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Abstract— This paper aims to evaluate the potential of multi-

temporal and multi-orbital remote sensing data acquired both in 

the microwave and optical domain to derive rapeseed biophysical 

parameters (crop height, dry mass, fresh mass and plant water 

content). Dense temporal series of 98 Landsat-8 and Sentinel-2 

images were used to derive Normalized Difference Vegetation 

Index (NDVI), green fraction cover (fCover) and Green Area 

Index (GAI), while backscattering coefficients and radar 

vegetation index (RVI) were obtained from 231 mages acquired 

by Synthetic Aperture Radar (SAR) onboard Sentinel-1 

platform. Temporal signatures of these Remote Sensing 

Indicators (RSI) were physically interpreted, compared each 

other and to ground measurements of biophysical parameters 

acquired over 14 winter rapeseed fields throughout the 2017-2018 

crop season. We introduced new indicators based on the 

cumulative sum of each RSI that showed a significant 

improvement of their predictive power. Results particularly 

reveal the complementarity of SAR and optical data for rapeseed 

crop monitoring throughout its phenological cycle. They 

highlight the potential of the newly introduced indicator based 

on: the VH polarized backscatter coefficient to estimate height 

(R2 = 0.87), plant water content (R2 = 0.77, from flowering to 

harvest) and fresh mass (R2 = 0.73) and RVI to estimate dry mass 

(R2 = 0.82). Results also demonstrate that multi-orbital SAR data 

can be merged without significantly degrading the performance 

of SAR-based relationships, while strongly increasing the 

temporal sampling of the monitoring. These results are 
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promising in view of assimilating optical and SAR data into crop 

models for finer rapeseed monitoring. 

 
Index Terms—Rapeseed, Sentinel-1, Sentinel-2, Landsat-8, 

crop monitoring, biomass, plant water content, crop height. 

 

I. INTRODUCTION 

N the context of the global change and an increasing 

world demography, one of the major issues for mankind is 

to develop agriculture practices allowing to ensure together 

food security, sustainability of natural resources and economic 

profitability for farmers [1], [2]. To address these challenges, 

precision agriculture became an essential scientific topic [3]. 

Precise crop monitoring systems generally rely on the high 

frequency acquisition and assessment of crop biophysical 

parameters such as Green/Leaf Area Index (GAI/LAI), dry 

(DM) and fresh masses (FM), crop height or plant water 

content (PWC). These parameters are key variables since they 

express the phenological and physiological plant response to 

meteorological events [4], [5], pest and diseases outbreaks [6], 

fertilizer applications [7] or water management practices [8]. 

They are in addition paramount for crop yields estimation 

from modeling approaches [9], [10]. However, for most crops, 

in situ ground measurements are lacking. Ground survey of 

such parameters is time-consuming and thus cannot be 

reproduced at fine spatio-temporal scale in real or near-real 

time. To overcome this limitation, satellite remote sensing has 

been recognized as an effective solution to monitor spatio-

temporal evolutions of crops at scales compatible with 

decision makers of landscape management [11], [12]. 

Both optical and microwave domains have been intensively 

explored for crop parameters retrieval [13]–[15]. In the optical 

domain, a large panel of studies has demonstrated the interest 

of using reflectance or vegetation index to derive biophysical 

parameters, in particular LAI [16]–[18], biomass [19] or crop 

height [20]. However, the use of optical data has major 

drawbacks, first and foremost their sensitivity to weather and 

lightening conditions that can drastically limit their 

availability in terms of temporal frequency. To overcome 

these shortcomings, more and more studies have focused on 

the use of microwave data (acquired by SAR sensors) to 

estimate crop biophysical parameters [21]–[24] or on the use 
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of combined optical and microwave signals [25]–[30]. 

However, SAR data are not without limitations. They remain 

complex to interpret since they are sensitive to both soil and 

vegetation properties (wetness, roughness, phytomass, 

vegetation structure, etc.).  

Regarding the potential use of the main microwave bands 

(X-, C- and L-bands), many authors have highlighted the 

interest of the X- and L-bands for the monitoring of wheat 

[30], [31], corn [27], barley [21] or rice [32]. However, the 

lack of dense temporal satellite data series acquired at L-band 

and/or their high cost (acquired for example by Alos-2, 

Terrasar-X, Tandem-X or Cosmoskymed constellation) do not 

permit their use in fine temporal approaches for crop 

monitoring. The launch of European Space Agency’s Sentinel 

satellites from 2015 resolves this limitation in the C-band 

domain. Indeed, they offer an unprecedented opportunity to 

monitor crops worldwide in both SAR (with Sentinel 1A and 

1B) and optical (with Sentinel 2A and 2B) domains at high 

temporal frequency and high spatial resolution [33]. 

Moreover, the multiplicity of Sentinel-1’s orbits which can 

cover the same field theoretically offers the opportunity to 

increase data frequency. In this sense, the feasibility of 

merging Sentinel-1 data from different orbits deserves to be 

studied. Regarding optical images, at field scale, data 

frequency can also potentially be increased by the 

combination of different sensors with different features. In 

particular, Sentinel-2 and Landsat-8 both seem to meet 

requirements, in terms of spatial resolution, of worldwide 

field-scale applications. 

Nonetheless, most of the few studies that focused on the 

synergy of optical and SAR data for crop monitoring suffer 

from the unavailability of a sufficient dense dataset containing 

concomitant in situ and satellite data [27], [34]. Such 

shortcomings intrinsically weaken the statistical robustness of 

the relationships established between satellite indicators and in 

situ biophysical parameters. This is particularly true for 

rapeseed for which robust ground measurements are scarce, 

especially in Europe. However, rapeseed is one of the most 

important seasonal crops cultivated in the world for oil, 

proteins and biofuel production. In 2018, rapeseed was the 

seventh world crop in terms of cultivated area with almost 

37.6 million hectares for a total production of 75 million tons 

(FAO statistics for 2018). 

In this context, the objectives of this study consist in: (i) 

analyzing the temporal signatures of SAR data from Sentinel-

1 and optical data from Sentinel-2 and Landsat-8 throughout 

the rapeseed crop cycle, (ii) analyzing the effect of multi-orbit 

acquisitions on SAR data and multi-sensor acquisitions on 

optical data for rapeseed fields, and (iii) evaluating the 

potential of both multi-orbital SAR data from Sentinel-1 and 

multi-sensor optical data from both Sentinel-2 and Landsat-8 

to empirically derive rapeseed biophysical parameters (BP) i.e. 

DM, FM, height and PWC. This paper is structured as follows. 

Section II introduces the material and methods used including 

weather data and ground measurements of rapeseed BP 

(sections II.A and II.B), satellites data (section II.C) and the 

methodology employed to derive BP from Remote Sensing 

Indicators (RSI) and evaluate the predictive power of each RSI 

(section II.D). Section III is dedicated to the presentation of 

results. Firstly, the temporal signatures of optical and SAR 

RSI are analyzed regarding the temporal evolutions of 

measured BP all along the rapeseed phenological cycle 

(Section III.A). Secondly the feasibility of a fusion of 

Sentinel-1 data from different orbits is scrutinized through an 

analysis of angular effects on backscatter coefficients (section 

III.B.1). In parallel, the sensitivity of optical data to sensor 

(Sentinel-2 or Landsat-8) is analyzed (section III.B.2). Finally, 

relationships between RSI and rapeseed BP are studied and 

predictive power of each RSI is analyzed in Section III.C. 

Results are discussed in Section IV according to (i) the effect 

of multi-orbit and multi-sensor acquisitions on SAR and 

optical data, respectively, (ii) the impact of fields sampling on 

empirical relationships, (iii) the order of the empirical 

polynomials functions, and (iv) the impact of radiometric 

correction in SAR processing. Lastly, conclusions and 

perspectives of this work are given in Section V.   

II. MATERIAL AND METHODS 

A. Description of the Study Sites and Meteorological 

Conditions 

Monitored rapeseed fields used in this study are located in 

two study sites, specialized in annual grain crops, in 

southwestern and central France with contrasted pedoclimatic 

conditions (Figure 1). We used meteorological data (i.e. 

rainfall, temperature, and global radiation) from Méteo-France 

(Issoudun, Le Subdray, Bourges, Farges-en-Septaine and 

Prémery stations) and Arvalis Institut du végétal (En 

Crambade station). These data have been daily acquired by six 

meteorological stations situated at less than 19 km far from the 

monitored rapeseed fields (Table I; Figure 1). Figure 2 

provides an ombrothermic diagram for these six 

meteorological stations for the entire agricultural season of 

rapeseed (i.e. from August 2017 to July 2018). Compared to 

other stations, the southern-most station, i.e. En Crambade, is 

characterized by milder temperatures, a drier 2017 autumn and 

a strongly rainier end of season from May to July 2018. 

