2,090 research outputs found

    Effect of life history on microRNA expression during C. elegans development

    Get PDF
    Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs after the second larval stage in response to environmental stimuli encountered during the first two larval stages. Dauer larvae are stress resistant and long lived, permitting survival in harsh conditions. When environmental conditions improve, dauer larvae re-enter development, and progress through two post-dauer larval stages to adulthood. Strikingly, all of these life history options (whether continuous or interrupted) involve an identical pattern and sequence of cell division and cell fates. To identify microRNAs with potential functions in buffering development in the context of C. elegans life history options, we used multiplex real-time PCR to assess the expression of 107 microRNAs throughout development in both continuous and interrupted life histories. We identified 17 microRNAs whose developmental profile of expression is affected by dauer life history and/or L1 diapause, compared to continuous development. Hence these microRNAs could function to regulate gene expression programs appropriate for different life history options in the developing worm

    Mutations in Conserved Residues of the C. elegans microRNA Argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC Loading and Target Repression

    Get PDF
    microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, our results suggest that ALG-1(anti) proteins may sequester microRNAs in immature and functionally deficient microRNA Induced Silencing Complexes (miRISCs), and hence compete with ALG-2 for access to functional microRNAs. Immunoprecipitation experiments show that ALG-1(anti) proteins display an increased association with Dicer and a decreased association with AIN-1/GW182. These findings suggest that alg-1(anti) mutations impair the ability of ALG-1 miRISC to execute a transition from Dicer-associated microRNA processing to AIN-1/GW182 associated effector function, and indicate an active role for ALG/Argonaute in mediating this transition

    How to minimise the effect of tumour cell content in detection of aberrant genetic markers in neuroblastoma

    Get PDF
    Background:Clinical heterogeneity reflects the complexity of genetic events associated with neuroblastoma (NB). To identify the status of all described genetic loci with possible prognostic interest, high-throughput approaches have been used, but only with tumour cell content >60%. In some tumours, necrotic, haemorrhagic and/or calcification areas influence the low amount of neuroblasts. We evaluated the effect of tumour cell content in the detection of relevant aberrant genetic markers (AGM) diagnosed by fluorescence in situ hybridisation (FISH) on tissue microarrays (TMA) in NB.Methods:Two hundred and thirty-three MYCN non-amplified primary NB included in 12 TMAs were analysed.Results:Presence of AGM reduced event-free survival (EFS) (P=0.004) as well as overall survival (OS) (P=0.004) of patients in the whole cohort. There were no differences in prognostic impact of presence of AGM according to tumour cell content.Conclusion:We propose the use of FISH to diagnose AGM of all NB samples having the above-mentioned areas to determine patient risk

    Specifics of guided tour organization in Lviv

    Get PDF
    The article analyzes the specific features of organizing guided tours in Lviv, one of the leading tourist centers in Ukraine. It explores the formation of the excursion product in the context of the city's historical and cultural background, seasonal tourist flows, and the demands of various target audiences. Particular attention is given to the interaction between the guide, the tourist, and the urban environment, as well as to the adaptation of tour routes to contemporary requirements such as inclusivity, interactivity, and safety. The role of local identity in the development of thematic and author’s tours is also examined

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    Developing speed-related safety performance indicators from floating car data

    Get PDF
    In the road traffic safety domain there is a need for using proactive (non-crash-based) indicators, known as safety performance indicators (SPIs). Traffic speed based on big data (floating car data [FCD]) could help develop network-wide SPIs, but related knowledge and experience are insufficient so far. The authors attempted to fill this gap by using nationwide Italian FCD to develop speed-related SPIs and validating their relationship to crashes to see their potential explanatory value. The authors calculated the coefficient of variance (CV), congestion index (CI), and the number of incidents as candidate SPIs. For validation, the authors used linear correlation, crash frequency model, and ranking consistency. Incidents turned out to be the best SPI, especially for motorways

    Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification.

    Get PDF
    BACKGROUND: The prognostic impact of segmental chromosome alterations (SCAs) in children older than 1 year, diagnosed with localised unresectable neuroblastoma (NB) without MYCN amplification enrolled in the European Unresectable Neuroblastoma (EUNB) protocol is still to be clarified, while, for other group of patients, the presence of SCAs is associated with poor prognosis. METHODS: To understand the role of SCAs we performed multilocus/pangenomic analysis of 98 tumour samples from patients enrolled in the EUNB protocol. RESULTS: Age at diagnosis was categorised into two groups using 18 months as the age cutoff. Significant difference in the presence of SCAs was seen in tumours of patients between 12 and 18 months and over 18 months of age at diagnosis, respectively (P=0.04). A significant correlation (P=0.03) was observed between number of SCAs per tumour and age. Event-free (EFS) and overall survival (OS) were calculated in both age groups, according to both the presence and number of SCAs. In older patients, a poorer survival was associated with the presence of SCAs (EFS=46% vs 75%, P=0.023; OS=66.8% vs 100%, P=0.003). Moreover, OS of older patients inversely correlated with number of SCAs (P=0.002). Finally, SCAs provided additional prognostic information beyond histoprognosis, as their presence was associated with poorer OS in patients over 18 months with unfavourable International Neuroblastoma Pathology Classification (INPC) histopathology (P=0.018). CONCLUSIONS: The presence of SCAs is a negative prognostic marker that impairs outcome of patients over the age of 18 months with localised unresectable NB without MYCN amplification, especially when more than one SCA is present. Moreover, in older patients with unfavourable INPC tumour histoprognosis, the presence of SCAs significantly affects OS

    MIR376A is a regulator of starvation-induced autophagy

    Get PDF
    Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration. Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR. Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role. Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore