18 research outputs found

    Evaluation of Multiorbital SAR and Multisensor Optical Data for Empirical Estimation of Rapeseed Biophysical Parameters

    Get PDF
    This article aims to evaluate the potential of multitemporal and multiorbital remote sensing data acquired both in the microwave and optical domain to derive rapeseed biophysical parameters (crop height, dry mass, fresh mass, and plant water content). Dense temporal series of 98 Landsat-8 and Sentinel-2 images were used to derive normalized difference vegetation index (NDVI), green fraction cover (fCover), and green area index (GAI), while backscattering coefficients and radar vegetation index (RVI) were obtained from 231 mages acquired by synthetic aperture radar (SAR) onboard Sentinel-1 platform. Temporal signatures of these remote sensing indicators (RSI) were physically interpreted, compared with each other to ground measurements of biophysical parameters acquired over 14 winter rapeseed fields throughout the 2017–2018 crop season. We introduced new indicators based on the cumulative sum of each RSI that showed a significant improvement in their predictive power. Results particularly reveal the complementarity of SAR and optical data for rapeseed crop monitoring throughout its phenological cycle. They highlight the potential of the newly introduced indicator based on the VH polarized backscatter coefficient to estimate height (R2 = 0.87), plant water content (R2 = 0.77, from flowering to harvest), and fresh mass (R2 = 0.73) and RVI to estimate dry mass (R2 = 0.82). Results also demonstrate that multiorbital SAR data can be merged without significantly degrading the performance of SAR-based relationships while strongly increasing the temporal sampling of the monitoring. These results are promising in view of assimilating optical and SAR data into crop models for finer rapeseed monitoring

    Estimation of evapotranspiration from remote sensing in West Africa : toward a better knowledge of this key variable for the region