Prémery and Farges-en-Septaine are the coldest stations 

especially during winter. Bourges and Farges-en-Septaine 

show a rainier autumn. Le Subdray shows significantly higher 

rainfalls in December and June and winter temperatures 

comparable to En Crambade. Issoudun has an intermediary 

behavior. 
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Fig. 1.  Map of monitored rapeseed fields (red dots) and those used for GAI 

measurements (blue dots). Meteorological stations are represented by black 

flags. 

 
Fig. 2.  Ombrothermic diagram of the six meteorological stations for the 2017-

2018 agricultural season of rapeseed. Mean daily temperature and monthly 
rainfall are represented by lines and vertical colored bars, respectively 

(according to weather station). 

 
TABLE I 

IDENTIFIER, SOWING AND HARVEST DATES OF MONITORED RAPESEED 

FIELDS. FOR EACH FIELD, THE DISTANCE FROM THE NEAREST 

METEOROLOGICAL STATION, THE NUMBER OF GROUND MEASUREMENTS AND 

THE MEAN SLOPE ARE MENTIONED 
 

Field 

ident

ifier 

Sowing 
date 

Harvest 
date 

Nearest 

meteorol
ogical 

station 

Distance 
from 

meteorologi

cal station 
(km) 

Number 
of 

sampling 

dates 

Mea

n 
slope 

(°) 

01 2017/08

/16 

2018/07

/03 

Bourges 15.57 13 
1.9 

02 2017/08

/22 

2018/07

/08 

Bourges 9.24 13 
1.1 

03 2017/08

/22 

2018/07

/08 

Bourges 9.24 13 
1.1 

04 No data No data Le 

Subdray 

0.71 11 
0.4 

05 No data No data Le 

Subdray 

0.56 11 
0.4 

06 2017/08
/20 

2018/06
/29 

Farges-
en-

Septaine 

17.30 12 
1.7 

07 2017/08
/23 

2018/07
/18 

Farges-
en-

Septaine 

18.57 12 
1.6 

08 2017/08
/16 

2018/06
/28 

Farges-
en-

Septaine 

14.28 12 
1.2 

09 2017/08
/16 

2018/07
/06 

Farges-
en-

Septaine 

9.05 12 
1.6 

10 2017/08

/17 

2018/06

/29 

Prémery 16.29 12 
0.6 

11 2017/08

/19 

2018/07

/02 

Prémery 16.38 12 
0.9 

12 2017/0

8/29 

2018/07/

07 

Issoudun 4.15 12 
0.7 

13 2017/0
8/27 

2018/06/
28 

En 
Cramba

de 

8.39 9 
2.4 

14 2017/0
8/27 

2018/06/
28 

En 
Cramba

de 

8.83 9 
2.2 

B. Ground Measurements 

In the framework of the R&D project named Colza digital, 

an intensive field campaign was carried out to collect ground 

data over 14 fields of winter varieties of rapeseed (Brassica 

napus L.) during the 2017-2018 growing season (Figure 1 and 

Table I). 

For each field, in situ measurements of crop height, 

aboveground dry mass (DM), aboveground fresh mass (FM) 

and plant water content (PWC) were regularly carried out (20 

days timestep on average) from sowing to harvest. For each 

ground measurement date, 3 samples of rapeseed plants were 

collected on a 1 m
2
 ESU (Elementary Sampling Unit). All 

ESUs were located inside a 20 by 30 m
2
 area, the center of 

which was located on average 60 m far from the edge of the 

field. Aboveground FM was obtained by directly weighing 

plants on field. Aboveground DM was obtained after drying 

plants in an oven (80°C during 36 hours). PWC was obtained 

from DM and FM. For each biophysical parameter, the final 

value is given by averaging measurements performed on the 3 

samples. Phenological stages according the BBCH scale [35] 

have also been recorded (see Appendix A). All ground 

measurements, including BBCH stages, have later been 

linearly interpolated at daily time step. Sowing dates vary 

from August 16, 2017, to August 29, 2017, whereas harvest 

dates vary from June 28, 2018, to July 18, 2018 (Table I).  

In addition to the 14 monitored fields, 18 other independent 

winter rapeseed fields have been used to evaluate the GAI 

derived from Sentinel-2 and Landsat-8 images (see blue fields 

in Figure 1) and sensor effect on optical data. GAI 

measurements were carried out on one ESU of 30 by 30 m
2
 for 

each field using the SunScan Canopy Analysis System (Delta-

T Devices Ltd, UK) for the FR-Aur field and from 

hemispherical photography acquired according to the protocol 

described by [36] and treated with the CAN-EYE software 

[37] for the other fields (see Appendix B for more details on 

the features of these fields). 

C. Satellite Acquisitions 

Figure 3 shows a chronogram of satellite acquisitions 

performed in both optical (Sentinel-2, Landsat-8) and 

microwave (Sentinel-1) domains during the 2017-2018 

rapeseed crop season. 

 
Fig. 3.  Chronogram of satellite acquisitions performed in the optical 

(Sentinel-2, Landsat-8) and microwave (Sentinel-1) domains during the 

rapeseed crop cycle, according to orbit number: 8, 59, 110 and 132 for 
Sentinel-1, and 51 and 8 for Sentinel-2 acquisitions. n is the number of 

respective acquisitions.  
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1) SAR Data 

 The backscatter coefficients at C-band (5.405 GHz) were 

provided by SAR sensor onboard Sentinel-1 satellite 

(Table II). They were derived from the Interferometric 

Wide (IW) mode and Ground Range Detected (GRD) 

processing from four different orbits (i.e. 132, 110, 59 and 

8; Figure 3). Mean incidence angles at field scale are θ132 = 

43.5°, θ110 = 38.3°, θ59 = 36.6° and θ8 = 30.3° for the four 

orbits allowing a repetitiveness of 2.6 days on average for 

all combined orbits (231 images). Backscatters coefficients 

for the four orbits and the two polarizations (VH and VV) 

were extracted for each field (noted σ
0

VH and σ
0
VV in the 

following) from pre-processed GRD data using the Google 

Earth Engine (GEE) website [38]. The GEE preprocessing 

includes the following steps: orbit file application, GRD 

border noise removal, thermal noise removal, radiometric 

calibration (sigma naught), Range Doppler terrain 

correction and resampling at 10 m spacing. Two indexes 

were derived from σ
0

VH and σ
0

VV: the co-cross-polarization 

ratio (σ
0
VH-VV) and the Radar Vegetation Index (RVI). 

Originally introduced by [39], RVI is generally calculated 

using quad-polarized SAR data. Since Sentinel-1 only 

provides VH and VV polarizations, RVI was computed 

according to [40] who adapted the concept of RVI for 

dual-polarization Sentinel-1 data as follows:  

 

𝑅𝑉𝐼 =  
4𝜎𝑉𝐻

0

𝜎𝑉𝑉
0 + 𝜎𝑉𝐻

0  (1) 

 

where σ
0
VH and σ

0
VV are the backscatter coefficients in VH 

and VV polarization, respectively. They are expressed in 

m
2
.m

-2
, and RVI has no unit. 

 
TABLE II 

MAIN FEATURES OF SENTINEL-1 A OR B IMAGES USED IN THIS STUDY 

 

Frequency 5.405 GHz (C-band) 
Mode Interferometric Wide Swath 

Product type Ground Range Detected 

Ground range resolution 5 m 
Azimuth resolution 20 m 

Temporal resolution 12 days 

Orbits 
Ascending (59, 132) & 

Descending (8, 110) 

Polarization Dual (VV & VH) 

Swath 250 km 
Incidence angle 30,3 - 43,5° 

 

2) Optical Data 

NDVI, fCover and GAI were calculated from both ESA 

Sentinel-2 level-1C and USGS Landsat-8 level-1 products 

(Table III). fCover and GAI were obtained by inverting the 

PROSAIL canopy reflectance model [41] with the 

Overland processor developed by Airbus DS GEO 

(https://www.intelligence-airbusds.com/verde-

processing/). Overland processing principle is based on the 

coupling of combined PROSPECT leaf optical properties 

model [42] and SAIL canopy bidirectional reflectance 

model [43], [44] with the LOWTRAN 7 atmospheric 

model [45] completed with an ad-hoc cloud model. 

