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ABSTRACT 
 

Schizosaccharomyces pombe Glucose/cAMP Signaling Requires the Hsp90/Git10 
Chaperone and the Git7 Co-chaperone 

 
 

By Manal Alaamery 
 

Advisor: Charles Hoffman 
 
 

The fission yeast Schizosaccharomyces pombe senses environmental glucose through a 

cAMP-signaling pathway.  Elevated cAMP levels activate protein kinase A (PKA) to 

inhibit transcription of genes involved in sexual development and gluconeogenesis, 

including the fbp1+ gene, which encodes fructose-1,6-bisphosphatase. Glucose-mediated 

activation of PKA requires the function of nine git genes (git=glucose insensitive 

transcription), encoding adenylate cyclase, the PKA catalytic subunit and seven 

“upstream” proteins required for glucose-triggered adenylate cyclase activation. This 

thesis describes the cloning and characterization of the git10+ gene, which is identical to 

swo1+ and encodes the S. pombe Hsp90 chaperone protein. This discovery is consistent 

with the previous identification of the Git7 protein as a member of the Sgt1 Hsp90 

co-chaperone family. Glucose repression of fbp1+ transcription is impaired by both 

hsp90- and git7-  mutant alleles, as well as by chemical inhibition of Hsp90 activity and 

temperature stress. Unlike the swo1- and git7- ts mutant alleles, the git10-201 allele and 

git7-93 allele support cell growth at 37º and show no cytokinesis defect, while severely 

reducing glucose repression of an fbp1-lacZ reporter, suggesting a separation-of-function 



defect. A physical interaction between Git7 and Hsp90 in S. pombe was also 

detected and findings in this thesis suggest their involvement in the initial assembly of 

the cAMP complex.  
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INTRODUCTION 
 
1.1. Signal Transduction 

Signal transduction allows a cell to interact with its environment and it is how the cell 

converts a specific external or internal signal to a chain of cellular reactions. This results 

in a particular action or response that is crucial to the cell’s existence. The initiation of a 

signal often starts with an external stimulus first interacting with a receptor on the surface 

of the cell. This receptor can then initiate the production of a second messenger, which 

will subsequently amplify and transmit the signal to targets. As a result of the signaling, a 

negative or positive response results in these target proteins being either inhibited or 

activated. The signal sometimes results in an alteration in gene expression, which is 

ultimately responsible for different but very specific outcomes.   

 

For instance, the binding of certain hormones to specific receptors on the surface of a cell 

triggers the production of cyclic AMP (cAMP) within the cell (Coppe and Steer, 1978). 

Cyclic AMP is a second messenger, which will initiate the internal signaling cascade. 

Other second messengers include cyclic GMP, InsP3 and calcium (CLAPHAM 1995; 

COPPE and STEER 1978; DIVECHA and IRVINE 1995; PFISTER 1989). In general, these 

second messengers serve to amplify the external signal and bring about the final effect of 

the signal. 
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1.2. Cyclic AMP Pathway  

Cyclic AMP is a small molecule that has a very important role in both prokaryotes and 

eukaryotes. It is synthesized from adenosine triphosphate (ATP) by an enzyme called 

adenylate cyclase and is degraded by another enzyme called cAMP phosphdiesterase. 

 

The concentration of cAMP in the cell is critical for different cellular processes.  The 

strength of the transduced signal is controlled by cAMP concentrations, which in turn is 

determined by a balance in the production and the degradation of cAMP. It is very 

important to have the right amount of cAMP at the right time in the right place; any 

change in this process can result in aberrant cell behavior. For example impaired cAMP 

signaling contributes to the pathophysiology of cardiovascular, neurological, metabolic 

and inflammatory disorders (CAI et al. 2001; MOORE and WILLOUGHBY 1995; 

MOVSESIAN and BRISTOW 2005). Recently, direct monitoring of rapid subcellular cAMP 

dynamics has been utilized to gain a better understanding of disease mechanisms 

(WILLOUGHBY and COOPER 2008). 

 

A significant role of cAMP is to activate protein kinase A (PKA) which will then affect 

the transcription of specific genes (BEEBE 1994). Amazingly, cAMP regulation is an 

ancient mechanism that is highly conserved from bacteria to humans (DAS et al. 2007; 

KAMENETSKY et al. 2006).  
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However, our understanding of the diverse biological effects of cAMP regulation is still 

in its infancy. Uncovering how cAMP signal translates into a specific gene expression 

change is crucial to enable the control of defective regulation that may contribute to 

disease (SANDS and PALMER 2008). Since cAMP signaling is present in simpler single 

cell organisms, these organisms serve as convenient models for studying cAMP signaling 

pathways. 

