59 research outputs found

    Right orbitofrontal corticolimbic and left corticocortical white matter connectivity differentiate bipolar and unipolar depression

    Get PDF
    Objectives - The absence of pathophysiologically relevant diagnostic markers of bipolar disorder (BD) leads to its frequent misdiagnosis as unipolar depression (UD). We aimed to determine whether whole brain white matter connectivity differentiated BD from UD depression. Methods - We employed a three-way analysis of covariance, covarying for age, to examine whole brain fractional anisotropy (FA), and corresponding longitudinal and radial diffusivity, in currently depressed adults: 15 with BD-type I (mean age 36.3 years, SD 12.0 years), 16 with recurrent UD (mean age 32.3 years, SD 10.0 years), and 24 healthy control adults (HC) (mean age 29.5 years, SD 9.43 years). Depressed groups did not differ in depression severity, age of illness onset, and illness duration. Results - There was a main effect of group in left superior and inferior longitudinal fasciculi (SLF and ILF) (all F = 9.8; p = .05, corrected). Whole brain post hoc analyses (all t = 4.2; p = .05, corrected) revealed decreased FA in left SLF in BD, versus UD adults in inferior temporal cortex and, versus HC, in primary sensory cortex (associated with increased radial and decreased longitudinal diffusivity, respectively); and decreased FA in left ILF in UD adults versus HC. A main effect of group in right uncinate fasciculus (in orbitofrontal cortex) just failed to meet significance in all participants but was present in women. Post hoc analyses revealed decreased right uncinate fasciculus FA in all and in women, BD versus HC. Conclusions - White matter FA in left occipitotemporal and primary sensory regions supporting visuospatial and sensory processing differentiates BD from UD depression. Abnormally reduced FA in right fronto-temporal regions supporting mood regulation, might underlie predisposition to depression in BD. These measures might help differentiate pathophysiologic processes of BD versus UD depression

    White matter abnormalities in adults with bipolar disorder type-II and unipolar depression

    Get PDF
    Discerning distinct neurobiological characteristics of related mood disorders such as bipolar disorder type-II (BD-II) and unipolar depression (UD) is challenging due to overlapping symptoms and patterns of disruption in brain regions. More than 60% of individuals with UD experience subthreshold hypomanic symptoms such as elevated mood, irritability, and increased activity. Previous studies linked bipolar disorder to widespread white matter abnormalities. However, no published work has compared white matter microstructure in individuals with BD-II vs. UD vs. healthy controls (HC), or examined the relationship between spectrum (dimensional) measures of hypomania and white matter microstructure across those individuals. This study aimed to examine fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) across BD-II, UD, and HC groups in the white matter tracts identified by the XTRACT tool in FSL. Individuals with BD-II (n = 18), UD (n = 23), and HC (n = 24) underwent Diffusion Weighted Imaging. The categorical approach revealed decreased FA and increased RD in BD-II and UD vs. HC across multiple tracts. While BD-II had significantly lower FA and higher RD values than UD in the anterior part of the left arcuate fasciculus, UD had significantly lower FA and higher RD values than BD-II in the area of intersections between the right arcuate, inferior fronto-occipital and uncinate fasciculi and forceps minor. The dimensional approach revealed the depression-by-spectrum mania interaction effect on the FA, RD, and AD values in the area of intersection between the right posterior arcuate and middle longitudinal fasciculi. We propose that the white matter microstructure in these tracts reflects a unique pathophysiologic signature and compensatory mechanisms distinguishing BD-II from UD

    Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics

    Get PDF
    Context - Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. Objective - To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design - Cross-sectional, case-control, whole-brain DTI using TBSS. Setting - University research institute. Participants - Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures - Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results - Subjects with BD vs controls had significantly greater FA (t > 3.0, P = .05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P = .05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P < .01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P < .01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions - To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD

    Abnormal Left-Sided Orbitomedial Prefrontal Cortical–Amygdala Connectivity during Happy and Fear Face Processing: A Potential Neural Mechanism of Female MDD

