vector of task utilization
values, n is the cardinality of the task set, U is the specified
total utilization and umax = (Umax

1 , Umax
2 , . . . , Umax

n ) and
umin = (Umin

1 , Umin
2 , . . . , Umin

n ) are optional vectors to
constrain the utilization values for the task set, by default
umax = (1, 1, . . . ) and umin = (0, 0, . . . ).

To mimic a realistic setup, the minimum WCET and the pre-
emption/migration costs are of different orders of magnitude.
This follows the commonly accepted notion that a context
switch is negligible with respect to the execution time of a
task.

To this purpose, we define wcetmin as the minimum WCET
that any generated task can receive. The DRS algorithm
allows imposing a lower bound for the computed utilization
of every task in the generated task set, that we calculate as:

umin =
wcetmin

fH
(3)

where f is the frequency and H the hyperperiod. This
expression is deduced from the fact that the utilization ui of
any task τi is inversely proportional to its period ωi (Eq. (1)).
Hence, the minimum utilization is achieved with the largest
possible period, which is the hyperperiod H .

Nevertheless, when constraining the minimum value of every
task we must ensure that the utilization constraint allows for
a feasible task set. Therefore, the utilization lower bound
should not be greater than the total of processors, i.e:

n∑
i=1

wcetmin

fH
≤ m (4)



Fig. 4: Utilization lower bound umin for different hyperperi-
ods. The horizontal lines represent the constraint 1/r, where
r is the task-to-core ratio. f = 1000, fixed for every curve

Hence, the task-to-core ratio (r = n/m) cannot be arbitrar-
ily chosen. There exists a trade off between hyperperiod,
frequency and task-to-core ratio. From Eq. 4 it follows that:

wcetmin

fH
≤ m

n
(5)

Therefore, umin should always be less or equal than 1/r in
order to generate a valid task set:

umin ≤ 1

r
(6)

To illustrate the importance of Eq. (6) on the utilization lower
bound, we plot in Fig. 4 the relation of umin to different
values of H . The frequency value is fixed at f = 1000,
and every umin curve is computed for each wcetmin ∈
[100, 350, 800, 2000, 5000]. The flat colored lines represent
the constraint from Eq. (6), for four task-to-core ratios r.
Therefore, to generate valid task sets, umin must be below
the 1/r desired line.

Notice from Fig. 4 that it is easier to satisfy Eq. (6) for
smaller values of wcetmin. Also, as wcetmin increases the
number of feasible task-to-core ratios decrease.

For example, with wcetmin = 350 and H = 10, we get
umin = wcetmin/(f×10) = 0.035, then a task set with task-
to-core ratio r = 40 will be unfeasible, but for H ≥ 14 this
task-to-core ratio becomes feasible. On the other hand, valid
task sets for H = 10 can be generated with any r ≤ 28. In
our setup we chose wcetmin = 350, and H = 60, therefore
every task set on the experiments is valid.

C. Results

AdWCET iterates to adjust the WCET of a task set according
to the overhead introduced by migrations and preemptions.
The number of iterations is highly dependent on the schedul-
ing algorithm, but this number is bounded.

We generate task sets as explained in Subsec. V-A and focus
on WCET and frequency increases after adjusting the CE,
and on the number of iterations to reach convergence. The
following figures share all the same scheme. The configu-
rations, i.e. number of processors over the number of tasks,

appear on the x-axis, whereas the y-axis holds the studied
feature.

The results on WCET and frequency increments are both
normalized and plotted as percentage increase in Fig. 5. In
the case of WCET, we selected the maximum percentage of
increase among the WCETs on each task set, i.e. it shows
the WCET increment from the task that had the maximum
overhead, and does not represent the behaviour of the whole
task set. In the case of frequency, the percentage increase was
computed as the increment between the frequency on the first
iteration and the frequency at the convergence iteration. The
latter indicates the required increment in system capacity.
The results in Fig. 5 show that the maximum WCET increase
is bounded by 30% and is more variable than the frequency
increase, which lies below 6% for most cases. The increment
in frequency is more stable than the maximum increment in
WCET as the number of tasks per core increase. This is
consistent with the fact that the latter represents the maxi-
mum overhead of a single task while the former measures
the overhead on the task set.

