27 research outputs found

    Schizosaccharomyces pombe glucose/cAMP signaling requires the Hsp90/Git10 chaperone and the Git7 co-chaperone

    Get PDF
    Thesis advisor: Charles HoffmanThe fission yeast Schizosaccharomyces pombe senses environmental glucose through a cAMP-signaling pathway. Elevated cAMP levels activate protein kinase A (PKA) to inhibit transcription of genes involved in sexual development and gluconeogenesis, including the fbp1âș gene, which encodes fructose-1,6-bisphosphatase. Glucose-mediated activation of PKA requires the function of nine git genes (git=glucose insensitive transcription), encoding adenylate cyclase, the PKA catalytic subunit and seven “upstream” proteins required for glucose-triggered adenylate cyclase activation. This thesis describes the cloning and characterization of the git10âș gene, which is identical to swo1âș and encodes the S. pombe Hsp90 chaperone protein. This discovery is consistent with the previous identification of the Git7 protein as a member of the Sgt1 Hsp90 co-chaperone family. Glucose repression of fbp1âș transcription is impaired by both hsp90⁻ and git7⁻ mutant alleles, as well as by chemical inhibition of Hsp90 activity and temperature stress. Unlike the swo1⁻ and git7⁻ ts mutant alleles, the git10-201 allele and git7-93 allele support cell growth at 37Âș and show no cytokinesis defect, while severely reducing glucose repression of an fbp1-lacZ reporter, suggesting a separation-of-function defect. A physical interaction between Git7 and Hsp90 in S. pombe was also detected and findings in this thesis suggest their involvement in the initial assembly of the cAMP complex.Thesis (PhD) — Boston College, 2008.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Biology

    A Novel Homozygous Non-sense Mutation in the Catalytic Domain of MTHFR Causes Severe 5,10-Methylenetetrahydrofolate Reductase Deficiency

    Get PDF
    Background: Severe 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency is a heterogeneous metabolic disorder inherited in an autosomal recessive manner. Pathogenic mutations in MTHFR gene have been associated with severe MTHFR deficiency. The clinical presentation of MTHFR deficiency is highly variable and associated with several neurological anomalies.Methods: Direct whole-exome sequencing (WES) was performed in all the five available individuals from the family, including the affected individual (III-7) using standard procedures.Results: We observed a proband (III-7) with an abnormality in the cerebral white matter, apnoea, and microcephaly. WES analysis identified a novel homozygous non-sense mutation (c.154C>T; p.Arg52*) in MTHFR gene that segregated with the disease phenotype within the family.Conclusion: We identified a novel non-sense mutation in MTHFR gene in a single Egyptian family with severe MTHFR deficiency. The present investigation is clinically important, as it adds to the growing list of MTHFR mutations, which might help in genetic counseling of families of affected children and proper genotype-phenotype correlation

    ADAMTS19-associated heart valve defects: Novel genetic variants consolidating a recognizable cardiac phenotype

    Get PDF
    Recently, ADAMTS19 was identified as a novel causative gene for autosomal recessive heart valve disease (HVD), affecting mainly the aortic and pulmonary valves. Exome sequencing and data repository (CentoMD) analyses were performed to identify patients with ADAMTS19 variants (two families). A third family was recognized based on cardiac phenotypic similarities and SNP array homozygosity. Three novel loss of function (LoF) variants were identified in six patients from three families. Clinically, all patients presented anomalies of the aortic/pulmonary valves, which included thickening of valve leaflets, stenosis and insufficiency. Three patients had (recurrent) subaortic membrane, suggesting that ADAMTS19 is the first gene identified related to discrete subaortic stenosis. One case presented a bi-commissural pulmonary valve. All patients displayed some degree of atrioventricular valve insufficiency. Other cardiac anomalies included atrial/ventricular septal defects, persistent ductus arteriosus, and mild dilated ascending aorta. Our findings confirm that biallelic LoF variants in ADAMTS19 are causative of a specific and recognizable cardiac phenotype. We recommend considering ADAMTS19 genetic testing in all patients with multiple semilunar valve abnormalities, particularly in the presence of subaortic membrane. ADAMTS19 screening in patients with semilunar valve abnormalities is needed to estimate the frequency of the HVD related phenotype, which might be not so rare