Overland uses top of atmosphere radiances as inputs to 

perform inversion of above described coupled model 

through minimization techniques. Thanks to its built-in 

atmospheric model, Overland performs autonomous 

atmospheric corrections of reflectance as well as an 

automatic masking of thin clouds and dark shadows. The 

Overland processor also includes a co-registration 

algorithm to deal with differences in native resolutions and 

geometric performances of Sentinel-2 and Landsat-8. A 

detailed description of the Overland algorithms can be 

found in [46]. Only fCover, NDVI and GAI estimations 

derived from images with more than 80 % of cloud free 

pixels over considered rapeseed fields were conserved. 

fCover, NDVI and GAI were finally derived from 76 

Sentinel-2 images and 22 Landsat-8 images for the 14 

monitored rapeseed fields throughout the entire rapeseed 

growth-cycle (Figure 3). Field-scale fCover, NDVI and 

GAI were obtained using the mean value of pixels 

included in the field. 
 

TABLE III 

MAIN FEATURES OF OPTICAL IMAGES USED IN THIS STUDY 
 

Sensors Sentinel-2 Landsat-8 

Bands 

B1 (443 nm) B2 (452 - 

512 nm), B3( 636 - 

673 nm), B4 (636 - 
673 nm), B5 (851 - 

879 nm), B6 (1566 - 

1651 nm), B7 (2107 - 
2294 nm), B8 (842 

nm), B8a (865 nm) B9 

(940 nm), B10 (1375), 
B11 (1610 nm), B12 

(2190 nm) 

B1 (435 - 451 nm), B2 

(452 - 512 nm), B3( 

636 - 673 nm), B4 
(636 - 673 nm), B5 

(851 - 879 nm), B6 

(1566 - 1651 nm), B7 
(2107 - 2294 nm), B9 

(1363 - 1384 nm) 

Product type 
Level-1C Top-Of-

Atmosphere 

reflectance 

Level-1 Top-Of-
Atmosphere 

reflectance 

Spatial resolution 

10 m (B2, B3, B8), 20 
m (B5, B6, B7, B8a, 

B11, B12), 60 m (B1, 

B9, B10) 

30 m 

Temporal resolution 5 days 16 days 

Orbits 51 & 8 - 

Swath 290 km 185 km 

D. Methodology 

Firstly, the temporal signatures of SAR and optical signals 

were analyzed in light of the temporal evolution of in situ 

biophysical parameters (section III.A). In this study, four 

orbits from Sentinel-1 have been simultaneously exploited to 

increase SAR data acquisitions for each studied rapeseed field. 

Acquisitions from different orbits necessarily induce different 

angular configurations which can affect backscatter 

coefficients values. Consequently, orbital effects on SAR data 

have been scrutinized (section III.B.1). Optical data have also 

been acquired from two different sensors, i.e. Sentinel-2 and 

Landsat-8, whose impact on the accuracy of GAI estimates 

was assessed (section III.B.2). 

We then analyzed and evaluated the relationship between 

both SAR and optical Remote Sensing Indicators (RSI), 

respectively derived from Sentinel-1 and Sentinel-2 and 

Landsat-8, and the ground measurements of DM, FM, height 

and PWC acquired on the 14 monitored rapeseed fields during 

the entire 2017-2018 crop cycle (section III.C). In a first step 

regarding SAR RSI aside, evaluation was performed for the 
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complete SAR dataset (section III.C.1). In a second step, for a 

fair statistical comparison between optical and SAR RSI, this 

evaluation was performed for concurrent acquisitions of 

optical and SAR data (section III.C.2). We also scrutinized the 

effect of phenological stages on the suitability of empirical 

relationship by analyzing distribution of residuals (i.e. 

differences between measured and estimated BP) of the best 

RSI-based relationship by BBCH main stages (Section III.D). 

 

1) Definition of Remote Sensing Indicators (RSI) 

 Four SAR RSI, i.e. σ
0

VH, σ
0

VV, σ
0

VH-VV and RVI, and three 

optical RSI, i.e NDVI, fCover and GAI, have been 

considered. As an alternative of raw RSI, we proposed new 

indicators (noted 𝜂RSI) based on the cumulative sum of 

each RSI, and already successfully applied to the 

estimation of wheat parameters [47]:  

 

𝜂𝑅𝑆𝐼(𝑑𝑖) = ∑|𝑅𝑆𝐼(𝑑𝑖)|

𝑛

0

(𝑑𝑖 − 𝑑𝑖−1) (2) 

 

where RSI (di) is the value of the given remote sensing 

indicator at day di, n is the total number of remote sensing 

acquisitions, and (di – di–1) is the number of days between 

day di and the previous acquisition date di–1. This term 

allows taking into account the differences of acquisition 

frequency between monitored fields for both SAR (mainly 

due to orbits configurations) and optical (mainly due to 

cloud cover conditions) images. For all RSI, a common 

starting date d0 is set for all fields for which 𝜂RSI is 

initialized to 0. In this study d0 was set to the 4
th

 of August 

2017 for both SAR and optical data, matching the dates of 

the first pre-sowing available Sentinel-1 image and/or the 

first pre-sowing available Sentinel-2 or Landsat-8 image. 

A complete list of RSI analyzed in this paper is given in 

Table IV. 
TABLE IV 

REMOTE SENING INDICATORS (RSI) USED IN THIS STUDY 

 

RSI Domain Unit 

NDVI Optical - 

fCover Optical % 
GAI Optical m2.m-2 

𝜂NDVI Optical days 

𝜂fCover Optical %.days 

𝜂GAI Optical m2.m-2.days 

σ0
VH SAR dB 

σ0
VV SAR dB 

σ0
VH-VV SAR dB 

RVI SAR - 

𝜂σVH SAR dB.days 

𝜂σVV SAR dB.days 

𝜂σVH-VV SAR dB.days 

𝜂RVI SAR days 

 

2) Analysis of orbital effects on SAR data 

To consider the feasibility of the fusion of Sentinel-1 data 

from different orbits, we scrutinized angular effects on 

backscattering coefficients. To do so, we analyzed the 

temporal evolution of the Γ variable (in dB.°
-1

) defined as 

follows:  

𝛤 =
𝛥𝜎0

𝛥𝛳
 (3) 

where Δσ
0
 (dB) and Δϴ (°) are the differences between 

either σ
0
VH, σ

0
VV or σ

0
VH-VV and the incidence angles from 

two successive acquisitions in different orbits. Considering 

sensitivity of SAR data to soil moisture, in this analysis, 

we also computed cumulated rainfall values from the 

nearest meteorological station between two consecutive 

acquisitions. In this way, we investigated if the difference 

between σ
0
 values can rather be explained by a rainfall 

event than by a difference in incidence angle. 

 

3) Evaluation of optical GAI and analysis of sensors effects 

on optical data 

To explore the effect of sensors on optical data, two kind 

of analysis have been carried out. In a first one, the 

accuracy of GAI estimations derived from Sentinel-2 and 

Landsat-8 have been assessed by comparing them with in 

situ measurements acquired on the 18 fields with available 

ground GAI (see blue fields in Figure 1). For this 

comparison, the results were analyzed according to the 

sensor and according to the time difference between 

ground measurements and acquisition dates of satellite 

images. 

In a second analysis, GAI, fCover and NDVI derived from 

Sentinel-2 and Landsat-8 have been compared each other 

for all monitored fields (i.e. blue and red fields in Figure 1) 

by considering a maximal difference of one day between 

acquisition dates of Sentinel-2 and Landsat-8 images. 

 

4) From satellite to crop parameters 

Linear (Eq.4) and 2
nd

-order polynomial (Eq.5) regressions 

were established between either SAR or optical indicators 

and measured biophysical parameters: 

 

𝐵𝑃 = 𝑎𝑅𝑆𝐼 + 𝑏 (4) 

𝐵𝑃 =  𝑎𝑅𝑆𝐼2 + 𝑏𝑅𝑆𝐼 + 𝑐 (5) 

 

where BP is a rapeseed Biophysical Parameter (DM, FM, 

PWC, height), RSI is a Remote Sensing Indicator from 

either SAR or optical domain and a, b, c are parameters of 

the regression. Performance of each relationship was 

evaluated using coefficient of determination (R
2
), Root 

Mean Square Error (RMSE) and relative Root Mean 

Square Error (RMSEr). 

