527 research outputs found

    A Bound on the Light Emitted During the TP-AGB Phase

    Full text link
    The integrated luminosity of the TP-AGB phase is a major uncertainty in stellar population synthesis models. We use the white dwarf initial final mass relation and stellar interiors models to demonstrate that a significant fraction of the core mass growth for intermediate (1.5 < Msun < 6) mass stars takes place during the TP-AGB phase. We find evidence that the peak fractional core mass contribution for TP-AGB stars is ~20% and occurs for stars between 2 Msun and 3.5 Msun. Using a simple fuel consumption argument we couple this core mass increase to a lower limit on the TP-AGB phase energy output. Roughly half of the energy released in models of TP-AGB stars can be directly accounted for by this core growth; while the remainder is predominantly the stellar yield of He. A robust measurement of the emitted light in this phase will therefore set strong constraints on helium enrichment from TP-AGB stars, and we estimate the yields predicted by current models as a function of initial mass. Implications for stellar population studies and prospects for improvements are discussed.Comment: Submitted to the Astrophysical Journal. 25 pages, 2 figures

    Digital Visual Grammar Concept Map Facilitated EFL Holistic Grammar Comprehension

    Get PDF
    Form-focused deductive grammar learning approach is an effective way to facilitate language learners to memorize atomistic grammatical rules. However, beyond retaining isolated grammar rules, learners can benefit from using web based concept map, a visualized utility, to overlap grammar rules and achieve holistic comprehension. Therefore, this research looks into detail (total nodes, depth, and breadth) of how visual grammar concept map affects student’s examination score and aims to assist students to gain a holistic visual grammar learning through utilizing an online concept map software (CoCoing.info). One hundred and thirty-two college students were involved in this study for 18 weeks. The quantitative results revealed that students who created a more developed and holistic visual grammar concept map gained a better understanding of the grammatical rules. This was however not true for low achieving students. Therefore, more detailed analysis showed students with deeper depth and wider breadth achieved higher score. However, the high achieving students and low achieving students’ comparison study indicated that the depth of the visual grammar concept map is harder for students to construct and is a better indicator of achievement compared to breadth. The findings show that visual grammar concept map can facilitate traditional form-focused classroom

    PAR1- and PAR2-induced innate immune markers are negatively regulated by PI3K/Akt signaling pathway in oral keratinocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protease-Activated Receptors (PARs), members of G-protein-coupled receptors, are activated by proteolytic activity of various proteases. Activation of PAR1 and PAR2 triggers innate immune responses in human oral keratinocytes (HOKs), but the signaling pathways downstream of PAR activation in HOKs have not been clearly defined. In this study, we aimed to determine if PAR1- and PAR2-mediated signaling differs in the induction of innate immune markers CXCL3, CXCL5 and CCL20 via ERK, p38 and PI3K/Akt.</p> <p>Results</p> <p>Our data show the induction of innate immunity by PAR1 requires both p38 and ERK MAP kinases, while PAR2 prominently signals via p38. However, inhibition of PI3K enhances expression of innate immune markers predominantly via suppressing p38 phosphorylation signaled by PAR activation.</p> <p>Conclusion</p> <p>Our data indicate that proteases mediating PAR1 and PAR2 activation differentially signal via MAP kinase cascades. In addition, the production of chemokines induced by PAR1 and PAR2 is suppressed by PI3K/Akt, thus keeping the innate immune responses of HOK in balance. The results of our study provide a novel insight into signaling pathways involved in PAR activation.</p

    Haplotypes of the ovine adiponectin gene and their association with growth and carcass traits in New Zealand Romney lambs

    Get PDF
    Adiponectin plays an important role in energy homeostasis and metabolism in mammalian adipose tissue. In this study, the relationship between adiponectin gene (ADIPOQ) haplotypes and variation in growth and carcass traits in New Zealand (NZ) Romney lambs was investigated using General Linear Models (GLMs). Eight haplotypes were found in these lambs and they were composed of the four previously reported promoter fragment sequences (A₁–D₁) and three previously reported intron 2–exon 3 sequences (A₃–C₃). The frequencies of the haplotypes ranged from 0.07% to 45.91%. The presence of A₁–A₃ was associated with a decreased pre-weaning growth rate (p = 0.037), and decreased leg lean-meat yield (p = 0.001), loin lean-meat yield (p = 0.018) and total lean-meat yield (p = 0.004). The presence of A₁–C₃ was associated with increased carcass fat depth over the 12th rib (V-GR; p = 0.001) and a decreased proportion of loin lean-meat yield (p = 0.045). The presence of B₁–A₃ was associated with an increased proportion of leg lean-meat yield (p = 0.016) and proportion of shoulder lean-meat yield (p = 0.030). No associations were found with birth weight, tailing weight and weaning weight. These results suggest that ovine ADIPOQ may have value as a genetic marker for NZ Romney sheep breeding

    Soft x-ray spectroscopy experiments on the near K-edge of B in MB2 (M=Mg, Al, Ta, and Nb)

    Full text link
    Soft X-ray absorption and emission measurements are performed for the K- edge of B in MB2_2 (M=Mg, Al, Ta and Nb). Unique feature of MgB2_2 with a high density of B 2pxy(σ)p_{xy}(\sigma)-state below and above the Fermi edge, which extends to 1 eV above the edge, is confirmed. In contrast, the B 2pp density of states in AlB2_2 and TaB2_2, both of occupied and unoccupied states, decreased linearly towards the Fermi energy and showed a dip at the Fermi energy. Furthermore, there is a broadening of the peaks with pσp\sigma-character in XES and XAS of AlB2_2, which is due to the increase of three dimensionality in the pσp\sigma-band in AlB2_2. The DOS of NbB2_2 has a dip just below the Fermi energy. The present results indicate that the large DOS of B-2pσp\sigma states near the Fermi energy are crucial for the superconductivity of MgB2_2.Comment: 3 pages text and 4 pages figures. accepted for publication to Phys. Rev.

    Rapamycin rejuvenates oral health in aging mice.

    Get PDF
    Periodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The FDA-approved drug rapamycin slows aging and extends lifespan in multiple organisms, including mice. Here, we demonstrate that short-term treatment with rapamycin rejuvenates the aged oral cavity of elderly mice, including regeneration of periodontal bone, attenuation of gingival and periodontal bone inflammation, and revertive shift of the oral microbiome toward a more youthful composition. This provides a geroscience strategy to potentially rejuvenate oral health and reverse periodontal disease in the elderly

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.

    Get PDF
    Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
    corecore