    Get PDF
    Background: Pathophysiologic processes supporting abnormal emotion regulation in major depressive disorder (MDD) are poorly understood. We previously found abnormal inverse left-sided ventromedial prefrontal cortical–amygdala effective connectivity to happy faces in females with MDD. We aimed to replicate and expand this previous finding in an independent participant sample, using a more inclusive neural model, and a novel emotion processing paradigm. Methods: Nineteen individuals with MDD in depressed episode (12 females), and 19 healthy individuals, age, and gender matched, performed an implicit emotion processing and automatic attentional control paradigm to examine abnormalities in prefrontal cortical–amygdala neural circuitry during happy, angry, fearful, and sad face processing measured with functional magnetic resonance imaging in a 3-T scanner. Effective connectivity was estimated with dynamic causal modeling in a trinodal neural model including two anatomically defined prefrontal cortical regions, ventromedial prefrontal cortex, and subgenual cingulate cortex (sgACC), and the amygdala. Results: We replicated our previous finding of abnormal inverse left-sided top-down ventromedial prefrontal cortical–amygdala connectivity to happy faces in females with MDD (p = 0.04), and also showed a similar pattern of abnormal inverse left-sided sgACC–amygdala connectivity to these stimuli (p = 0.03). These findings were paralleled by abnormally reduced positive left-sided ventromedial prefrontal cortical–sgACC connectivity to happy faces in females with MDD (p = 0.008), and abnormally increased positive left-sided sgACC–amygdala connectivity to fearful faces in females, and all individuals, with MDD (p = 0.008; p = 0.003). Conclusion: Different patterns of abnormal prefrontal cortical–amygdala connectivity to happy and fearful stimuli might represent neural mechanisms for the excessive self-reproach and comorbid anxiety that characterize female MDD

    Impaired sustained attention and executive dysfunction:bipolar disorder versus depression-specific markers of affective disorders

    Get PDF
    Objective - To identify neurocognitive measures that could be used as objective markers of bipolar disorder. Methods - We examined executive function, sustained attention and short-term memory as neurocognitive domains in 18 participants with bipolar disorder in euthymic state (Beuth), 14 in depressed state (Bdep), 20 with unipolar depression (Udep) and 28 healthy control participants (HC). We conducted four-group comparisons followed by relevant post hoc analyses. Results - Udep and Bdep, but not Beuth showed impaired executive function (p = 0.045 and p = 0.046, respectively). Both Bdep and Beuth, but not Udep, showed impaired sustained attention (p = 0.001 and p = 0.045, respectively). The four groups did not differ significantly on short-term memory. Impaired sustained attention and executive dysfunction were not associated with depression severity, duration of illness and age of illness onset. Only a small number of abnormal neurocognitive measures were associated with medication in Bdep and Beuth. Conclusion - Impaired sustained attention appears specific to bipolar disorder and present in both Beuth and Bdep; it may represent an objective marker of bipolar disorder. Executive dysfunction by contrast, appears to be present in Udep and Bdep and likely represents a marker of depression

    Tridimensional reconstruction of cerebral volumetry in schizophrenia

    Get PDF
    Address: 1Department of Medicine and Public Health, Section of Psychiatry and Clinical Psychology, University of Verona, Italy, 2Verona-Udine Brain Imaging Program, Inter-University Center for Behavioural Neurosciences, University of Udine and *University of Verona, Italy, 3Department of Morphological and Biomedical Sciences, Section of Radiology, University of Verona, Italy and 4Department of Pathology and Experimental and Clinical Medicine, Section of Psychiatry, University of Udine, Italy * Corresponding autho

    Abnormally increased effective connectivity between parahippocampal gyrus and ventromedial prefrontal regions during emotion labeling in bipolar disorder

    Get PDF
    Emotional liability and mood dysregulation characterize bipolar disorder (BD), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BD, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (DCM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD

    The Impact of Caregiving on the Association Between Infant Emotional Behavior and Resting State Neural Network Functional Topology

    Get PDF
    The extent to which neural networks underlying emotional behavior in infancy serve as precursors of later behavioral and emotional problems is unclear. Even less is known about caregiving influences on these early brain-behavior relationships. To study brain-emotional behavior relationships in infants, we examined resting-state functional network metrics and infant emotional behavior in the context of early maternal caregiving. We assessed 46 3-month-old infants and their mothers from a community sample. Infants underwent functional MRI during sleep. Resting-state data were processed using graph theory techniques to examine specific nodal metrics as indicators of network functionality. Infant positive and negative emotional behaviors, and positive, negative and mental-state talk (MST) indices of maternal caregiving were coded independently from filmed interactions. Regression analyses tested associations among nodal metrics and infant emotionality, and the moderating effects of maternal behavior on these relationships. All results were FDR corrected at alpha = 0.05. While relationships between infant emotional behavior or maternal caregiving, and nodal metrics were weak, higher levels of maternal MST strengthened associations between infant positive emotionality and nodal metrics within prefrontal (p &lt; 0.0001), and occipital (p &lt; 0.0001) cortices more generally. Positive and negative aspects of maternal caregiving had little effect. Our findings suggest that maternal MST may play an important role in strengthening links between emotion regulation neural circuitry and early infant positive behavior. They also provide objective neural markers that could inform and monitor caregiving-based interventions designed to improve the health and well-being of vulnerable infants at-risk for behavioral and emotional problems

