136 research outputs found

    Ecological gradients caused by land-use change and land management alter soil microbial biomass and community functioning in a tropical mountain rainforest region of southern Ecuador

    Get PDF
    Global change phenomena, such as forest disturbance and land-use change significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. Inappropriate land management often causes nutrient losses and finally soil degradation and loss of soil functioning. Especially in tropical ecoregions, soil degradation by nutrient losses is widely abundant. Soil microorganisms are the proximate agents of many processes performed in soils and are regarded as sensitive bio-indicators. However, the incorporation of microbial responses to the definition of critical soil conditions is not intensively developed. In the present thesis, several data analyses of the relationships between ecosystem disturbance and land-use change (natural forest, pastures of different ages, secondary succession) and a diverse set of soil ecological characteristics in the tropical mountain rainforest region of southern Ecuador were compiled. In particular, it was tested whether soil microbial biomass and community functioning were sensitive to land-use change effects. Furthermore, an information-theoretic approach was applied to find the factors that regulate soil microbial biomass and community function. Finally, in a nutrient enrichment experiment the above- and belowground responses to N and P additions were examined. The tested research questions and results were linked to the theory of ecological stoichiometry in order to connect the research to a sound and unifying scientific basis. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were fol-lowed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Data analysis reveals a strong impact of land-use change on soil microbial biomass, C-mineralization, gross-NH4-consumption and –production rates. According to the results of the IT-approach, combined models better describe effects of land-use change on soil microorganisms than single explanation models. Microbial resources and soil chemical environment were important pre-dictors for soil microbial biomass and community functioning. Little is known about the environmental drivers of the catalytic properties of EHEs (e.g., pH, nutrients) and their functional link to the structure of soil microbial communities. The activities of the six hydrolytic enzymes were tested. Microbial production of AP responded to the low P status of the sites by a higher investment in the acquisition of P compared to C. Three major drivers of enzyme activities were found to be significant for enzyme production: 1.) Microbial demand for P regulated the production of AP, provided that N and C were available. At the natural forest site the two-fold higher specific activity of AP pointed to a high microbial P-demand, whereas the production of AP was constrained by the availability of N and DOC after pasture abandonment. 2.) Microbial biomass that was controlled by pH and resource availability was the main driver for CBH, BG and NAG activities. 3.) Substrate induction due to increased litter inputs of herbaceous plant species seemed to regulate AG and XYL activities during secondary succession. The enzymes’ affinity to substrate, as a potentially critically enzyme kinetic parameter is understudied. The data analysis suggests that microbial communities adapted to environmental changes, demonstrated high flexibility of extracellular enzyme systems and selected for enzymes with higher catalytic efficiency compared with pure cultures. Under in situ conditions, enzyme-specific environmental drivers of the Km, e.g., the pH for XYL, the C:N ratio for AP, and the C availability for NAG were found. The data demonstrated that the higher substrate affinity of XYL and AP was associated with more abundance of Gram(-) bacteria. The catalytic efficiency of enzymes decomposing cellulose, hemicellulose, and starch positively correlated with the relative abundance of Gram(-) bacteria. The turnover rate of the tested substrates was three to four times faster at the young pasture site compared with the longterm pasture and secondary succession sites. Nutrient inputs by atmospheric deposition are known to affect terrestrial ecosystems. However, little is known about how N and P co-limited ecosystems