III. RESULTS 

A. SAR and optical temporal signatures 

Figure 4 shows the temporal evolution of fCover, NDVI 

(Fig. 4.c), GAI (Fig. 4.d), σ
0
VH, σ

0
VV (Fig. 4.e), σ

0
VH-VV and 

RVI (Fig. 4.f), 𝜂σVH, 𝜂σVV, 𝜂σVH-VV, 𝜂RVI (Fig. 4.g), 𝜂fCover, 

𝜂NDVI, 𝜂GAI (Fig. 4.h), as well as in situ measurements of height 

and PWC (Fig. 4.a), DM and FM (Fig. 4.b) as the mean and 

standard deviation of all studied fields. In this figure, for 

display reasons, ground measurements, optical and radar 

indicators have been linearly interpolated beforehand at a 

daily timescale.  
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Fig. 4.  Temporal evolution of in situ height and PWC (a), DM and FM (b), 

optical NDVI and fCover (c), GAI (d), SAR backscattering coefficients (e) 

and backscattering coefficients ratio and RVI (f) as well as 𝜂RVI and 𝜂σ for VH 

and VV polarization and VH-VV ratio (g) and 𝜂NDVI, 𝜂fCover and 𝜂GAI (h). Lines 
and shadow areas represent the mean and standard deviation of considered 

variable, respectively. Mean of in situ observed date of the main rapeseed 
phenological stages are given by vertical dashed lines with corresponding 

stages name and plant illustration in the top of the panel (a). 

 

1) Optical signatures 

NDVI and fCover showed similar behavior, both rapidly 

increasing from cotyledon emergence (BBCH 09) to the 

development of first leaves (BBCH ~ 13). This increase 

was steeper than the one showed by in situ height, DM and 

FM. On the contrary, PWC showed a slight decrease from 

sowing to the first leaves development. Similarly to all BP, 

NDVI and fCover then stagnated until the end of stem 

elongation (BBCH 39). However, measured height showed 

a particular behavior with a winter decrease, during the 

beginning of December where inter-field variability is high 

before decreasing until BBCH 50. Such a winter decrease 

was clearly attenuated for DM and FM that rather 

exhibited stagnation. Both NDVI and fCover later 

increased from BBCH 50 to reach a peak during siliques 

development (around BBCH 73). This peak was reached 

earlier than the peak of measured FM. NDVI and fCover 

finally rapidly decreased until harvest like in situ FM and 

PWC whereas height and DM stagnated. Note that during 

early April, when rapeseed is flowering, NDVI showed a 

slight decrease whereas fCover stagnated. Note also that 

NDVI showed higher saturation effect than fCover during 

non-growing periods (before sowing and after harvest), 

during which vegetation cover was particularly sparse, 

even absent. 

GAI showed a similar time curve but with a higher intra-

annual variability. More precisely, the increase during the 

leaves development (BBCH 10 to 29) was smoother 

whereas the increase from inflorescence emergence 

(BBCH 50) to fruit development (BBCH ~ 73) and the 

decrease during fruit maturation were steeper. During the 

peak phase, inter-field variability was higher for GAI 

(coefficient of variation CV = 17.1 %) than for NDVI (CV 

= 6.6 %) and fCover (CV = 7.1 %). Regarding optical 𝜂RSI, 

they all showed a quasi-linear increase with a slight higher 

slope from sowing to the first leaves development and 

from stem elongation to fruits development, corresponding 

to an increase in NDVI, fCover and GAI values. 

 

2) SAR signatures 

Regarding SAR indicators, σ
0

VH and σ
0
VV were particularly 

noisy (CV = 9.0 and 13.7 %, respectively) during the 

beginning of the agricultural season when vegetation cover 

was less developed. This is probably due to their 

sensibility to soil moisture and surface roughness at this 

stage. The use of σ
0
VH-VV allowed reducing this noise (CV 

= 5.9 %). σ
0
VH-VV and RVI showed very similar behavior. 

Similarly to optical RSI, σ
0
VH, σ

0
VV, σ

0
VH-VV and RVI 

started from low values (around - 22 dB, - 12 dB, - 10 dB 

and 0.36, respectively) and increased during the 

development of the first leaves and rapidly reached a 

quasi-plateau until the inflorescence emergence. Note that 

the increase for σ
0
VH-VV and RVI was smoother than for 

σ
0
VH, σ

0
VV. Then, both σ

0
VH-VV and RVI increased and 

reached a new plateau around - 4 dB (respectively 1.2) 

during fruits development before rapidly decreased during 

fruits maturation following the desiccation of rapeseed 

organs, as illustrated by the PWC decrease. Standard 

deviation increases during this decline due to the 

variability in the harvest dates. Unlike σ
0
VH-VV and RVI, 

σ
0
VH and σ

0
VV showed a slight decrease during flowering. 

Note also that the decrease during fruits maturation is 

stronger for σ
0
VH than for σ

0
VV. Inter-fields variability was 

globally smaller for SAR RSI (CV of 8.7 % on average) 

than for optical RSI (CV of 24.1 % on average). 

Similarly to optical 𝜂RSI, SAR 𝜂RSI showed a quasi-linear 

increase with a slightly higher slope from sowing to the 

first leaves development, corresponding to an increase in 

backscatter coefficients values, and a slightly lower slope 

(respectively higher) from BBCH 80 to harvest for 𝜂σ 

(respectively 𝜂RVI), corresponding to a decrease in 

backscatter coefficients values. 
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B. Analysis of orbital and sensors effects 

1) Feasibility of Sentinel-1 orbits fusion: analysis of angular 

effects on backscatter coefficients 

Figure 5 shows the temporal evolution of Γ for all the 

studied fields for σ
0

VV (Figure 5.a), σ
0

VH (Figure 5.b) and 

σ
0

VH-VV (Figure 5.c). Only data with a difference of 

acquisition date of one day and a difference of incidence 

angle superior to 5° have been considered. For 

informational purpose, cumulated rainfall between two 

acquisitions is also given in the color bar. Both σ
0
VV and 

σ
0

VH data showed significant Γ dispersion (standard 

deviation of 0.13 dB.°
-1

 for both polarization) with values 

ranging from 0 to 0.74, and 0 to 0.87 dB.°
-1

 respectively 

and a mean value superior to 0.15 dB.°
-1 

(0.18 and 0.16 

dB.°
-1 

respectively). Particularly high Γ values (> 0.40 

dB.°
-1

) were observed during the first months of the 

rapeseed crop cycle (from August to November) for which 

surface heterogeneity was the highest since soil was not 

fully covered by the vegetation. For σ
0

VH-VV, Γ values were 

less dispersed (standard deviation of 0.06 dB.°
-1

) whatever 

the considered crop cycle period and mean value was 

significantly lower (i.e. 0.07 dB.°
-1

). Note that whatever 

the considered SAR indicator, cumulated rainfall between 

two acquisitions had not significant impact on Γ values. 

These results suggest that Sentinel-1 data fusion from 

multi-orbits is practicable for σ
0

VH-VV, but is subject to 

higher angular effects for both σ
0

VH and σ
0
VV as 

demonstrated with Radarsat data in [30]. 

 
Fig. 5.  Temporal evolution of Γ for σ0

VV (a) σ
0

VH (b) σ
0

VH-VV (c). The color of 
each dot represents the sum of rainfall between two acquisitions in 

millimeters. 

 

2) Sensitivity of optical signal to sensors 

Figure 6 provides an evaluation of satellite GAI estimates 

compared to in situ measurements for both Landsat-8 

(Figure 6.a) and Sentinel-2 (Figure 6.b) images. Results 

are displayed by field (color of points) and according to 

the number of days between satellites overpasses and 

ground measurements (size of points) as both acquisitions 

are not systematically concomitant. Sentinel-2 -derived 

GAI estimates were in good agreement with in situ 

measurements showing R
2
 of 0.78 and RMSE of 0.36 

m
2
.m

-2
 with differences between satellite and ground 

acquisitions varying from 0 to 8 days. Landsat-8 estimates 

showed lower accuracy with R
2
 of 0.78 and RMSE of 0.41 

m
2
.m

-2
.  

 
Fig. 6.  Comparison between Overland GAI and in situ GAI for Landsat-8 (a) 
and Sentinel-2 (b) images. Dashed line is a 1:1 line and solid line is the linear 

regression between satellite-derived and measured GAI. The color of points 

corresponds to the fields’ identifiers whereas their size corresponds to the 
number of days between satellites overpass and ground measurement. 

Coefficient of determination (R2) and Root Mean Square Error (RMSE) and 

relative RMSE (RMSEr) are given in the top left of each panel. 
 

For further evaluation of sensor impacts on optical RSI, 

Figure 7 provides a comparison between Landsat-8 and 

Sentinel-2 -derived GAI (Figure 7.a), fCover (Figure 7.b) 

and NDVI (Figure 7.c) with a maximal difference in 

acquisition date of one day. Globally, Landsat-8 and 

Sentinel-2 -derived RSI are in good agreement with R
2
 

values higher than 0.93 and RMSEr values below 25 %. 