    No full text
    L’Afrique de l’Ouest est particuliĂšrement exposĂ©e aux changements climatiques et anthropiques qui exercent une pression croissante sur les ressources hydriques et vĂ©gĂ©tales, dont la bonne gestion constitue un enjeu scientifique majeur. Plus particuliĂšrement, il devient indispensable de mieux comprendre les Ă©changes d’énergie et de matiĂšre au sein du continuum surface-atmosphĂšre qui rĂ©gissent une bonne partie du cycle hydrologique et du dĂ©veloppement de la vĂ©gĂ©tation. À cet Ă©gard, l’évapotranspiration constitue une variable clĂ© Ă  l’interface surface-atmosphĂšre car elle recycle la plus grande partie des prĂ©cipitations vers l’atmosphĂšre et assure le couplage des cycles de l’eau et de l’énergie. En Afrique de l'Ouest, les connaissances actuelles sur ce processus restent limitĂ©es car elles reposent principalement sur des mesures de terrain reprĂ©sentatives de petites Ă©chelles spatiales, ou sur des modĂšles de surface complexes, dont l’importance des jeux de donnĂ©es qu’ils requiĂšrent limite leur application. Dans ce contexte, ce travail de thĂšse vise Ă  amĂ©liorer notre connaissance de la variabilitĂ© spatiotemporelle de l'Ă©vapotranspiration, en analysant le potentiel de la tĂ©lĂ©dĂ©tection pour son estimation en Afrique de l'Ouest. L'approche proposĂ©e repose sur une comparaison des produits d'Ă©vapotranspiration par tĂ©lĂ©dĂ©tection disponibles et la proposition d’une nouvelle mĂ©thode permettant la gĂ©nĂ©ration de nouveaux produits. L’étude a Ă©tĂ© menĂ©e sur trois sites de mĂ©so-Ă©chelle (~ 104 km2) fournissant un Ă©chantillon des conditions Ă©co-climatiques rencontrĂ©es en Afrique de l’Ouest, avec du Nord au Sud : le Nord-Sahel (au centre-est Mali), le Sud-Sahel (au sud-ouest Niger) et la zone soudanienne (au nord BĂ©nin). Une mĂ©thode d’estimation de l’évapotranspiration journaliĂšre par tĂ©lĂ©dĂ©tection et de son incertitude Ă©pistĂ©mique, nommĂ©e EVASPA S-SEBI Sahel (E3S), a Ă©tĂ© Ă©laborĂ©e. E3S a Ă©tĂ© appliquĂ© sur les trois sites d’étude Ă  partir de donnĂ©es issues des capteurs MODIS Ă  bord des satellites TERRA et AQUA. Les estimations journaliĂšres d’évapotranspiration ont Ă©tĂ© Ă©valuĂ©es par rapport aux observations pluriannuelles acquises par l’Observatoire AMMA-CATCH. Cette Ă©tude souligne le potentiel d’E3S pour l’estimation de l’évapotranspiration journaliĂšre en Afrique de l’Ouest. Toutefois, ces estimations restent soumises aux alĂ©as de la mesure satellite (qualitĂ© des images, couvert nuageux, angle de visĂ©e trop grand) et sont donc ponctuĂ©es de lacunes. Ces travaux de thĂšse proposent Ă©galement de nouvelles mĂ©thodes de reconstruction de sĂ©ries d’évapotranspiration journaliĂšres via la combinaison d’estimations multi-rĂ©solution et multi-source. Cette Ă©tude montre la pertinence de ces approches de reconstruction par rapport aux mĂ©thodes d’interpolation standards utilisĂ©es dans la littĂ©rature. Les approches proposĂ©es permettent notamment de mieux retranscrire la rĂ©ponse des surfaces terrestres aux sĂ©quences d’assĂšchement du sol entre deux Ă©pisodes pluvieux. Les nouveaux produits gĂ©nĂ©rĂ©s ont Ă©tĂ© introduit dans l’exercice d’inter-comparaison incluant huit autres produits disponibles en Afrique de l’Ouest Ă  diverses rĂ©solutions spatio-temporelles. Ces produits ont Ă©tĂ© Ă©valuĂ©s Ă  diffĂ©rentes Ă©chelles spatiales et temporelles par rapport aux mesures locales et aux simulations spatialisĂ©es de vingt modĂšles de surface gĂ©nĂ©rĂ©es dans le cadre de l’expĂ©rience ALMIP2. Cette Ă©tude met en Ă©vidence la forte variabilitĂ© inter-produit, en particulier au Sahel. Elle souligne par ailleurs l’importance de la prise en compte d’une information liĂ©e au stress hydrique dans la gĂ©nĂ©ration des produits d’évapotranspiration. La rĂ©solution kilomĂ©trique des produits E3S leur fournit un avantage indĂ©niable concernant la description de la variabilitĂ© spatiale des flux d’évapotranspiration par rapport Ă  d’autres produits Ă  faible rĂ©solution. Les produits nouvellement gĂ©nĂ©rĂ©s prĂ©sentent un potentiel Ă©vident pour de futures Ă©tudes Ă  caractĂšre Ă©co-hydrologique et hydrogĂ©ologique au Sahel.West Africa is particularly vulnerable to climate and human-induced changes, exerting increasing pressure on water and plant resources. Sound management of the latter requires substantial scientific progress. In particular, it is essential to better understand energy and matter exchanges through the surface-atmosphere continuum, which are a major driver of the hydrological cycle and of vegetation development. In this respect, evapotranspiration is a key variable, as most of precipitation returns to the atmosphere by evapotranspiration and as it couples the water and energy cycles. In West Africa, current knowledge of this process is still limited because it is mainly based on field measurements that are representative of small spatial scales, or on land surface models that would require considerably more data than available in this region. In this context, this thesis work aims at improving our knowledge of the spatiotemporal variability of evapotranspiration, by analyzing the potential of remote sensing to estimate evapotranspiration in West Africa. The proposed approach is based on an inter-comparison of available remote sensing evapotranspiration products and on the proposal of a new method to generate new estimation products. The study was carried out over three mesoscale sites (~ 104 km2) providing a sample of the eco-climatic conditions encountered in West Africa, namely from North to South: the North-Sahel (in East-Central Mali), the South-Sahel (in South-West Niger) and the Sudanian zone (in North Benin). An improved remote sensing method for estimating daily evapotranspiration and its epistemic uncertainty named EVASPA S-SEBI Sahel (E3S) was developed. E3S was applied to the three study sites using data from the MODIS sensors onboard TERRA and AQUA satellites. Daily evapotranspiration estimates were evaluated against pluriannual observations acquired by the AMMA-CATCH Observatory. This study highlights the potential of E3S for estimating daily evapotranspiration in West Africa. However, these estimates are still subject to hazards of satellite measurements (image quality, cloud cover, large satellite view angle) and are therefore discontinuous. This thesis work also proposes new methods for reconstructing continuous daily evapotranspiration series by the combination of multi-resolution and multi-source estimations. The study shows the capabilities of these reconstruction approaches compared to the standard interpolation methods usually found in the literature. In particular, the proposed approaches allow better depicting the response of terrestrial surfaces to soil drying sequences between rainfall events. The newly generated evapotranspiration products were included in the product inter-comparison together with eight other products available in West Africa at various spatial and temporal resolutions. These products were evaluated at different spatial and temporal scales against local measurements and spatially distributed simulations by twenty land surface models from the ALMIP2 experiment. This study highlights the high inter-product variability especially in the Sahel. It also emphasizes the importance of taking into account information related to water stress in the generation of evapotranspiration products. The kilometric resolution of E3S products gives them a clear advantage in terms of description of the spatial variability of evapotranspiration flux compared to other coarse resolution products. The newly generated products show clear potential for future eco-hydrological and hydrogeological studies in the Sahel