respond to single nutrient enrichment. In this work the susceptibility of above- and belowground ecosystem compo-nents and of their linkages in an N and P co-limited pasture to N- and P-enrichment was assessed. It was tested if the plantsÂŽresponses can be explained by the concept of serially linked nutrients introduced by Ågren (2004). In this concept, the control of the growth rate by one nutrient is assumed to depend on the control of a different cellular process by another nutrient. The responses of shoot and root biomass and C:N:P stoichiometry of the grass Setaria sphacelata (Schumach.) to moderate N, P, and N+P application over five years were investigated. In addition, the effects of nutrient enrichment on soil nutrient pools, on arbuscular mycorrhizal fungi (AMF) as well as on microbial biomass, activity, and community structure were tested. In order to evaluate the importance of different factors explaining microbial responses, a likelihood-based information-theoretic approach was applied. The application of N+P increased aboveground grass biomass. Root biomass was stimulated by P-treatment. Grass C:N:P stoichiometry responded by altering the P-uptake or by translocating P from shoot to root. In particular, root C:N and C:P stoichiometry decreased in P- and in N-treatment. Extractable fractions of soil C, N, and P were significantly affected by nutrient enrichment. P application increased the biomass of Gram-positive bacteria and the abundance of AMF, however, results of the IT-approach suggested indirect effects of nutrient enrichment on microbes. The responses of the N and P co-limited pasture to particular nutrient enrichment support the concept of serially linked nutrients. The present study provides evidence for the fundamental importance of P for controlling resource allocation of plants in responses to nutrient enrichment. Resource allocation of the grass rather than direct effects of nutrient additions drives changes in AMF, microbial biomass, community structure, and activity.Seit dem Übergang vom HolozĂ€n zum AnthropozĂ€n greift der Mensch immer stĂ€rker in globale und regionale StoffkreislĂ€ufe ein. Durch die Zerstörung von NaturwĂ€ldern und Landnutzungswandel werden die Strukturen und die Funktionen der Ökosysteme stark verĂ€ndert. Unangepasste Landnutzung fĂŒhrt zu NĂ€hrelementverlusten, die mittel- bis langfristige zur Bodendegradation und zur Reduktion von Bodenfunktionen fĂŒhren. Solche VerĂ€nderungen sind insbesondere in den Tropen zu beobachten. Bodenmikroorganismen spielen in den StoffkreislĂ€ufen eine zentrale Rolle. Zudem sind sie sensitive Bioindikatoren fĂŒr den Zustand von Ökosystemen. Im Gegensatz dazu, werden die Bodenmikroorganismen noch nicht ausreichend fĂŒr die Zustandsbewertung von Ökosystemen verwendet. In der vorliegenden Dissertation werden verschiedene Datenanalysen zu den Beziehungen von Landnutzungswandel (Naturwald, Weiden verschiedener Alter, sekundĂ€re Sukzession) und den Eigenschaften der Bodenmikroorganismen in einer tropischen Bergregenwaldregion SĂŒd-Ecuadors zusammengefasst. Ein besonderer Fokus lag darauf zu prĂŒfen, ob die mikrobielle Biomasse und die Funktionen die von der mikrobiellen Gemeinschaft geleistet werden (z.B. EnzymaktivitĂ€ten) durch den Landnutzungswandel beeinflusst werden. Ein informations-theoretischer Ansatz wurde verwendet um verschiedene ErklĂ€rungsansĂ€tze der steuernden Faktoren vergleichend zu testen. DarĂŒber hinaus wurden in einem WeidedĂŒngungsexperiment die Reaktionen der ober- und der unterirdischen Ökosystemkomponenten auf die Anreicherung mit N und P getestet. Um die Ergebnisse auf eine breite wissenschaftliche Basis zu stellen wurde die Untersuchungen in den Kontext der Theorie die Ökologischen Stöchiometrie eingeordnet. Die C:N:P Stöchiometrie im Boden und in den Mikroorganismen verĂ€nderte sich durch den Landnutzungswandel und mit der Bodentiefe. Mit der Weideetablierung nahmen die C:N:P VerhĂ€ltnisse im Boden deutlich ab, stiegen dann nach dem Verlassen der Weiden im Zuge der sekundĂ€ren Sukzession wieder an. Das mikrobielle C:N VerhĂ€ltnis variierte nur leicht, dagegen zeigten das C:P und N:P VerhĂ€ltnis deutliche VerĂ€nderungen durch den Landnutzungswandel. Mit diesen VerĂ€nderungen in der Boden- und Organismenstöchiometrie waren auch VerĂ€nderungen in der Struktur der mikrobiellen Gemeinschaften verbunden. Deutliche positive Beziehungen