Landsat-8 estimates showed a slight underestimation for 

high GAI (> 2 m
2
.m

-2
) and fCover (> 0.5) values. For 

NDVI, Landsat-8 showed higher values for low NDVI 

values (< 0.6) and lower values for high NDVI values (> 

0.6). The combined use of Landsat-8 and Sentinel-2 data 

allowed an average revisit interval of 12.1 days against 

14.2 days for Sentinel-2 acquisitions alone. Moreover, 

evaluation of Overland GAI from both sensors showed 

consistent results that permit GAI computation from 

combined sources. 
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Fig. 7.  Comparison between Landsat-8 and Sentinel-2 -derived GAI (a), 

fCover (b) and NDVI (c). Dashed line is a 1:1 line. Coefficient of 

determination (R2), Root Mean Square Error (RMSE) and relative RMSE 
(RMSEr) are given in the top left of each panel. 

C. Relationships between SAR or optical RSI and crop 

biophysical parameters 

1) Comparison between SAR RSI for multi-orbital Sentinel-1 

acquisitions 

Figure 8 shows performance of empirical relationships 

between SAR RSI and rapeseed biophysical parameters (n 

= 1436). Figure 9 shows the best relationships obtained 

between rapeseed biophysical parameters and SAR RSI. 

For further information, values of RMSEr and R
2
 for each 

SAR RSI and each empirical relationship are provided in 

Appendix C.  

Globally, the use of 𝜂RSI tended to improve the 

performance of relationships whatever the RSI considered, 

except σ
0
VH-VV. Moreover, 2

nd
-order-polynomial 

relationship always outperformed simple linear regression. 

σ
0

VV showed particularly low predictive power whatever 

the relationship and the BP considered with maximal R
2
 

values ranging from 0.01 to 0.25 and RMSEr values 

ranging from 86.66 % to 99.45 %. 

Regarding height, the best results were obtained with 𝜂σVH 

using 2
nd

-order-polynomial relationship (R
2
 = 0.87, RMSE 

= 21.19 cm and RMSEr = 35.73 %; Figures 8a and 9.a). 

𝜂σVV using 2
nd

-order-polynomial relationship showed only 

a slightly lower performance (R
2
 = 0.85, RMSE = 22.84 

cm and RMSEr = 38.51 %). For PWC, σ
0
VH was the best 

predictor (R
2
 = 0.60, RMSE = 2.37 % and RMSEr = 63.04 

% using 2
nd

-order-polynomial relationship; Figures 8.b and 

9.b). Globally all SAR RSI provided low performance for 

PWC retrieval. 

 
Fig. 8.  Coefficient of determination (R2; bars) and relative Root Mean Square 

Error (RMSEr; dots) of empirical relationships between SAR indicators and in 

situ measured height (a), plant water content (b), dry mass (c) and fresh mass 
(d).  

 

Regarding DM, 𝜂RVI was the best predictor (R
2
 = 0.82, 

RMSE = 155.71 g.m
-2

 and RMSEr = 41.97 % using 2
nd

-

order polynomial relationship; Figure 8.c and 9 .c). Using 

2
nd

-order polynomial regression, 𝜂σVH and 𝜂σVV showed 

similar performance (R
2 

= 0.82, RMSE = 156.37 g.m
-2

, 

RMSEr = 42.15 % and R
2 

= 0.82, RMSE = 157.54 g.m
-2

, 

RMSEr = 41.97 %, respectively). Using 2
nd

-order 

polynomial regression, 𝜂σVH was the best predictor for FM 

(R
2 

= 0.73, RMSE = 1035.46 g.m
-2

, and RMSEr = 52.04 %; 

Figures 8.d and 9.d) followed by 𝜂σVV (R
2 

= 0.71, RMSE = 

1068.62 g.m
-2

, and RMSEr = 53.71 %). 
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Fig. 9.  Best relationships between in situ measured height (a), plant water 

content (b), dry mass (c) and fresh mass (d) and SAR indicators. Equation of 

the regression as well as values of coefficient of determination (R2), Root 

Mean Square Error (RMSE) and relative RMSE (RMSEr) and number of 

observations (n) are given in the top left corner of each panel. 

 

2) Evaluation of SAR and optical RSI performances for 

concurrent acquisitions 

Figure 10 shows overall performances of empirical 

relationships between RSI and rapeseed biophysical 

parameters for SAR and optical concurrent acquisitions (n 

= 86), whereas Figure 11 focuses on the best relationships. 

For further information, values of RMSEr and R
2
 for each 

RSI and each empirical relationship are provided in 

Appendix D.  

Again, the use of 𝜂RSI improved the performance of 

relationships whatever the considered RSI, except σ
0
VH-VV 

and GAI. NDVI provided poor results whatever considered 

BP. For every BP and every RSI, 2
nd

-order polynomial 

regression outperformed linear regression. 

Concerning height, the best results were obtained with 

𝜂σVH using polynomial regression (R
2 

= 0.88, RMSE = 

21.98 cm and RMSEr = 33.76 %; Figures 10.a and 11.a). 

𝜂NDVI using 2
nd

-order polynomial relationship showed only 

a slightly lower performance (R
2
 = 0.88, RMSE = 22.37 

cm and RMSEr = 34.35 %). σVV and NDVI showed 

particularly low predictive power whatever the considered 

relationship with R
2
 values below 0.43 and RMSEr values 

above 74 % (RMSE > 48 cm). 

 
Fig. 10.  Coefficient of determination (R2; bars), relative Root Mean Square 

Error (RMSEr; dots) of empirical relationships estimated between satellite 
indicators and in situ measured height (a), plant water content (b), dry mass 

(c) and fresh mass (d). 

 
Fig. 11.  Best relationships between in situ measured height (a), plant water 

content (b), dry mass (c) and fresh mass (d) and optical remote sensing 
indicators. Equation of the regression as well as values of coefficient of 

determination (R2), Root Mean Square Error (RMSE) and relative RMSE 

(RMSEr) and number of observations (n) are given in the top left corner of 
each panel. 

 

For PWC, no RSI provided satisfactory results (R
2
 = 0.17 

– 0.49 and RMSEr = 71.14 – 90.71 %; Figure 10.b) 

throughout the entire crop cycle. The best performance 

were obtained with σ
0

VH using 2
nd

-order polynomial 

regression (R
2
 = 0.49, RMSE = 2.08 % and RMSEr = 

71.14 %; Figure 11.b). Regarding DM, 𝜂σVH was the best 

predictor using 2
nd

-order polynomial regression (R
2
 = 0.87, 

RMSE = 151.68 g.m
-2

 and RMSEr = 36.48 %; Figure 

11.c). 𝜂σVV (R
2
 = 0.86, RMSE = 153.06 g.m

-2
 and RMSEr 

= 36.81 %), 𝜂RVI (R
2
 = 0.86, RMSE = 155.83 g.m

-2
 and 

RMSEr = 37.48 %) and 𝜂NDVI (R
2
 = 0.86, RMSE = 155.27 

g.m
-2

 and RMSEr = 37.34 %) showed similar performance 

(Figure 10.c). Using 2
nd

-order polynomial regression, 

𝜂NDVI was the best predictor for FM (R
2 

= 0.81, RMSE = 

968.14 g.m
-2

 and RMSEr = 43.39 %), closely followed by 

𝜂σVH (R
2 

= 0.81, RMSE = 968.23 g.m
-2

 and RMSEr = 43.40 

%) (Figures 10.d and 11.d). 

D. Inter-phenological stages variability 

Figure 12 shows standard deviation in observations 

(between fields) and boxplots of residuals (i.e. the differences 

between measured and simulated BP) of the best multi-orbit 

SAR-based relationship for each BP (see section III.C.1). 

These values are calculated for the main phenological stages 

and for all stages. Due to the lack of observations for BBCH 

above 80, fruits development and fruits ripening stages have 

been clustered. 

Regarding height, interquartile range of residuals was 

enlarged for inflorescence emergence, flowering and fruits 

development and ripening compared to the previous stages 

(Figure 12.a). More precisely, residuals were significantly 

negatively skewed during inflorescence emergence (median of 

-20.2 and average of -16.7 cm) and positively skewed during 

flowering (median of 5.9 and average of 12.9 cm) and fruits 
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development and ripening (median of 15.7 and average of 16.0 

cm) indicating an overestimation (respectively an 

underestimation) of rapeseed height. Note that these stages 

were those associated with the largest standard deviation in 

observed height. 