    Estimation de l’évapotranspiration par tĂ©lĂ©dĂ©tection spatiale en Afrique de l’Ouest : vers une meilleure connaissance de cette variable clĂ© pour la rĂ©gion

    No full text
    West Africa is particularly vulnerable to climate and human-induced changes, exerting increasing pressure on water and plant resources. Sound management of the latter requires substantial scientific progress. In particular, it is essential to better understand energy and matter exchanges through the surface-atmosphere continuum, which are a major driver of the hydrological cycle and of vegetation development. In this respect, evapotranspiration is a key variable, as most of precipitation returns to the atmosphere by evapotranspiration and as it couples the water and energy cycles. In West Africa, current knowledge of this process is still limited because it is mainly based on field measurements that are representative of small spatial scales, or on land surface models that would require considerably more data than available in this region. In this context, this thesis work aims at improving our knowledge of the spatiotemporal variability of evapotranspiration, by analyzing the potential of remote sensing to estimate evapotranspiration in West Africa. The proposed approach is based on an inter-comparison of available remote sensing evapotranspiration products and on the proposal of a new method to generate new estimation products. The study was carried out over three mesoscale sites (~ 104 km2) providing a sample of the eco-climatic conditions encountered in West Africa, namely from North to South: the North-Sahel (in East-Central Mali), the South-Sahel (in South-West Niger) and the Sudanian zone (in North Benin). An improved remote sensing method for estimating daily evapotranspiration and its epistemic uncertainty named EVASPA S-SEBI Sahel (E3S) was developed. E3S was applied to the three study sites using data from the MODIS sensors onboard TERRA and AQUA satellites. Daily evapotranspiration estimates were evaluated against pluriannual observations acquired by the AMMA-CATCH Observatory. This study highlights the potential of E3S for estimating daily evapotranspiration in West Africa. However, these estimates are still subject to hazards of satellite measurements (image quality, cloud cover, large satellite view angle) and are therefore discontinuous. This thesis work also proposes new methods for reconstructing continuous daily evapotranspiration series by the combination of multi-resolution and multi-source estimations. The study shows the capabilities of these reconstruction approaches compared to the standard interpolation methods usually found in the literature. In particular, the proposed approaches allow better depicting the response of terrestrial surfaces to soil drying sequences between rainfall events. The newly generated evapotranspiration products were included in the product inter-comparison together with eight other products available in West Africa at various spatial and temporal resolutions. These products were evaluated at different spatial and temporal scales against local measurements and spatially distributed simulations by twenty land surface models from the ALMIP2 experiment. This study highlights the high inter-product variability especially in the Sahel. It also emphasizes the importance of taking into account information related to water stress in the generation of evapotranspiration products. The kilometric resolution of E3S products gives them a clear advantage in terms of description of the spatial variability of evapotranspiration flux compared to other coarse resolution products. The newly generated products show clear potential for future eco-hydrological and hydrogeological studies in the Sahel.L’Afrique de l’Ouest est particuliĂšrement exposĂ©e aux changements climatiques et anthropiques qui exercent une pression croissante sur les ressources hydriques et