374 research outputs found

    Multicomponent flow on curved surfaces : A vielbein lattice Boltzmann approach

    Get PDF
    We develop and implement a novel finite difference lattice Boltzmann scheme to study multicomponent flows on curved surfaces, coupling the continuity and Navier-Stokes equations with the Cahn-Hilliard equation to track the evolution of the binary fluid interfaces. The standard lattice Boltzmann method relies on regular Cartesian grids, which makes it generally unsuitable to study flow problems on curved surfaces. To alleviate this limitation, we use a vielbein formalism to write down the Boltzmann equation on an arbitrary geometry, and solve the evolution of the fluid distribution functions using a finite difference method. Focussing on the torus geometry as an example of a curved surface, we demonstrate drift motions of fluid droplets and stripes embedded on the surface of such geometries. Interestingly, they migrate in opposite directions: fluid droplets to the outer side while fluid stripes to the inner side of the torus. For the latter we demonstrate that the global minimum configuration is unique for small stripe widths, but it becomes bistable for large stripe widths. Our simulations are also in agreement with analytical predictions for the Laplace pressure of the fluid stripes, and their damped oscillatory motion as they approach equilibrium configurations, capturing the corresponding decay timescale and oscillation frequency. Finally, we simulate the coarsening dynamics of phase separating binary fluids in the hydrodynamics and diffusive regimes for tori of various shapes, and compare the results against those for a flat two-dimensional surface. Our finite difference lattice Boltzmann scheme can be extended to other surfaces and coupled to other dynamical equations, opening up a vast range of applications involving complex flows on curved geometries

    Embedding variables in finite dimensional models

    Get PDF
    Global problems associated with the transformation from the Arnowitt, Deser and Misner (ADM) to the Kucha\v{r} variables are studied. Two models are considered: The Friedmann cosmology with scalar matter and the torus sector of the 2+1 gravity. For the Friedmann model, the transformations to the Kucha\v{r} description corresponding to three different popular time coordinates are shown to exist on the whole ADM phase space, which becomes a proper subset of the Kucha\v{r} phase spaces. The 2+1 gravity model is shown to admit a description by embedding variables everywhere, even at the points with additional symmetry. The transformation from the Kucha\v{r} to the ADM description is, however, many-to-one there, and so the two descriptions are inequivalent for this model, too. The most interesting result is that the new constraint surface is free from the conical singularity and the new dynamical equations are linearization stable. However, some residual pathology persists in the Kucha\v{r} description.Comment: Latex 2e, 29 pages, no figure

    Quantum superposition principle and gravitational collapse: Scattering times for spherical shells

    Full text link
    A quantum theory of spherically symmetric thin shells of null dust and their gravitational field is studied. In Nucl. Phys. 603 (2001) 515 (hep-th/0007005), it has been shown how superpositions of quantum states with different geometries can lead to a solution of the singularity problem and black hole information paradox: the shells bounce and re-expand and the evolution is unitary. The corresponding scattering times will be defined in the present paper. To this aim, a spherical mirror of radius R_m is introduced. The classical formula for scattering times of the shell reflected from the mirror is extended to quantum theory. The scattering times and their spreads are calculated. They have a regular limit for R_m\to 0 and they reveal a resonance at E_m = c^4R_m/2G. Except for the resonance, they are roughly of the order of the time the light needs to cross the flat space distance between the observer and the mirror. Some ideas are discussed of how the construction of the quantum theory could be changed so that the scattering times become considerably longer.Comment: 30 pages and 5 figures; the post-referee version: shortened and some formulations improved; to be published in Physical Revie

    Analysis of local extinction of a n-heptane spray flame using large-eddy simulation with tabulated chemistry

    Get PDF
    This work is focused on the study of flame stabilization and local extinction of a spray flame in an atmospheric non-swirled test rig referred to as the CORIA Rouen Spray Burner. This burner shows a double reaction front structure, with an outer laminar diffusion flame and an inner wrinkled partially-premixed flame undertaking local extinction. This unsteady phenomenon is investigated here using large-eddy simulations with a tabulated chemistry method based on steady and unsteady diffusion flamelets with heat loss. A validation of the numerical simulations is conducted first for the carrier and dispersed phase and good agreement with the experimental data is found for mean and fluctuating quantities. The present results were able to predict relevant parameters of the flame like the lift-off length and flame shape. Numerical results evidence some intermittency on the OH concentration with the presence of high values of formaldehyde indicating the existence of localized extinction in the leading edge of the flame. A detailed analysis showed the impact of droplets on the reacting layer and the existence of rich pockets quenching the flame front. Further downstream, it was shown that when the scalar dissipation rate reaches high values near the reaction zone, the flame front becomes thinner and wrinkled until it eventually quenches. The numerical results evidence that the applied tabulated chemistry method is capable of capturing the local extinction and re-ignition events occurring in the inner layer.This work was partially funded by the Spanish Ministerio de Econom´ıa y Competitividad within the frame of the CHEST (TRA2017-89139-C2-1-R) project. BSC also acknowledges the funding from the CoEC project through the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952181. Authors acknowledge the computer resources at Marenostrum and the technical support provided by Barcelona Supercomputing Center (BSC) (IM-2019-3-0025, IM-2020-1-0017, IM-2020-2-0026). Authors also thank the access to the CRSB database kindly provided by Prof. B. Renou.Peer ReviewedPostprint (author's final draft