Regarding PWC, the fruits development and ripening stages 

showed a particular behavior with a large number of negative 

outliers resulting in a large overestimation of derived PWC. 

Note that whatever considered BP it was the only case for 

which standard deviation was higher for one phenological 

stage than for all stages combined. The leaves development 

stage showed a higher interquartile range and a slightly 

positively skewed distribution of residuals (median of 1.4 and 

average of 0.7 %). 

For DM, inter-fields variability (i.e. standard deviation in 

observations) globally increased with the growth of rapeseed 

(Figure 12.c). Compared to other stages, residuals distribution 

was strongly enlarged for fruits development and ripening and 

showed a negative skewness (median of 125.7 and average of 

91.9 g.m
-2

). Other stages showed a similar interquartile range 

and a slighter skewness of residuals distribution. 

The distribution of residuals for FM was not significantly 

skewed whatever the considered phenological stage except for 

stem elongation (Figure 12.d). A larger distribution was 

observed for the development of side shoots and inflorescence 

emergence. The latter was associated with the highest standard 

deviation in observed FM. The flowering and fruits 

development and ripening stages also showed a higher 

interquartile range compared to previous stages. 

 

Fig. 12.  Boxplots of residuals of the best SAR-based relationship for height 

(a), Plant Water Content (b), Dry Mass (c) and Fresh Mass (d) by main 

phenological stages. Blue lines and red crosses represent the median and the 

mean of each distribution, respectively. Green diamonds represent the 

standard deviation of in situ measurements of each biophysical parameter for 

the considered main phenological stage. 

IV. DISCUSSION 

A. Impact of multi-orbit acquisitions on SAR RSI predictive 

power 

Similarly to Section III.C.1, we performed SAR RSI-based 

regressions to retrieve rapeseed BP but for mono-orbital (orbit 

110) Sentinel-1 acquisitions. We then computed the difference 

in terms of R
2
 and RMSEr values between mono-orbit and 

multi-orbit best relationships for each RSI and each BP. 

Results of this procedure are shown in Figure 13. Globally, 

except for σ
0
VV, the mono-orbit approach induced a slight 

improvement of R
2
 and RMSEr values. However differences 

of performance between mono-orbit and multi-orbit 

approaches remained relatively low. The best improvement 

was achieved for PWC and FM. Note that for the mono-orbit 

approach, the best predictors using a 2
nd

-order polynomial 

regression are 𝜂σVH for height (R
2
 = 0.95, RMSE = 21.48 cm 

and RMSEr = 28.25 %), σ
0
VH for PWC (R

2
 = 0.53, RMSE = 

2.39 % and RMSEr = 66.74%), 𝜂RVI for DM (R
2
 = 0.87, 

RMSE = 148.60 g.m
-2

 and RMSEr = 34.81 %) and 𝜂σVV for 

FM (R
2
 = 0.84, RMSE = 1107.85 g.m

-2
 and RMSEr = 38.60 

%). 

 
Fig. 13.  Differences in coefficient of determination (R2; bars) and relative 

Root Mean Square Error (RMSEr; dots) between mono-orbit and multi-orbit 
SAR-based best relationship for rapeseed biophysical parameter retrieval. 

 

Furthermore, for three of the biophysical monitored 

parameters (i.e. height, PWC and FM), RSI based on the 

polarized backscattering coefficients (VV or VH) stood out as 

being the most efficient although they showed greater 

sensitivity to angular effects from orbits fusion than the 

polarization ratio (see section III.B.1). On the one hand, if the 

multi-orbital approach offered satisfactory results, a slight 

degradation of statistical performance was observed compared 

to the mono-orbital approach whatever BP considered. On the 

other hand, the multi-orbital approach allows to materially 

increase the number of acquisitions with an average revisit 

interval of 2.6 days against 6 days for mono-orbital 

acquisitions (combining Sentinel-1A and B). Hence, the 
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choice between mono-orbital and multi-orbital approach will 

depend on the objective sought between the statistical 

accuracy of the empirical relationship and the desired 

frequency of considered BP estimations. 

B. Impact of fields sampling on empirical relationships 

Figure 14 shows boxplots by fields of residuals of the best 

multi-orbit SAR-based relationship for each BP (see section 

III.C.1). Important discrepancies could be observed in field-

specific residuals distribution. Whatever considered BP, field 

01 always showed a negatively skewed distribution of 

residuals whereas plots 02, 03 and 11 were associated with a 

positively skewed distribution. The field showing an average 

behavior, i.e. the field showing the less skewed distribution 

and a small interquartile range, varies according to the 

considered BP. Regarding height, field 07 showed the less 

skewed distribution of residuals (median of -0.17 cm and 

mean of -2.22 cm) and the smallest interquartile range. For 

PWC, field 04 showed the least skewed distribution of 

residuals (median of - 0.25 % and mean of - 0.05 %) whereas 

it was field 10 for DM (median of 31.3 cm and mean of 122.5 

g.m
-2

) and field 06 for FM (median of -27.2 cm and mean of -

32.2 g.m
-2

). Other plots tended to show either positively or 

negatively skewed distributions of residuals. 

 
Fig. 14.  Boxplots of residuals of the best SAR-based relationship for height 
(a), Pant Water Content (b), Dry mass (c) and Fresh mass (d) by field. Blue 

lines and red crosses represent the median and the mean of each distribution, 

respectively. 

 

These results highlight the importance of the fields 

sampling strategy adopted to establish relationships between 

RSI and measured BP. The sample size and variability of in 

situ observations affect the statistical robustness of these 

relationships. It is thus necessary to consider a sufficient range 

of fields with different situations in terms of climatic 

conditions and agricultural practices. To illustrate this point, 

we calculated the best relationship for each field separately 

and we showed the variability of obtained relationships in 

Figure 15. One can observe that this variability is significant 

and varies according to the considered BP and phenological 

stages. In particular, for DM, it increased throughout the 

rapeseed phenological cycle (Figure 15.c), while it was 

relatively constant for height and FM (Figures 15.a and d) and 

strongly enlarged for PWC during the beginning and the end 

of the agricultural season (Figure 15.b). 

 
Fig. 15.  Best relationships between in situ measured height (a), plant water 
content (b), dry mass (c) and fresh mass (d) and SAR indicators for each field 

taken separately (color code by field identifier) 

C. Complementarity and potential of combined SAR/optical-

derived BP for monitoring and modeling fields of rapeseed 

Most of the time, during the core of the rapeseed growth 

cycle, SAR and optical signals are out of phase (see section 

III.B). More precisely, the increase in optical GAI occurred at 

the beginning of inflorescence emergence (BBCH 50) whereas 

backscatter coefficients and RVI remained quite stable until 

BBCH 60 from which volume scattering increases resulting in 

an increase of σ
0
VH-VV and RVI. Finally the GAI peak was 

raised during the first half of May whereas backscatter 

coefficients showed a peak at the end of May around BBCH 

80. After flowering, the rapeseed canopy becomes randomly 

oriented with the fall of leaves and the inset of siliques. [28] 

demonstrated that this steep architecture change induces a 

strong increase in the canopy contribution in volume 

scattering. This can explain the delayed peak of backscatter 

coefficients compared to GAI. Indeed, leaves fall induces a 

decrease of GAI but the development of fruits, less covering 

than leaves, contributes to volume scattering. Furthermore, 

during winter, most of the fields located in Central France 

showed a slight decrease of GAI (not shown). This decrease is 

explained by the loss of the first well developed leaves due to 

winter frosts [48]. Such a phenomenon was not captured in 

SAR indicators that remained stable during this period. 

For purpose of the assimilation of these remote sensed data 

in crop models, this complementarity of SAR RSI and optical 

GAI and the good predictive power of 𝜂RVI for DM retrieval 

are promising. Indeed, in agrometeorological models, GAI and 

DM are state variable often linked in models formalism (see 

e.g. [49]). Consequently, the possibility to drive these two 

dependent variables by means of independent time series 

(SAR-derived DM and optically-derived GAI) should provide 
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the right conditions for optimizing rapeseed monitoring and 

yields modeling. Benefits of combined assimilation of 

optically-derived GAI and SAR-derived DM in 

agrometeorological models have been already proved for 

maize [25], [26], soybean [50], [51] or sunflower [52] but 

remained to be demonstrated for rapeseed. Besides, the 

analysis of residuals distribution by phenological stages 

carried out in section III.D offered the opportunity to develop 

an assimilation strategy by periods through a weighing scheme 

according to the confidence in SAR and/or optical -based 

relationship for each phenological stage.  