 

1.3. Cyclic AMP signaling in Schizosaccharomyces pombe 

Glucose signaling pathways regulate gene expression in both prokaryotic and eukaryotic 

cells, and have been well studied in a variety of model organisms. The fission yeast 

Schizosaccharomyces pombe monitors glucose to regulate a wide range of biological 

processes such as sexual development and metabolism. Unlike Saccharomyces 

cerevisiae, which senses glucose through a number of signaling pathways, glucose 

detection in Schizosaccharomyces pombe is primarily through a cAMP-signaling 

pathway (HOFFMAN 2005a; HOFFMAN 2005b).  

 

In S. cerevisiae and S. pombe, glucose-cAMP signaling is very similar with only a few 

key differences. In general, both have a G-protein receptor that activates a G-protein, 

which in turn activates adenylate cyclase (HOFFMAN 2005a; IVEY and HOFFMAN 2005). 

In S. cerevisiae, glucose signaling also involves Ras proteins (COLOMBO et al. 1998; 

FUKUI et al. 1986; MBONYI et al. 1988; MINTZER and FIELD 1994). In contrast, the S. 
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pombe Ras homolog plays no role in adenylate cyclase activation (FUKUI et al. 1986; 

HOFFMAN and WINSTON 1991).  

 

Our lab has focused on the transcriptional regulation of the glucose-repressed fbp1+ gene, 

which encodes the gluconeogenic enzyme fructose-1,6-bisphosphatase in S. pombe 

(VASSAROTTI and FRIESEN 1985). Previously, we identified mutations in genes that 

confer constitutive fbp1+ transcription (HOFFMAN and WINSTON 1990). These glucose 

insensitive transcription (git) genes encode the components of a PKA pathway (HOFFMAN 

2005b), which acts antagonistically to a stress-activated MAPK (SAPK) pathway 

required for fbp1+ transcription (STETTLER et al. 1996; STIEFEL et al. 2004). 

 

The S. pombe cAMP signaling genes have been identified by using genetic screens to 

find mutants defective in glucose repression of transcription of the gene fbp1 (HOFFMAN 

2005b; HOFFMAN and WINSTON 1991). One of the imperative genes was identified to be 

git2+/cyr1+ which encodes adenylate cyclase (HOFFMAN and WINSTON 1991). The S. 

pombe cyr1/git2 adenylate cyclase gene was cloned by different groups by hybridization 

using the S. cerevisiae CYR1 gene. On the contrary to S. cerevisiae, S. pombe adenylate 

cyclase is not essential and not regulated by Ras protein (FUKUI et al. 1986; HOFFMAN 

and WINSTON 1991; MAEDA et al. 1990; YAMAWAKI-KATAOKA et al. 1989; YOUNG et al. 

1989). The function of adenylate cyclase is to produce the second messenger cAMP from 

ATP to activate PKA, whose catalytic subunit is encoded by the pka1+/git6+ gene (JIN et 
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al. 1995; MAEDA et al. 1990; YU et al. 1994) and whose regulatory subunit is encoded by 

the cgs1+ gene (DEVOTI et al. 1991).  

 

The git6/pka1 was cloned by its ability to suppress the dominant-negative mutation of the 

S. cerevisiae RAS2 gene (YU et al. 1994). The loss of the catalytic activity of Pka1p 

mimics a starvation signal allowing the cell to conjugate and sporulate even in the 

presence of abundant nutrients. On the other hand, mutations in genes that elevate PKA 

activity inhibit cell conjugation. This led to the identification of cgs1 which encodes the 

regulatory subunit of PKA and cgs2 that encodes phosphodiesterase (DeVoti et al. 1991), 

as mutations in these genes suppress the lethal haploid meiosis conferred by a pat1- 

mutation.  

 

Seven additional git genes are required for adenylate cyclase activation and form at least 

two functionally distinct groups. Four genes encode the Git3 G protein-coupled receptor 

(WELTON and HOFFMAN 2000) and its cognate heterotrimeric G protein composed of the 

Gpa2 Gα (ISSHIKI et al. 1992; NOCERO et al. 1994), the Git5 Gβ (LANDRY et al. 2000), 

and the Git11 Gγ (LANDRY and HOFFMAN 2001). Overexpression of Gpa2 suppresses the 

defect in fbp1 transcriptional repression caused by git3 or git5 mutations. These findings 

suggest that Gpa2 functions downstream from Git3 and Git5 (LANDRY et al. 2000) 

(Figure1). In addition, using a two-hybrid assay we found that Git3 interacts with Gpa2 

and this interaction was facilitated by the Git5 Gβ (D.A. Kelly and C.S. Hoffman, 
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unpublished results (HOFFMAN 2005b). The Git3 GPCR and Git5-Git11 Gβγ dimer are 

required for Gpa2 Gα activation, and can be bypassed by mutations that activate Gpa2 

(WELTON and HOFFMAN 2000), which directly binds and activates adenylate cyclase 

(IVEY and HOFFMAN 2005).  