    Fabry-betegség – terápiás útmutató

    Get PDF
    A Fabry-kór a lizoszomális tárolási betegségek csoportjába tartozó, X-kromoszómához kötötten, recesszív módon öröklődő betegség, amely a globotriaozilceramid felhalmozódásához vezet a szervezet legkülönbözőbb szöveteiben. A betegség első tünetei többnyire gyermekkorban jelentkeznek, a progresszió során a betegek súlyos szervi károsodásokkal és korai halálozással számolhatnak. Elsősorban férfiak érintettek, azonban a betegség tüneteit heterozigóta nők esetében is megfigyelhetjük, de náluk a kórkép súlyossága változó, általában enyhébb lefolyású. Az enzimpótló kezelések megjelenése szükségessé tette, hogy részletes diagnosztikus és terápiás protokollt dolgozzunk ki. A jelen dolgozatban megjelenő ajánlásokat egy, a magyarországi Fabry-kóros betegek kezelésében részt vevő orvosokból, a diagnosztika területén dolgozó biológosukból és egyéb szakemberekből álló multidiszciplináris munkacsoport foglalta össze. A munkacsoport áttekintette a korábbi klinikai tanulmányokat, a publikált vizsgálatokat és a közelmúltban megjelent nemzetközi és nemzeti útmutatókat. | Fabry disease is a rare, X-linked lysosomal storage disorder that leads to accumulation of globotriaosylceramide in different tissues of the body. The disease is progressive and the first symptoms usually present in childhood. Consequences of the disease are disability and premature death. The disease in females could be as severe as in males although women may be asymptomatic. The possibility of enzyme replacement therapy has made it necessary to elaborate a comprehensive guideline for the diagnosis and treatment follow-up. The guideline has been summarized by a Hungarian multi-disciplinary working group consisting of physicians who are involved in diagnosis and care of Fabry patients. Previous clinical studies, published articles, and recently established international treatment guidelines were reviewed by the group

    I-Motif Structures Formed in the Human c-MYC Promoter Are Highly Dynamic–Insights into Sequence Redundancy and I-Motif Stability

    Get PDF
    The GC-rich nuclease hypersensitivity element III1 (NHE III1) of the c-MYC promoter largely controls the transcriptional activity of the c-MYC oncogene. The C-rich strand in this region can form I-motif DNA secondary structures. We determined the folding pattern of the major I-motif formed in the NHE III1, which can be formed at near-neutral pH. While we find that the I-motif formed in the four 3′ consecutive runs of cytosines appears to be the most favored, our results demonstrate that the C-rich strand of the c-MYC NHE III1 exhibits a high degree of dynamic equilibration. Using a trisubstituted oligomer of this region, we determined the formation of two equilibrating loop isomers, one of which contains a flipped-out cytosine. Our results indicate that the intercalative cytosine+–cytosine base pairs are not always necessary for an intramolecular I-motif. The dynamic character of the c-MYC I-motif is intrinsic to the NHE III1 sequence and appears to provide stability to the c-MYC I-motif

    Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma

    Get PDF
    The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3′-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility

    MASP-1 Induces a Unique Cytokine Pattern in Endothelial Cells: A Novel Link between Complement System and Neutrophil Granulocytes

    Get PDF
    Microbial infection urges prompt intervention by the immune system. The complement cascade and neutrophil granulocytes are the predominant contributors to this immediate anti-microbial action. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of the complement lectin pathway, can induce p38-MAPK activation, NFkappaB signaling, and Ca(2+)-mobilization in endothelial cells. Since neutrophil chemotaxis and transmigration depends on endothelial cell activation, we aimed to explore whether recombinant MASP-1 (rMASP-1) is able to induce cytokine production and subsequent neutrophil chemotaxis in human umbilical vein endothelial cells (HUVEC). We found that HUVECs activated by rMASP-1 secreted IL-6 and IL-8, but not IL-1alpha, IL-1ra, TNFalpha and MCP-1. rMASP-1 induced dose-dependent IL-6 and IL-8 production with different kinetics. rMASP-1 triggered IL-6 and IL-8 production was regulated predominantly by the p38-MAPK pathway. Moreover, the supernatant of rMASP-1-stimulated HUVECs activated the chemotaxis of neutrophil granulocytes as an integrated effect of cytokine production. Our results implicate that besides initializing the complement lectin pathway, MASP-1 may activate neutrophils indirectly, via the endothelial cells, which link these effective antimicrobial host defense mechanisms
    corecore