115 research outputs found

    Climate Vulnerability and the Cost of Debt

    Get PDF
    We use indices from the Notre Dame Global Adaptation Initiative to investigate the impact of climate vulnerability on bond yields. Our methodology invokes panel ordinary least squares with robust standard errors and principal component analysis. The latter serves to address the multicollinearity between a set of vulnerability measures. We find that countries with higher exposure to climate vulnerability, such as the member countries of the V20 climate vulnerable forum, exhibit 1.174 percent higher cost of debt on average. This effect is significant after accounting for a set of macroeconomic controls. Specifically, we estimate the incremental debt cost due to higher climate vulnerability, for the V20 countries, to have exceeded USD 62 billion over the last ten years. In other words, for every ten dollars they pay in interest cost, they pay another dollar for being climate vulnerable. We also find that a measure of social readiness, which includes education and infrastructure, has a negative and significant effect on bond yields, implying that social and physical investments can mitigate climate risk related debt costs and help to stabilize the cost of debt for vulnerable countries

    Selective Down-Regulation of Nuclear Poly(ADP-Ribose) Glycohydrolase

    Get PDF
    The formation of ADP-ribose polymers on target proteins by poly(ADP-ribose) polymerases serves a variety of cell signaling functions. In addition, extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1) is a dominant cause of cell death in ischemia-reperfusion, trauma, and other conditions. Poly(ADP-ribose) glycohydrolase (PARG) degrades the ADP-ribose polymers formed on acceptor proteins by PARP-1 and other PARP family members. PARG exists as multiple isoforms with differing subcellular localizations, but the functional significance of these isoforms is uncertain.Primary mouse astrocytes were treated with an antisense phosphorodiamidate morpholino oligonucleotide (PMO) targeted to exon 1 of full-length PARG to suppress expression of this nuclear-specific PARG isoform. The antisense-treated cells showed down-regulation of both nuclear PARG immunoreactivity and nuclear PARG enzymatic activity, without significant alteration in cytoplasmic PARG activity. When treated with the genotoxic agent MNNG to induced PARP-1 activation, the antisense-treated cells showed a delayed rate of nuclear PAR degradation, reduced nuclear condensation, and reduced cell death.These results support a preferentially nuclear localization for full-length PARG, and suggest a key role for this isoform in the PARP-1 cell death pathway

    Bezielle Selectively Targets Mitochondria of Cancer Cells to Inhibit Glycolysis and OXPHOS

    Get PDF
    Bezielle (BZL101) is a candidate oral drug that has shown promising efficacy and excellent safety in the early phase clinical trials for advanced breast cancer. Bezielle is an aqueous extract from the herb Scutellaria barbata. We have reported previously that Bezielle was selectively cytotoxic to cancer cells while sparing non-transformed cells. In tumor, but not in non-transformed cells, Bezielle induced generation of ROS and severe DNA damage followed by hyperactivation of PARP, depletion of the cellular ATP and NAD, and inhibition of glycolysis. We show here that tumor cells' mitochondria are the primary source of reactive oxygen species induced by Bezielle. Treatment with Bezielle induces progressively higher levels of mitochondrial superoxide as well as peroxide-type ROS. Inhibition of mitochondrial respiration prevents generation of both types of ROS and protects cells from Bezielle-induced death. In addition to glycolysis, Bezielle inhibits oxidative phosphorylation in tumor cells and depletes mitochondrial reserve capacity depriving cells of the ability to produce ATP. Tumor cells lacking functional mitochondria maintain glycolytic activity in presence of Bezielle thus supporting the hypothesis that mitochondria are the primary target of Bezielle. The metabolic effects of Bezielle towards normal cells are not significant, in agreement with the low levels of oxidative damage that Bezielle inflicts on them. Bezielle is therefore a drug that selectively targets cancer cell mitochondria, and is distinguished from other such drugs by its ability to induce not only inhibition of OXPHOS but also of glycolysis. This study provides a better understanding of the mechanism of Bezielle's cytotoxicity, and the basis of its selectivity towards cancer cells

    Ibuprofen is deleterious for the development of first trimester human fetal ovary ex vivo

    Get PDF
    International audienceSTUDY QUESTION Does ibuprofen use during the first trimester of pregnancy interfere with the development of the human fetal ovary? SUMMARY ANSWER In human fetuses, ibuprofen exposure is deleterious for ovarian germ cells. WHAT IS KNOWN ALREADY In utero stages of ovarian development define the future reproductive capacity of a woman. In rodents, analgesics can impair the development of the fetal ovary leading to early onset of fertility failure. Ibuprofen, which is available over-the-counter, has been reported as a frequently consumed medication during pregnancy, especially during the first trimester when the ovarian germ cells undergo crucial steps of proliferation and differentiation. STUDY DESIGN, SIZE, DURATION Organotypic cultures of human ovaries obtained from 7 to 12 developmental week (DW) fetuses were exposed to ibuprofen at 1-100 μM for 2, 4 or 7 days. For each individual, a control culture (vehicle) was included and compared to its treated counterpart. A total of 185 individual samples were included. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian explants were analyzed by flow cytometry, immunohistochemistry and quantitative PCR. Endpoints focused on ovarian cell number, cell death, proliferation and germ cell complement. To analyze the possible range of exposure, ibuprofen was measured in the umbilical cord blood from the women exposed or not to ibuprofen prior to termination of pregnancy. MAIN RESULTS AND THE ROLE OF CHANCE Human ovarian explants exposed to 10 and 100 μM ibuprofen showed reduced cell number, less proliferating cells, increased apoptosis and a dramatic loss of germ cell number, regardless of the gestational age of the fetus. Significant effects were observed after 7 days of exposure to 10 μM ibuprofen. At this concentration, apoptosis was observed as early as 2 days of treatment, along with a decrease in M2A-positive germ cell number. These deleterious effects of ibuprofen were not fully rescued after 5 days of drug withdrawal. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study was performed in an experimental setting of human ovaries explants exposed to the drug in culture, which may not fully recapitulate the complexity of in vivo exposure and organ development. Inter-individual variability is also to be taken into account. WIDER IMPLICATIONS OF THE FINDINGS Whereas ibuprofen is currently only contra-indicated after 24 weeks of pregnancy, our results points to a deleterious effect of this drug on first trimester fetal ovaries ex vivo. These findings deserve to be considered in light of the present recommendations about ibuprofen consumption pregnancy, and reveal the urgent need for further investigations on the cellular and molecular mechanisms that underlie the effect of ibuprofen on fetal ovary development. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology

    Histone Deacetylases Play a Major Role in the Transcriptional Regulation of the Plasmodium falciparum Life Cycle

    Get PDF
    The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone deacetylase activities (HDAC). The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P. falciparum intraerythrocytic developmental cycle (IDC) that were characterized by rapid activation and repression of a large percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4) and demethylation of H3K4me3. Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy

    Gene Disruption of Plasmodium falciparum p52 Results in Attenuation of Malaria Liver Stage Development in Cultured Primary Human Hepatocytes

    Get PDF
    Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS) can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS) depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use

    Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation - A Review

    Full text link
    Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further

    Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates

    Get PDF
    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment
    corecore