 

Interestingly, unlike the other git genes, mutations in git7, git10, and git1 cannot be 

suppressed by an activated allele of gpa2 (WELTON and HOFFMAN 2000). Therefore, they 

either function independently from Gpa2 to activate adenylate cyclase or are required for 

Gpa2-mediated activation of adenylate cyclase by stabilizing or assembling a functional 

complex (Figure1). Git1 contains a C2 domain, which in some proteins binds 

phospholipids, and two munc domains (MHD1 and MHD2) that might also bind 

phospholipids (KOCH et al. 2000). Genetics and biochemical studies indicate that git1 is 

required for the activation of adenylate cyclase (BYRNE and HOFFMAN 1993). In addition 

co-immunoprecipitation experiments have detected physical interactions between Git1 

and Git2/ adenylate cyclase (KAO et al. 2006). 
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Figure 1. Schizosaccharomyces pombe cAMP signaling pathway  

The Git3 protein detects glucose and transfers the signal to the heterotrimeric G proteins, which will in turn 

activate Git2 adenylate cyclase, which will produce cAMP. Three other proteins Git7, Git10, and the Git1 

are also required for the activation of Git2. Elevation of cAMP levels results in activation of PKA. This 

action will affect the transcription of specific genes like fbp1 in Schizosaccharomyces pombe. 
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Figure 1. 
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Git7 is a member of the Sgt1 protein family, whose Saccharomyces cerevisiae ortholog 

SGT1 was originally identified as a multicopy suppressor of skp1 mutation. SGT1 has 

been implicated in adenylate cyclase function (DUBACQ et al. 2002). It is also essential 

and appeared to be important for septation and maintaining cell wall integrity (DUBACQ 

et al. 2002; SCHADICK et al. 2002) and kinetochore assembly (KITAGAWA et al. 1999).  

 

The goal of this thesis project was to identify and characterize git10, the one remaining 

git gene that plays an important role in fbp1 repression. Through a mapping approach, I 

discovered that git10 encodes Hsp90, a heat shock protein that is a member of the 90 kD 

protein family found in many eukaryotes, including the budding yeast S. cerevisiae, 

plants, and mammals (BARDWELL and CRAIG 1987; LINDQUIST and CRAIG 1988b; 

SPENCE and GEORGOPOULOS 1989). The git10/hsp90 gene was previously identified as 

swo1, a gene that when mutated suppresses the mitotic effect of overexpression of wee1 

kinase, which negatively regulates mitotic entry (ALIGUE et al. 1994). 

 

1.4. Hsp90 function and signaling  

Hsp90 is one of the most abundant cellular proteins under normal conditions and is 

highly expressed in response to different kinds of stress including heat, osmotic stress 

(SATHIYAA et al. 2001; SPEES et al. 2002), and toxic stresses (SNYDER et al. 2001; 

WIEGANT et al. 1998). Hsp90 is an essential molecular chaperone, a molecule which is 

greatly conserved from bacteria to mammals (BARDWELL and CRAIG 1987; LINDQUIST 
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and CRAIG 1988a; SPENCE and GEORGOPOULOS 1989). The high sequence homology and 

conserved structure of Hsp90 suggest that its function might also be preserved across 

species. Using the molecular biology toolkit (MBT), a protein workshop software 

(MORELAND et al. 2005) I was able to show how remarkably closely the structure of 

human and Saccharomyces cerevisiae Hsp90 resemble each other due to high Hsp90 

conservation (Figure 2). 

 

Another Hsp90 isoform that has been reported is Hsp90N, which is involved in the 

cellular transformation process (GRAMMATIKAKIS et al. 2002). In addition Hsp90 

paralogs includes Grp94, a glucose regulated protein and the mitochondrial Trap1/Hsp75 

(CSERMELY et al. 1998; NEMOTO et al. 1996). In S. cerevisiae there are two isoforms 

Hsp82, a heat shock induced chaperone, and Hsc82 a constitutively expressed protein 

(ALIGUE et al. 1994; BORKOVICH et al. 1989). Both in S. cerevisiae and in S. pombe, 

Hsp90 is essential for cell viability.  