vĂ©gĂ©tales, dont la bonne gestion constitue un enjeu scientifique majeur. Plus particuliĂšrement, il devient indispensable de mieux comprendre les Ă©changes d’énergie et de matiĂšre au sein du continuum surface-atmosphĂšre qui rĂ©gissent une bonne partie du cycle hydrologique et du dĂ©veloppement de la vĂ©gĂ©tation. À cet Ă©gard, l’évapotranspiration constitue une variable clĂ© Ă  l’interface surface-atmosphĂšre car elle recycle la plus grande partie des prĂ©cipitations vers l’atmosphĂšre et assure le couplage des cycles de l’eau et de l’énergie. En Afrique de l'Ouest, les connaissances actuelles sur ce processus restent limitĂ©es car elles reposent principalement sur des mesures de terrain reprĂ©sentatives de petites Ă©chelles spatiales, ou sur des modĂšles de surface complexes, dont l’importance des jeux de donnĂ©es qu’ils requiĂšrent limite leur application. Dans ce contexte, ce travail de thĂšse vise Ă  amĂ©liorer notre connaissance de la variabilitĂ© spatiotemporelle de l'Ă©vapotranspiration, en analysant le potentiel de la tĂ©lĂ©dĂ©tection pour son estimation en Afrique de l'Ouest. L'approche proposĂ©e repose sur une comparaison des produits d'Ă©vapotranspiration par tĂ©lĂ©dĂ©tection disponibles et la proposition d’une nouvelle mĂ©thode permettant la gĂ©nĂ©ration de nouveaux produits. L’étude a Ă©tĂ© menĂ©e sur trois sites de mĂ©so-Ă©chelle (~ 104 km2) fournissant un Ă©chantillon des conditions Ă©co-climatiques rencontrĂ©es en Afrique de l’Ouest, avec du Nord au Sud : le Nord-Sahel (au centre-est Mali), le Sud-Sahel (au sud-ouest Niger) et la zone soudanienne (au nord BĂ©nin). Une mĂ©thode d’estimation de l’évapotranspiration journaliĂšre par tĂ©lĂ©dĂ©tection et de son incertitude Ă©pistĂ©mique, nommĂ©e EVASPA S-SEBI Sahel (E3S), a Ă©tĂ© Ă©laborĂ©e. E3S a Ă©tĂ© appliquĂ© sur les trois sites d’étude Ă  partir de donnĂ©es issues des capteurs MODIS Ă  bord des satellites TERRA et AQUA. Les estimations journaliĂšres d’évapotranspiration ont Ă©tĂ© Ă©valuĂ©es par rapport aux observations pluriannuelles acquises par l’Observatoire AMMA-CATCH. Cette Ă©tude souligne le potentiel d’E3S pour l’estimation de l’évapotranspiration journaliĂšre en Afrique de l’Ouest. Toutefois, ces estimations restent soumises aux alĂ©as de la mesure satellite (qualitĂ© des images, couvert nuageux, angle de visĂ©e trop grand) et sont donc ponctuĂ©es de lacunes. Ces travaux de thĂšse proposent Ă©galement de nouvelles mĂ©thodes de reconstruction de sĂ©ries d’évapotranspiration journaliĂšres via la combinaison d’estimations multi-rĂ©solution et multi-source. Cette Ă©tude montre la pertinence de ces approches de reconstruction par rapport aux mĂ©thodes d’interpolation standards utilisĂ©es dans la littĂ©rature. Les approches proposĂ©es permettent notamment de mieux retranscrire la rĂ©ponse des surfaces terrestres aux sĂ©quences d’assĂšchement du sol entre deux Ă©pisodes pluvieux. Les nouveaux produits gĂ©nĂ©rĂ©s ont Ă©tĂ© introduit dans l’exercice d’inter-comparaison incluant huit autres produits disponibles en Afrique de l’Ouest Ă  diverses rĂ©solutions spatio-temporelles. Ces produits ont Ă©tĂ© Ă©valuĂ©s Ă  diffĂ©rentes Ă©chelles spatiales et temporelles par rapport aux mesures locales et aux simulations spatialisĂ©es de vingt modĂšles de surface gĂ©nĂ©rĂ©es dans le cadre de l’expĂ©rience ALMIP2. Cette Ă©tude met en Ă©vidence la forte variabilitĂ© inter-produit, en particulier au Sahel. Elle souligne par ailleurs l’importance de la prise en compte d’une information liĂ©e au stress hydrique dans la gĂ©nĂ©ration des produits d’évapotranspiration. La rĂ©solution kilomĂ©trique des produits E3S leur fournit un avantage indĂ©niable concernant la description de la variabilitĂ© spatiale des flux d’évapotranspiration par rapport Ă  d’autres produits Ă  faible rĂ©solution. Les produits nouvellement gĂ©nĂ©rĂ©s prĂ©sentent un potentiel Ă©vident pour de futures Ă©tudes Ă  caractĂšre Ă©co-hydrologique et hydrogĂ©ologique au Sahel