D. Performance of RSI-based relationship for biophysical 

parameters retrieval in light of relevant previous studies 

Newly introduced SAR 𝜂RSI provided very satisfactory 

results for DM (with 𝜂RVI) and height (with 𝜂σVH) with R
2
 

above 0.82 and RMSEr below 42 %. For FM, results are more 

lukewarm with higher inter-fields variability resulting in 

higher RMSEr (52.04 %). Globally no clear relationship can 

be inferred from the comparison of RSI with PWC 

measurements. However, results for PWC retrieval can be 

drastically improved (R
2
 = 0.76, RMSE = 2.02 % and RMSEr 

= 49.51 %) by using 𝜂σVH and considering ground 

measurements from inflorescence emergence (BBCH 60) 

only, when vegetation starts drying out (Figure 16).  

 
Fig. 16.  Best relationship between in situ measured PWC and 𝜂σVH for BBCH 
stages beyond 60. Equation of the regression as well as values of coefficient 

of determination (R2), Root Mean Square Error (RMSE) and relative RMSE 

(RMSEr) and number of observations (n) are given in the top left corner of the 
panel. 

 

The performance of the fitting between SAR RSI and 

measured BP can also be improved using n-order polynomial 

regression (3
rd

 and 4
th

 -order polynomial regressions have 

been tested; Figure 17). Table V provides the values of the 

Akaike Information Criterion (AIC; [53]) for each rapeseed 

biophysical parameter and each tested regression for the best 

RSI. Note that the best RSI changed when n-order polynomial 

regressions are considered. The best improvement is achieved 

for DM, 𝜂σVH being the best RSI (R
2
 = 0.88, RMSE = 126.07 

g.m
-2

 and RMSEr = 33.98; Figure 17.b) using 3
rd

-order 

polynomial regression (a decrease of skill scores is observed 

for 4
th

-order polynomial regression; Table V). For height (R
2
 = 

0.90, RMSE = 18.29 cm, and RMSEr = 30.85 % with 𝜂σVV; 

Figure 17.b) and FM (R
2
 = 0.78, RMSE = 942.19 g.m

-2
 and 

RMSEr = 47.35 % with 𝜂RVI; Figure 17.c), the improvement is 

lower and required a 4
th

-order polynomial regression. The use 

of these n-order relationships reduces the skill scores 

difference between mono-orbital and multi-orbital approaches 

(not shown). 

 
Fig. 17.  Best relationships between in situ measured height (a), dry mass (b) 
and fresh mass (c) and SAR indicators for polynomial regression of order 3 or 

4. Equation of the regression as well as values of coefficient of determination 

(R2), Root Mean Square Error (RMSE) and relative RMSE (RMSEr) and 

number of observations (n) are given in the top left corner of each panel. 

 

TABLE V 
VALUES OF AKAIKE INFORMATION CRITERION (AIC) OF THE RELATIONSHIPS 

(ORDER 1 TO 4) BETWEEN THE BEST INDICATOR AND EACH RAPESEED 

BIOPHYSICAL PARAMETER. THE BEST INDICATOR IS GIVEN AFTER EACH AIC 

VALUE AND THE LOWER AIC VALUE FOR EACH PARAMETER IS GIVEN IN 

BOLD. 
 

 Height PWC DM FM 

Linear 13649/RVI 6787/𝜎0
VH 19112/RVI 24362/RVI 

2nd-order 
polynomial 

12851/𝜂𝜎VH 6561/𝜎0
VH 18579/𝜂RVI 24020/𝜂𝜎VH 

3rd-order 

polynomial 
12647/𝜂𝜎VH 6057/𝜂RVI 17974/𝜂𝜎VH 24007/𝜂𝜎VH 

4th-order 

polynomial 
12433/𝜂𝜎VV 6051/𝜂RVI 18023/𝜂𝜎VH 23753/𝜂RVI 

 

Unlike other crops, in particular winter wheat, studies 

focusing on the potential of SAR and/or optical data to derive 

biophysical parameters of rapeseed are scarce, limiting 

comparison with relevant studies. Direct comparison between 

studies is particularly tricky due to differences in remote 

sensed indicators set compared, sensors used and phenological 

stages range available from ground measurements.  

Using Radarsat-2 quad-polarization data acquired over 4 

rapeseed fields in Southwest France, [30] showed that σ
0
HV-HH 

was the best predictor for crop height using linear regression 

(R
2 
= 0.76 RMSEr = 43%, n = 36), notably outperforming σ

0
VV 

(R
2
 = 0.58, RMSEr = 71%, n = 32) and σ

0
VH (R

2
 = 0.44, 

RMSEr = 80%, n = 40). However, they obtained better 
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statistical performance with NDVI derived from SPOT-4/5 

and Formosat-2 images (R
2
 = 0.82 RMSEr = 25 %, n = 26). 

For the same fields, [28] studied the predictive power of 

polarimetric parameters derived from 14 quad-polarization 

Radarsat-2 images and NDVI derived from 16 optical images 

from Formosat-2 and Spot 4/5 sensors. Using an exponential 

regression, authors obtained the best results with RVI for DM 

monitoring (R
2
 = 0.8, RMSEr = 7 %, n = 9) and the degree of 

polarization for height monitoring (R
2
 = 0.67, RMSEr = 15 % 

n = 40) both largely outperforming optically-derived NDVI. 

Using Radarsat-2 quad-polarization wide mode SAR data 

from 8 images acquired over 7 rapeseed fields in southern 

Manitoba (Canada), [24] obtained the best correlation with 

entropy using logarithmic regression for DM (R
2
 = 0.65, n = 

64). Authors also showed a saturation of the C-band signal for 

dry mass beyond 800 g.m
-2

. Using compact polarimetric data 

from five Radarsat-2 images acquired over 11-14 rapeseed 

fields (according to the date), [54] showed the potential of 

Stokes parameters to derive DM (R
2
 = 0.77) and stem height 

(R
2
 = 0.92) using 2

nd
-order polynomial regressions. Authors 

showed a non-negligible improvement of predicted DM (R
2
 = 

0.93, n = 30) and height (R
2
 = 0.95, n =22) using a Random 

Forest model and 27 compact polarimetric parameters. For the 

same dataset, and using fully polarimetric data, [55]obtained 

the best results with the ratio between volume scattering and 

the sum of odd and double-bounce scattering for both DM (R
2
 

= 0.85, n = 24) and FM (R
2
 = 0.76, n = 36). Note that these 

studies concerned summer varieties with low biomass 

production and a shorter life-cycle without wintering stage 

compared to our winter rapeseed fields. Such differences 

jeopardize the direct comparison of the results. 

From Sentinel-1 images acquired over 3 fields in Austria (n 

= 25), [23] showed that σ
0

VH-VV was the best predictor for 

PWC (R
2
 = 0.34), FM (R

2
 = 0.34) and crop height (R

2
 = 0.51). 

More recently, using Gaussian processes regression (GPR) 

with Sentinel-1 and Sentinel-2 images for a drastically smaller 

dataset (3 rapeseed fields, 5 dates), [34] demonstrated that 

σ
0

VH-VV was the best SAR indicator to derive DM (R
2
 = 0.80) 

and FM (R
2
 = 0.75) whereas σ

0
VH was the best indicator for 

PWC (R
2
 = 0.60). However, authors obtained better results 

using band 11 of Sentinel-2 for DM (R
2
 = 0.85) and FM (R

2
 = 

0.77).  

Globally, the results of this paper are in line with these 

previous studies demonstrating the high potential of C-band 

SAR data for rapeseed BP monitoring, in particular for height 

and DM. Compared to these studies, we introduced new 

indicators based on the cumulated sum of backscatter 

coefficients, polarization ratio or RVI that proved to 

significantly improve performances of rapeseed BP retrieval 

(see Figures 8 and 10). These indicators allow for the 

integration of backscattering phenomena over time and are 

thus intrinsically less sensitive to sudden changes (crop 

architecture, soil moisture due to rainfall or irrigation, dew, 

etc.) between two acquisitions. Moreover, the present work 

offered an increased robustness of the developed statistical 

relationship (14 fields, n = 1436) and a potential ranking by 

phenological stages. For instance, we pointed out that the best 

relationship for DM based on 𝜂RVI showed significantly larger 

residuals distribution for post-flowering stages suggesting that 

confidence in the developed relationship is impaired for these 

stages. Such seasonal information should be exploited by 

providing a dynamic uncertainty or confidence interval of BP 

estimations according to the considered phenological stage. 