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative

    Get PDF

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes : Results from the Host Genetics Initiative

    Get PDF
    Publisher Copyright: Copyright: © 2022 Butler-Laporte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.Peer reviewe

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Schizosaccharomyces pombe Hsp90/Git10 Is Required for Glucose/cAMP Signaling

    No full text
    The fission yeast Schizosaccharomyces pombe senses environmental glucose through a cAMP-signaling pathway. Elevated cAMP levels activate protein kinase A (PKA) to inhibit transcription of genes involved in sexual development and gluconeogenesis, including the fbp1+ gene, which encodes fructose-1,6-bisphosphatase. Glucose-mediated activation of PKA requires the function of nine glucose-insensitive transcription (git) genes, encoding adenylate cyclase, the PKA catalytic subunit, and seven “upstream” proteins required for glucose-triggered adenylate cyclase activation. We describe the cloning and characterization of the git10+ gene, which is identical to swo1+ and encodes the S. pombe Hsp90 chaperone protein. Glucose repression of fbp1+ transcription is impaired by both git10− and swo1− mutant alleles of the hsp90+ gene, as well as by chemical inhibition of Hsp90 activity and temperature stress to wild-type cells. Unlike the swo1− mutant alleles, the git10-201 allele supports cell growth at 37°, while severely reducing glucose repression of an fbp1-lacZ reporter, suggesting a separation-of-function defect. Sequence analyses of three swo1− alleles and the one git10− allele indicate that swo1− mutations alter core functional domains of Hsp90, while the git10− mutation affects the Hsp90 central domain involved in client protein binding. These results suggest that Hsp90 plays a specific role in the S. pombe glucose/cAMP pathway

    Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia

    No full text
    Congenital heart disease (CHD) encompasses a wide range of structural defects of the heart and, in many cases, the factors that predispose an individual to disease are not well understood, highlighting the remarkable complexity of CHD etiology. Evidence of familial aggregation of CHD has been demonstrated in different communities and for different cardiac lesions. Consanguinity, particularly among first cousins, is an added risk factor for these families, particularly in societies where it is considered a common cultural practice, as confirmed in previous studies conducted in Saudi Arabia and other countries. Through comprehensive genetic testing of affected families, we have been able to better understand the genetic basis of the various cardiac lesions and to delineate the molecular mechanisms involved in cardiac morphogenesis. In this review, we discuss the epidemiology and genetics of CHD in consanguineous populations focusing on Saudi Arabia as an extensive study model to address current advances and challenges in the clinical genetic diagnosis and prevention of CHD

    Development of Epirubicin-Loaded Biocompatible Polymer PLA–PEG–PLA Nanoparticles: Synthesis, Characterization, Stability, and In Vitro Anticancerous Assessment

    No full text
    Epirubicin (EPI) is an anti-cancerous chemotherapeutic drug that is an effective epimer of doxorubicin with less cardiotoxicity. Although EPI has fewer side effects than its analog, doxorubicin, this study aims to develop EPI nanoparticles as an improved formula of the conventional treatment of EPI in its free form. Methods: In this study, EPI-loaded polymeric nanoparticles (EPI-NPs) were prepared by the double emulsion method using a biocompatible poly (lactide) poly (ethylene glycol) poly(lactide) (PLA–PEG–PLA) polymer. The physicochemical properties of the EPI-NPs were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), entrapment efficiency and stability studies. The effect of EPI-NPs on cancer cells was determined by high throughput imaging and flow cytometry. Results: The synthesis process resulted in monodisperse EPI-NPs with a size of 166.93 ± 1.40 nm and an elevated encapsulation efficiency (EE) of 88.3%. In addition, TEM images revealed the spherical uniformness of EPI-NPs with no aggregation, while the cellular studies presented the effect of EPI-NPs on MCF-7 cells’ viability; after 96 h of treatment, the MCF-7 cells presented considerable apoptotic activity. The stability study showed that the EPI-NPs remained stable at room temperature at physiological pH for over 30 days. Conclusion: EPI-NPs were successfully encapsulated within a highly stable biocompatible polymer with minimal loss of the drug. The used polymer has low cytotoxicity and EPI-NPs induced apoptosis in estrogen-positive cell line, making them a promising, safe treatment for cancer with less adverse side effects
    corecore