    Estimating Winter Cover Crop Biomass in France Using Optical Sentinel-2 Dense Image Time Series and Machine Learning

    No full text
    Cover crops play a pivotal role in mitigating climate change by bolstering carbon sequestration through biomass production and soil integration. However, current methods for quantifying cover crop biomass lack spatial precision and objectivity. Thus, our research aimed to devise a remote-sensing-based approach to estimate cover crop biomass across various species and mixtures during fallow periods in France. Leveraging Sentinel-2 optical data and machine learning algorithms, we modeled biomass across 50 fields representative of France’s diverse cropping practices and climate types. Initial tests using traditional empirical relationships between vegetation indices/spectral bands and dry biomass revealed challenges in accurately estimating biomass for mixed cover crop categories due to spectral interference from grasses and weeds, underscoring the complexity of modeling diverse agricultural conditions. To address this challenge, we compared several machine learning algorithms (Support Vector Machine, Random Forest, and eXtreme Gradient Boosting) using spectral bands and vegetation indices from the latest available image before sampling as input. Additionally, we developed an approach that incorporates dense optical time series of Sentinel-2 data, generated using a Radial Basis Function for interpolation. Our findings demonstrated that a Random Forest model trained with dense time series data during the cover crop development period yielded promising results, with an average R-squared (r2) value of 0.75 and root mean square error (RMSE) of 0.73 t·ha−1, surpassing results obtained from methods using single-image snapshots (r2 of 0.55). Moreover, our approach exhibited robustness in accounting for factors such as crop species diversity, varied climatic conditions, and the presence of weed vegetation—essential for approximating real-world conditions. Importantly, its applicability extends beyond France, holding potential for global scalability. The availability of data for model calibration across diverse regions and timeframes could facilitate broader application

    Estimating evapotranspiration from remote sensing: the case of Sahelian Africa.

    No full text
    Allies A., J. Demarty, A. Olioso, H. B.-A. Issoufou, I. MaĂŻnassara, J.-P. Chazarin, M. OĂŻ, C. Velluet, M. Bahir, B. Cappelaere, 2017. Estimating evapotranspiration from remote sensing: the case of Sahelian Africa. Abstract IAHS2017-164. IAHS 2017 Scientific Assembly, 10 – 14 July 2017, Port Elizabeth, South Africa. [PrĂ©sentation orale par A. Allies]http://meetingorganizer.copernicus.org/IAHS2017/IAHS2017-164.pdfEstimating evapotranspiration from remote sensing: the case of Sahelian Africa. . IAHS 2017 Scientific Assembl

    Mediterranean Temporary Lagoon: Proposal for a definition of this endangered habitat to improve its conservation

    No full text
    International audienceCoastal lagoons have been recognised as a priority habitat for conservation and have benefited from several conservation plans. Under the Mediterranean climate, some of these lagoons might dry out during summer due to drought events. We propose the term Mediterranean Temporary Lagoons (MTLs) for these ephemeral water bodies and discuss their definition and characteristics. This term emerged in France among its coastal zone managers, who now commonly use it for conservation purposes. It is used in both natural systems as well as most artificial salt ponds in abandoned saltworks.In Europe, two directives have integrated lagoons as key targets to be preserved. Nonetheless, a certain discrepancy in the different definitions of lagoons has constrained joint actions. Indeed, while institutional definitions were originally derived from the scientific concept, their legislative and managerials meanings have been gradually modified and nowadays often differ from the original concept to create difficulties in the field. In addition, while it has been recommended to consider MTLs as a coastal lagoon habitat in the European Habitat Directive, its interpretation among EU member states is unsettled. Thus, clarifying lagoon habitats' terminology is required to ensure better management, monitoring and planning, and coordinate conservation actions.We discuss the inclusion of MTLs in habitat 1150 by confronting scientific and institutional literature and propose a new framework to better delimitate lagoon habitat around the Mediterranean basin, integrating MTLs. MTLs represent a specific habitat that hosts a pool of stenoecious macrophytes of conservation interest like Althenia filiformis, Riella helicophylla or Tolypella salina
    corecore