E. Impacts of Radiometric Terrain Flattening (RTF) in SAR 

data processing  

The backscatters generated by GEE pre-processing are not 

fully corrected from the terrain deformation as they do not 

undergo a radiometric terrain flattening process. This can 

introduce bias in radiometric values due to the topographical 

properties of each field combined to the tilt of the SAR 

antenna onboard Sentinel-1. The impact of the RTF processing 

has been evaluated by comparing the sigma backscatters (𝜎0
) 

derived from GEE and pre-processed gamma backscatters (𝛾0
 

being the ratio between 𝜎0
 and the cosine of the incidence 

angle) using the SNAP software (ESA Sentinel Application 

Platform v8; http://step.esa.int) in VV and VH polarizations as 

well as for derived polarization ratios and RVI from 

acquisitions in orbit 110 (Figure 18).  

 
Fig. 18.  Comparison between 𝛾0 with Radiometric Terrain Flattening (RTF) 

from SNAP and 𝜎0 without RTF from GEE for VH (a) and VV (b) 
polarization, the polarization ratio (c) and the RVI (d) The color of points 
corresponds to the local incidence angle derived from SNAP processing. 

Coefficient of determination (R2) and Root Mean Square Error (RMSE) are 

given in the top left corner of each panel. 

 

Results show that the use of 𝛾0
 with RTF instead of 𝜎0

 

without RTF has a significant impact on values derived in VH 

and VV polarization (R
2
 = 0.88 and 0.67, respectively with 

RMSE = 1.04 dB for both polarizations). These differences 

become negligible for RVI and the polarization ratio (R
2
 = 1 

and RMSE = 0.01 and 0.07 dB, respectively). The effect of 

local incidence angle (derived from the SNAP processing) is 

more visible for the VV polarization than for the VH 

polarization (the differences in backscatter values increasing 

with the local incidence angle). Note that the comparison 
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between 𝛾0 
with and without RTF (all other processing being 

identical) shows negligible impact of the RTF processing (R
2
 

= 1, RMSE = 0.12 dB for VV and VH polarization, RMSE = 

0.001 dB for the polarization ratio and 0.005 for RVI). 

The impact of the use of 𝛾0
 with RTF processing rather than 

𝜎0
 on the here established relationships between SAR RSI and 

biophysical parameters has been assessed. This impact is 

significant on the relationships based on non-cumulated VH 

and VV backscatters, but slighter for the polarization ratio and 

RVI (the use of 𝛾0 
inducing a systematic improvement of skill 

scores; not shown). Finally, when cumulative sums (𝜂RSI) are 

used, these impacts become totally negligible and the skill 

scores remain similar whatever the order of the considered 

polynomial relationship (Table VI). 

 
TABLE VI 

VALUES OF ROOT MEAN SQUARE ERROR (RMSE) AND CORRELATION 

COEFFICIENT (R2) OF THE BEST RELATIONSHIP BETWEEN SAR 𝜂RSI DERIVED 

FROM 𝜎0
 OR 𝛾0

 ACQUIRED IN ORBIT 110 AND RAPESEED BIOPHYSICAL 

PARAMETERS. THE BEST SKILL SCORES WERE OBTAINED FROM 4TH-ORDER 

POLYNOMIAL REGRESSIONS USING 𝜂RVI FOR HEIGHT, PWC AND DM AND 

USING 𝜂𝜎VH-VV (𝜂𝛾VH-VV RESPECTIVELY) FOR FM 

 

 Best relationship with 𝜎0 Best relationship with 𝛾0 

 RMSE R2 RMSE R2 

Height (cm) 16.3 0.93 16.3 0.93 

PWC (%) 1.7 0.74 1.7 0.74 

DM (g.m-2) 126.1 0.90 125.7 0.90 
FM (g.m-2) 951.6 0.79 952.2 0.79 

V. CONCLUSION 

This paper aimed to evaluate the potential of multi-orbital 

SAR and multi-sensor optical remote sensed data for rapeseed 

monitoring and the retrieval of its key biophysical parameters. 

We introduced new indicators based on the cumulative sum of 

each RSI (noted 𝜂RSI). We showed that the use of 𝜂RSI allowed 

to significantly improve the predictive power of each indicator 

whatever BP considered. The best results were obtained with 

𝜂σVH for height (R
2
 = 0.87, RMSE = 21.19 cm, RMSEr = 35.73 

%), FM (R
2
 = 0.73, RMSE = 1035.46 g.m

-2
, RMSEr = 52.04 

%) and PWC (R
2
 = 0.76, RMSE = 2.37 %, RMSEr = 49.51 % 

for post-inflorescence emergence stages only) and 𝜂RVI for 

DM (R
2
 = 0.82, RMSE = 155.71 g.m

-2
, RMSEr = 41.97 %). 

We also demonstrated that multi-orbital Sentinel-1 SAR data 

could be used with low impact on the performance of SAR-

based relationships allowing to divide by more than two the 

mean revisit interval. Finally, the asynchronous behaviors of 

GAI and backscattering coefficients from inflorescence 

emergence to fruits ripening suggest complementarity between 

both optical and SAR domains. To further evaluate their 

robustness, here developed relationships will be tested for 

other rapeseed fields for which ground dataset have been 

acquired during the 2018-2019 and 2019-2020 crop seasons in 

the framework of the Colza Digital project. The use of 

polarimetric indicators based on fully and compact SAR 

images should also be investigated on summer rapeseed as 

illustrated in [54] and [55]. An assimilation scheme in an 

agrometeorological model will be later developed for 

combined SAR and optical remote sensing data-driven 

rapeseed yields modeling. In a near-real time simulations 

perspective, such an approach could be extremely useful to 

develop insurance products allowing to strengthen financial 

protection of farmers. 

APPENDIX 

Appendix A: BBCH scale of main phenological stages of 

rapeseed 

BBCH Main stages 

00 Germination 
10 Leaves development 

20 Development of side shoots 

30 Stem elongation 
50 Inflorescence emergence 

60 Flowering 

70 Fruits development 
80 Fruits ripening 

90 Senescence 

 

Appendix B: Features of rapeseed fields used for GAI 

evaluation 

Field 
identifier 

Measurements 
method 

Number of 
sampling 

Sampling dates 

FR-Aur SunScan 5 

2018/01/09, 

2018/02/27, 
2018/03/26, 

2018/04/18, 

2018/05/09 

ANJ9 
Hemispherical 

photography 
5 

2017/11/29, 

2018/03/01, 

2018/04/05, 
2018/05/02, 

2018/05/28 

ANJ6 
Hemispherical 
photography 

2 
2017/11/28, 
2018/03/01 

ANJ3 
Hemispherical 

photography 
1 2017/11/28 

BRA54 
Hemispherical 

photography 
5 

2017/11/28, 

2018/03/01, 

2018/04/06, 
2018/05/04, 

2018/05/28 

BRA7 
Hemispherical 
photography 

5 

2017/11/28, 
2018/03/01, 

2018/04/06, 

2018/05/04, 
2018/05/28 

BRA 
Hemispherical 

photography 
1 2017/11/28 

BON 
Hemispherical 

photography 
1 2017/11/28 

MER27 
Hemispherical 
photography 

5 

2017/11/28, 
2018/02/27, 

2018/04/05, 

2018/05/04, 
2018/05/28 

MER37 
Hemispherical 

photography 
3 

2017/11/28, 

2018/02/27, 
2018/05/28 

BOX4 
Hemispherical 

photography 
3 

2017/11/28, 

2018/02/27, 
2018/04/04 

BOX3E 
Hemispherical 
photography 

1 2018/02/27 

BOX3O 
Hemispherical 
photography 

4 

2017/11/28, 

2018/04/04, 
2018/05/04, 

2018/05/28, 

BLA5 
Hemispherical 
photography 

6 
2017/11/28, 
2018/02/27, 
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2018/04/05, 
2018/05/28 

BOP9 
Hemispherical 

photography 
5 

2017/11/28, 

2018/02/27, 
2018/04/06, 

2018/05/04, 

2018/05/28 

BOP13 
Hemispherical 

photography 
1 2017/11/28 

BRA6 
Hemispherical 
photography 

1 2017/11/28 

BRA59 
Hemispherical 
photography 

5 

2017/11/27, 

2018/03/01, 
2018/04/05, 

2018/05/04, 
2018/05/28 

 

Appendix C: RMSEr (%) / R
2
 values of regressions between 

rapeseed biophysical parameters and SAR RSI for multi-

orbital Sentinel-1 acquisitions (n = 1436) 
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Appendix D: RMSEr (%) / R
2
 values of regressions between 

rapeseed biophysical parameters and RSI for SAR and optical 

concurrent acquisitions (n = 86) 
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