existierten zwischen den saprotrophen Pilzen und den Protozoen. Die steigenden Mengen von Protozoen waren wiederrum mit sinkendem mikrobiellen N:P verbunden. Diese Muster weisen auf VerĂ€nderungen in den Bodennahrungsnetzten durch LandnutzungsĂ€nderungen hin. Sehr deutliche Abweichungen von globalen Mustern der C:N:P Stöchiometrie deuten darauf hin, dass der Landnutzungswandel signifikanten Einfluss auf die C:N:P Stöchiometrie ausĂŒbt. Der Landnutzungswandel beeinflusste auch die mikrobielle Biomasse, die Basalatmung, sowie die mikrobielle Aufnahme und Produktion von NH4-N im Boden. Dabei zeigten kombinierte ErklĂ€rungsansĂ€tze die adĂ€quateren Beschreibungen der Muster. In den kombinierten Modellen zur ErklĂ€rung der mikrobiellen Biomasse und der mikrobiellen Leistungen ĂŒberwogen PrĂ€diktoren der mikrobiellen Ressourcen und der bodenchemischen Umwelt. Ein weiterer Schwerpunkt der Untersuchungen lag auf der Erfassung der Effekte des Land-nutzungswandels auf die AktivitĂ€t von extrazellulĂ€ren Bodenenzymen. Bisher ist wenig darĂŒber bekannt, welche Faktoren die katalytischen Eigenschaften steuern und beispielsweise, ob es ZusammenhĂ€nge zur mikrobiellen Gemeinschaftsstruktur gibt. Um diese Fragen nĂ€her zu beleuchten wurden sechs hydrolytische Enzyme basierend auf MUF-Substraten untersucht. Die mikrobielle Produktion von AP stand dabei in Zusammenhang mit dem niedrigen P-Status der untersuchten Böden. Das wurde besonders durch die hohe AP Produktion im Vergleich zu BG belegt. Im Allgemeinen konnten drei verschiedene Mechanismen festgestellt werden, die die Produktion der untersuchten EHEs vermutlich steuerten. 1.) Der P-Bedarf der Mikroorganismen regulierte die Produktion von AP, vorausgesetzt, dass ausreichend N und C zur Enzymsynthese zur VerfĂŒgung standen. 2.) Die Höhe der mikrobiellen Biomasse hat sich als wichtiger Faktor fĂŒr die Produktion von CBH, BG und NAG gezeigt. Das deutet auf die konstitutive Produktion dieser Enzyme hin. 3.) Die substratinduzierte Produktion von Enzymen ist vermutlich entscheidend fĂŒr die AktivitĂ€t von AG und XYL. Die BerĂŒcksichtigung der Enzymkinetiken, insbesondere der Michaelis-Menten-Konstante lieferte weitere AufschlĂŒsse ĂŒber relevante Faktoren. Im Allgemeinen so scheint es, haben sich die mikrobiellen Gemeinschaften an die starken Umweltgradienten, die durch den Landnutzungswandel erzeugt worden angepasst. Im Vergleich zu den verfĂŒgbaren Daten aus Reinkulturen, wiesen die mikrobiellen Gemeinschaften der untersuchten Böden in der Regel eine deutlich höhere katalytische Effizienz auf. Auch fĂŒr die Michaelis-Menten-Konstante sind die Faktoren enzymspezifisch. So ist fĂŒr die Km von XYL der Boden-pH-Wert, fĂŒr AP das C:N VerhĂ€ltnis und fĂŒr NAG die DOC-Menge entscheidend. DarĂŒber hinaus haben sich deutliche Beziehungen zwischen der Menge an Gram(-)-Bakterien und der SubstrataffinitĂ€ten von XYL und AP ergeben. Je höher die Gram(-)-Abundanz, desto höher war die SubstrataffinitĂ€t der Enzymsysteme. GegenĂŒber alter und degradierter Weiden, war der Umsatz der untersuchten Substrate im Oberboden der aktiv genutzten Weide drei- bis vierfach erhöht. In einem 5-jĂ€hrigen DĂŒngeexperiment in der Bergregenwaldregion der Anden SĂŒd-Ecuadors wurden die Reaktionen des auf dieser FlĂ€che N/P co-limitierten Grases (Setaria sphacelata), der ArbuskulĂ€ren Mykorrhiza (AMF) sowie der Bodenmikroorganismen auf moderate N, P und N+P-DĂŒngung untersucht. Die Zugabe von N+P erhöhte die oberirdische Biomasse (+61%) wohingegen die Wurzelbiomasse durch die Zugabe von P (+45%) anstieg. Die C:N:P VerhĂ€ltnisse weisen auf verĂ€nderte P-Aufnahme oder Translokation von P in die Wurzeln hin. Im Besonderen verengte sich das Wurzel C:N and C:P in der P- und der N-Zugabe. Die aus dem Boden extrahierbaren C, N und P-Fraktionen wurden deutlich beeinflusst. Die Zugabe von P stimulierte die Biomasse Gram-(+)-Bakterien (+22%), die Abundanz der AMF (+46%) und die Brutto-N-Mineralisierung. Die Auswertungen deuten darauf hin, dass die NĂ€hrstoffanreicherung indirekt ĂŒber die VerĂ€nderungen der Graswurzeln auf die Bodenorganismen wirkte. Die Ergebnisse bestĂ€tigen, dass N und P in den Reaktionen von co-limitierten Pflanzen eng miteinander verbunden sind. Vor allem aber steuert P grundlegend die Allokation von Ressourcen und wirkt damit auf andere Ökosystem-komponenten, z.B. auf die Struktur und AktivitĂ€t der Bodenmikroorganismen