    Stability of Satellite Planes in M31 II: Effects of the Dark Subhalo Population

    Full text link
    The planar arrangement of nearly half the satellite galaxies of M31 has been a source of mystery and speculation since it was discovered. With a growing number of other host galaxies showing these satellite galaxy planes, their stability and longevity have become central to the debate on whether the presence of satellite planes are a natural consequence of prevailing cosmological models, or represent a challenge. Given the dependence of their stability on host halo shape, we look into how a galaxy plane's dark matter environment influences its longevity. An increased number of dark matter subhalos results in increased interactions that hasten the deterioration of an already-formed plane of satellite galaxies in spherical dark halos. The role of total dark matter mass fraction held in subhalos in dispersing a plane of galaxies present non trivial effects on plane longevity as well. But any misalignments of plane inclines to major axes of flattened dark matter halos lead to their lifetimes being reduced to < 3 Gyrs. Distributing > 40% of total dark mass in subhalos in the overall dark matter distribution results in a plane of satellite galaxies that is prone to change through the 5 Gyr integration time period.Comment: 11 pages, 9 figures, accepted to MNRAS September 22 201

    Altered development of white matter in youth at high familial risk for bipolar disorder: a diffusion tensor imaging study

    Get PDF
    Objective: To study white matter (WM) development in youth at high familial risk for bipolar disorder (BD). WM alterations are reported in youth and adults with BD. WM undergoes important maturational changes in adolescence. Age-related changes in WM microstructure using diffusion tensor imaging with tract-based spatial statistics in healthy offspring having a parent with BD were compared with those in healthy controls. Method: A total of 45 offspring participated, including 20 healthy offspring with a parent diagnosed with BD (HBO) and 25 healthy control offspring of healthy parents (CONT). All were free of medical and psychiatric disorders. Mean fractional anisotropy (FA), radial diffusivity (RD), and longitudinal diffusivity were examined using whole-brain analyses, co-varying for age. Results: Group-by-age interactions showed a linear increase in FA and a linear decrease in RD in CONT in the left corpus callosum and right inferior longitudinal fasciculus. In HBO, there was a linear decrease in FA and an increase in RD with age in the left corpus callosum and no relation between FA or RD and age in the right inferior longitudinal fasciculus. Curve fitting confirmed linear and showed nonlinear relations between FA and RD and age in these regions in CONT and HBO. Conclusions: This is the first study to examine WM in healthy offspring at high familial risk for BD. Results from this cross-sectional study suggest altered development of WM in HBO compared with CONT in the corpus callosum and temporal associative tracts, which may represent vulnerability markers for future BD and other psychiatric disorders in HBO. J. Am. Acad. Child Adolesc. Psychiatry, J. Am. Acad. Child Adolesc. Psychiatry, 2010; 49(12):1249 -1259. Key words: bipolar disorder, familial risk, white matter, diffusion tensor imaging, neurodevelopment B ipolar disorder (BD) is a serious psychiatric illness affecting 1% to 3% of the adult population and remains a leading cause of morbidity, functional impairment, and completed suicide. 1 BD is characterized by difficulties in the regulation of emotions and behavior, as indicated by episodes of mania and depression. BD is highly heritable: the risk of BD is much greater in first-degree relatives of individuals diagnosed with BD. 2,3 Recent evidence has indicated that offspring of parents with BD are at increased risk for BD and other psychiatric disorders, including BD spectrum disorder, anxiety, and depression disorders. 2 Although genetic and environmental factors and their interactions are important in the development of BD, abnormalities of brain structure and function that most likely mediate these effects have yet to be elucidated. Converging evidence from epidemiologic, genetic, and neuroimaging studies has suggested that abnormalities in the development of white matter (WM) may play an important role in the neuropathophysiology of BD
    corecore