Fig. 6 shows the number of iterations it takes AdWCET to
converge to a solution for each task set in every configura-
tion. Fig. 6a shows the iteration analysis for different task
set sizes on 2-processors. The number of iterations is always
below 15 except for an spurious case. Fig. 6b shows that it
takes more iterations to reach convergence on 4-processors
than on 2-processors. This is the logical result because the
number of possible schedules increases with the number of
tasks and processors.

Fig. 7 shows the analysis of preemptions and migrations
per job in the experiments on 2-processors. We only take
into account the data from the first and last iteration. The
total number of preemptions and migrations never exceeds
1, because of the chosen scheduler (CAlECS). As long as the
number of tasks and processors keeps the same, the number
of preemptions and migrations will be consistent in both
iterations for any other scheduler.

The number of iterations rises with the ratio of tasks per
processor, whereas preemptions and migrations decrease
(Fig. 7, Fig. 6). This is because the theoretical bound for the
iteration is n(ρ+ µ), and therefore the number of iterations
will always be proportional to the task set cardinality, and
to the number of preemptions and migrations. Fortunately,
on CAlECS both migrations and preemptions decrease as
the number of tasks increase, thus keeping the number of
AdWCET iterations low.

VI. CONCLUSIONS

In this work we presented a safe methodology to adjust the
WCET of a task set with HRT constraints, yielding a cyclic
executive (CE) schedule. It is fully deterministic and produce
minimal run-time overhead.

A very common rule when estimating WCET through mea-
surement based analysis (MBA) is to increase the WCET



(a) Maximum WCET increment analysis with m = 2 (b) Maximum WCET increment analysis with m = 4

(c) Frequency increment analysis with m = 2 (d) Frequency increment analysis with m = 4

Fig. 5: Percentage of WCET maximum increase (a and b) and percentage of frequency increase (c and d)

(a) Iteration analysis with m = 2 (b) Iteration analysis with m = 4

Fig. 6: Iteration analysis of AdWCET under CAlECS

(a) Preemption analysis on first iteration (b) Migration analysis on first iteration

(c) Preemption analysis on convergence iteration (d) Migration analysis on convergence iteration

Fig. 7: Analysis of preemption and migrations per job on first and convergence iteration



by a given factor, usually 20% [16], such that the WCET
accounts for any other overheads. Nevertheless, according
to our results this thumb rule is not quite accurate and can
result in both overprovisioning and deadline misses. On the
one hand, if every task’s WCET is increased by a 20%
factor, the system capacity is also incremented, but from
results in Figs. 5.c,d the system capacity only requires around
10% increment, thus incurring in overprovisioning. On the
other hand, Figs. 5.a,b showed that some tasks required a
higher increment than a 20%, therefore some tasks may
miss their deadlines because of incorrect WCET values. In
this context, AdWCET is a good methodology to compute
safer and tighter bounds for WCET estimation. If used for
a particular task set, it will provide accurate scheduling and
WCET estimation.

Furthermore, we tested empirically the performance of Ad-
WCET. It yielded an adjusted task set for every experiment,
with less than 8% increase of system capacity on most cases.
Also, the number of iterations required by AdWCET to
converge was way below the theoretical bound. For example,
AdWCET required 10 iterations to converge on the average
case on a 4-processor system with 192 tasks, against a bound
of 192(ρ+ µ). There is strong evidence that AdWCET is a
viable methodology to obtain tighter WCET bounds when
accounting for overheads due to scheduling decisions.

Future work includes taking into account the possible mem-
ory conflicts while migrating a job on specific memory
hierarchies.
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