    Structural Origins of Misfolding Propensity in the Platelet Adhesive Von Willebrand Factor A1 Domain

    Get PDF
    AbstractThe von Willebrand factor (VWF) A1 and A3 domains are structurally isomorphic yet exhibit distinct mechanisms of unfolding. The A1 domain, responsible for platelet adhesion to VWF in hemostasis, unfolds through a molten globule intermediate in an apparent three-state mechanism, while A3 unfolds by a classical two-state mechanism. Inspection of the sequences or structures alone does not elucidate the source of this thermodynamic conundrum; however, the three-state character of the A1 domain suggests that it has more than one cooperative substructure yielding two separate unfolding transitions not present in A3. We investigate the extent to which structural elements contributing to intermediate conformations can be identified using a residue-specific implementation of the structure-energy-equivalence-of-domains algorithm (SEED), which parses proteins of known structure into their constituent thermodynamically cooperative components using protein-group-specific, transfer free energies. The structural elements computed to contribute to the non-two-state character coincide with regions where Von Willebrand disease mutations induce misfolded molten globule conformations of the A1 domain. This suggests a mechanism for the regulation of rheological platelet adhesion to A1 based on cooperative flexibility of the α2 and α3 helices flanking the platelet GPIbα receptor binding interface

    Effekte von pflanzenbĂŒrtigem DOM und P-DĂŒngung auf NĂ€hrstoffumsatzprozesse in Böden genutzter und verlassener Weiden SĂŒdecuadors

    Get PDF
    Um landnutzungsbedingte VerĂ€nderungen der organischen Bodensubstanz (SOM) sowie der NĂ€hrstoffe und den daraus folgenden Implikationen fĂŒr die Bodenfunktionen abzuschĂ€tzen zu können ist das VerstĂ€ndnis von Mechanismen der C-Transformation eine Voraussetzung. Gelöste organische Substanz (DOM) ist eine C-Fraktion mit hoher BioverfĂŒgbarkeit und trĂ€gt substantiell zu NĂ€hrstoffumsetzungen und Zersetzungsprozessen bei. Eine wichtige Quelle fĂŒr DOM ist Pflanzenstreu. Im Untersuchungsgebiet in SĂŒdecuador wird das Weidegras (Setaria sphacelata, C4 Pflanze) im Laufe der Weidenutzung durch den Tropischen Farn (Pteridium arachnoideum, C3 Pflanze) verdrĂ€ngt und diese unproduktiven Weiden werden aufgegeben. In einem 28 tĂ€gigen Inkubationsexperiment wurden die Effekte von gras- bzw. farnbĂŒrtigem DOM mit und ohne Zugabe von PO4-P auf die mikrobielle Gemeinschaft (AktivitĂ€t, Biomasse, Struktur (PLFA)) in aktiven (aW) bzw. verlassenen Weideböden (vW) untersucht. Am Ende der Inkubation zeigten alle Mikrokosmen denen DOM zugegeben wurde einen Anstieg des mikrobiell gebundenen C und P um den Faktor 1.2-1.3 und 1.3-2.0 im Vergleich zu den Kontrollen. Der Effekt war deutlicher nach Zugabe von Gras-DOM als nach Farn-DOM. Ein signifikanter zusĂ€tzlicher Effekt nach P-Zugabe war im Einzelfall festzustellen. Die ?13-C-Signatur des mineralisierten C zeigte eine prĂ€ferentielle Nutzung des DOM-C bei gleichzeitiger Nutzung des SOM-C an. Dabei wurden Priming Effekte beobachtet. Die DOM-Zugabe hatte nicht nur einen Einfluß auf AktivitĂ€t und Biomasse der mikrobiellen Gemeinschaft sondern auch auf deren Struktur. Die Ergebnisse zeigen, dass die biologische Abbaubarkeit des zugegebenen DOM und die Interaktionen mit den Organismen von dessen QualitĂ€t und dem biochemischen Zustand der Böden abhĂ€ngen

    Surface Reaction Kinetics of Steam- and CO₂-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    Get PDF
    An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO₂ as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented in a one-dimensional flow field description of a fixed bed reactor. The model is evaluated by comparison of numerical simulations with data derived from isothermal experiments in a flow reactor over a powdered nickel-based catalyst using varying inlet gas compositions and operating temperatures. Furthermore, the influence of hydrogen and water as co-feed on methane dry reforming with CO₂ is also investigated

    Effects of Moderate Nitrate and Low Sulphate Depositions on the Status of Soil Base Cation Pools and Recent Mineral Soil Acidification at Forest Conversion Sites with European Beech (“Green Eyes”) Embedded in Norway Spruce and Scots Pine Stands

    Get PDF
    High N depositions of past decades brought changes to European forests including impacts on forest soil nutrition status. However, the ecosystem responses to declining atmospheric N inputs or moderate N depositions attracted only less attention so far. Our study investigated macronutrient (N, S, Ca2+, Mg2+, K+ ) pools and fluxes at forest conversion sites over 80 years old in Central Germany with European beech (so-called “Green Eyes” (GE)). The GE are embedded in large spruce and pine stands (coniferous stands: CS) and all investigated forest stands were exposed to moderate N deposition rates (6.8 ± 0.9 kg ha−1 yr−1 ) and acidic soil conditions (pHH2O 59%) and CS (>66%). The litter fall base cation return at GE (59 ± 6 kg ha−1 yr−1 ) is almost twice as large as the base cation deposition (30 ± 5 kg ha−1 yr−1 ) via throughfall and stemflow. At CS, base cation inputs to the topsoil via litter fall and depositions are at the same magnitude (24 ± 4 kg ha−1 yr−1 ). Macronutrient turnover is higher at GE and decomposition processes are hampered at CS maybe through higher N inputs. Due to its little biomass and only small coverage, the herbaceous layer at GE and CS do not exert a strong influence on macronutrient storage. Changes in soil base cation pools are tree species-, depth- and might be time-dependent, with recently growing forest floor stocks. An ongoing mineral soil acidification seems to be related to decreasing mineral soil base cation stocks (through NO3 − and especially SO4 2− leaching as well as through tree uptake)

    Grasshopper herbivory immediately affects element cycling but not export rates in an N‐limited grassland system

    Get PDF
    As a cause of ecosystem disturbances, phytophagous insects are known to directly influence the element and organic matter (OM) cycling in ecosystems by their defoliation and excretion activity. This study focuses on the interplay between short-term, insect herbivory, plant responses to feeding activity, rhizosphere processes, and belowground nutrient availability under nutrient-poor soil conditions. To test the effects of insect herbivory on OM and nutrient cycling in an N-limited pasture system, mesocosm laboratory experiments were conducted using Dactylis glomerata as common grass species and Chorthippus dorsatus, a widespread grasshopper species, to induce strong defoliating herbivory. 13CO2 pulse labeling was used together with labeled 15N feces to trace the fate of C in soil respiration at the beginning of herbivory, and of C and N in above- and belowground plant biomass, grasshopper, feces, bulk soil, soil microbial biomass, throughfall solutions, and soil solutions. Within five days, herbivory caused a reduction in aboveground grass biomass by about 34%. A linear mixed-effects model revealed that herbivory significantly increased total dissolved C and N amounts in throughfall solutions by a factor of 4–10 (P < 0.05) compared with the control. In total, 27.6% of the initially applied feces 15N were translocated from the aboveground to the belowground system. A significant enrichment of 15N in roots led to the assumption that feces-derived 15N was rapidly taken up to compensate for the frass-related foliar N losses in light of N shortage. Soil microorganisms incorporated newly available 13C; however, the total amount of soil microbial biomass remained unaffected, while the exploitative grass species rapidly sequestered resources to facilitate its regrowth after herbivory attack. Heavy herbivory by insects infesting D. glomerata-dominated, N-deficient grasslands remarkably impacted belowground nutrient cycling by an instant amplification of available nutrients, which led to an intensified nutrient competition between plants and soil microorganisms. Consequently, these competitive plant–soil microbe interactions accelerated N cycling and effectively retained herbivory-mediated C and N surplus release resulting in diminished N losses from the system. The study highlighted the overarching role of plant adaptations to in situ soil fertility in short-term ecosystem disturbances

    Urban Dust Microbiome: Impact on Later Atopy and Wheezing

    Get PDF
    INTRODUCTION: Investigations in urban areas have just begun to explore how the indoor dust microbiome may affect the pathogenesis of asthma and allery. We aimed to investigate the early fungal and bacterial microbiome in house dust with allergic sensitization and wheezing later in childhood. METHODS: Individual dust samples from 189 homes of the LISAplus birth cohort study were collected shortly after birth from living room floors and profiled for fungal and bacterial microbiome. Fungal and bacterial diversity was assessed with terminal restriction fragment length polymorphism (tRFLP) and defined by the Simpson diversity index. Information on wheezing outcomes and co-variates until the age of 10 years was obtained by parental questionnaires. Information on specific allergic sensitization was available at 6 and 10 years. Logistic regression and General Estimation Equation (GEE) models were used to examine the relationship between microbial diversity and health outcomes. RESULTS: Logistic regression analyses revealed a significantly reduced risk of developing sensitization to aero-allergens at 6 years and ever wheezing until the age of 10 years for exposure to higher fungal diversity (adjusted Odds Ratio aOR (95%CI): 0.26 (0.10-0.70)), and 0.42 (0.18-0.96), respectively), in adjusted analyses. The associations were attenuated for the longitudinal analyses (GEE) until the age of 10 years. There was no association between higher exposure to bacterial diversity and the tested health outcomes. CONCLUSION: Higher early exposure to fungal diversity might help to prevent from developing sensitization to aero-allergens in early childhood, but the reasons for attenuated effects in later childhood require further prospective studies

    Mortality of Patients with Hematological Malignancy after Admission to the Intensive Care Unit

    Get PDF
    Background: The admission of patients with malignancies to an intensive care unit (ICU) still remains a matter of substantial controversy. The identification of factors that potentially influence the patient outcome can help ICU professionals make appropriate decisions. Patients and Methods: 90 adult patients with hematological malignancy (leukemia 47.8%, high-grade lymphoma 50%) admitted to the ICU were analyzed retrospectively in this single-center study considering numerous variables with regard to their influence on ICU and day-100 mortality. Results: The median simplified acute physiology score (SAPS) II at ICU admission was 55 (ICU survivors 47 vs. 60.5 for non-survivors). The overall ICU mortality rate was 45.6%. With multivariate regression analysis, patients admitted with sepsis and acute respiratory failure had a significantly increased ICU mortality (sepsis odds ratio (OR) 9.12, 95% confidence interval (CI) 1.1-99.7, p = 0.04; respiratory failure OR 13.72, 95% CI 1.39-136.15, p = 0.025). Additional factors associated with an increased mortality were: high doses of catecholamines (ICU: OR 7.37, p = 0.005; day 100: hazard ratio (HR) 2.96, p < 0.0001), renal replacement therapy (day 100: HR 1.93, p = 0.026), and high SAPS II (ICU: HR 1.05, p = 0.038; day 100: HR 1.2, p = 0.027). Conclusion: The decision for or against ICU admission of patients with hematological diseases should become increasingly independent of the underlying malignant disease
    • 

    corecore