 

Hsp90’s function is highly complex. To understand this complexity, several groups have 

tried to uncover the Hsp90 network in yeast and mammalian systems using proteomic 

and genomic approaches (FALSONE et al. 2005; ZHAO et al. 2005).  
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Figure 2. Comparison of the structures of human and yeast Hsp90 

Comparison of the structures of human and yeast Hsp90 to show how closely they resemble each other due 

to high Hsp90 conservation. (A) The N-terminal domain of human Hsp90 (1yet) binding to Geldanamycin 

(GA). (B) The N-terminal domain of Saccharomyces cerevisiae Hsp90 (1a4h) binding to Geldanamycin 

(GA). Images were created using MBT protein workshop (MORELAND et al. 2005) available on protein data 

bank (PDB) website. Human crystal structure data was obtained from (STEBBINS et al. 1997) and yeast 

structural data from (PRODROMOU et al. 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 13 

Figure 2. 

A. 

 

 

B. 
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It is an unusual chaperone in that most of its identified substrates are signal transduction 

proteins (PEARL and PRODROMOU 2000; POWERS and WORKMAN 2006; ZHANG and 

BURROWS 2004). The Hsp90 protein networks suggest that Hsp90 plays a central role 

affecting multiple pathways and cellular processes, such as signaling of steroid hormone 

receptors and protein kinases (NOLLEN and MORIMOTO 2002; RICHTER and BUCHNER 

2001), membrane trafficking (BIJLMAKERS and MARSH 2000; FAN et al. 2006; SAKISAKA 

et al. 2002) and the cytoskeletal network (PAI et al. 2001); (KORCSMAROS et al. 2007) 

(Figure 3). Therefore, the number of client proteins identified for Hsp90 has been 

increasing gradually.  

 

Hsp90 regulates cellular functions in different ways. Hsp90 can help in folding newly 

synthesized proteins and also facilitate the maturation of many proteins to a stable 

confirmation (CSERMELY et al. 2007; KORCSMAROS et al. 2007; MILLSON et al. 2005; 

ZHAO et al. 2005; ZHAO and HOURY 2007). In addition, Hsp90 function in complex with 

various co-chaperones that regulate its function. The different co-chaperones can direct 

Hsp90 to different sets of substrates/targets (ZHAO and HOURY 2005). Therefore, Hsp90 

is a crucial element for a target protein to function in different signaling pathways. 

However, the structural flexibility that is needed for these substrates to carry out diverse 

cellular functions may render them less stable and make them more susceptible to 

damage if Hsp90 was compromised (YOUNG et al. 2001).  
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Figure 3. Hsp90 complex network 

Hsp90 is involved with protein-protein interactions, the cytoskeletal network, and membrane trafficking 

(KORCSMAROS et al. 2007). Signaling through Hsp90 links these pathways to each other. See Picard list 

http://www.picard.ch/downloads/Hsp90interactors.pdf. 
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Figure 3. 
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As a result, a compromised Hsp90 will result in the destabilization of client proteins and 

induce their degradation. 

 
1.4. Hsp90 role in evolution, cancer, and immunity  

In fruit fly and in plants Hsp90 demonstrates an important role in evolution by masking 

mutations. It acts as a buffering device to maintain the wild type phenotype. The Hsp90 

impaired by either mutations or by pharmacological inhibitors led to developmental 

abnormalities. The Lindquist lab established that these developmental abnormalities 

phenotypes were due to reduced Hsp90 function. They also showed that elevated 

temperature could produce Hsp90-dependent phenotypes. The reason for that remarkable 

effect may be that Hsp90 has a crucial role in stabilizing proteins that are involved in a 

intricate signaling pathway (MITCHELL-OLDS and KNIGHT 2002; RUTHERFORD 2003; 

RUTHERFORD and LINDQUIST 1998). 

 

On the other hand, Hsp90 inhibition is sometimes beneficial. Recent research has 

revealed a distinctive medically important role of Hsp90 in cancer (CHIOSIS G et al.  

2004; GOETZ et al. 2003; MALONEY A and P. 2002). Hsp90 is overexpressed in cancer 

cells and required for the stability and function of signaling proteins that promote cancer 

cell growth (ISAACS et al. 2003; NATHAN and LINDQUIST. 1995; NECKERS 2007; PRATT 

and TOFT. 1997; WHITESELL and LINDQUIST 2005). In a murine model system, Hsp90 

was concentrated in tumor tissue while being unaltered in other tissues (BANERJI et al. 
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2005; EISEMAN et al. 2005; NECKERS 2007; VILENCHIK et al. 2004; XU et al. 2003). 

Therefore, Hsp90 is a potential anticancer drug target. For example, geldanamycin is a 

specific Hsp90 inhibitor that blocks the ATP binding site of Hsp90, thus impairing its 

chaperone activity, which will limit a variety of cell signaling pathways and cell growth 

(OBERMANN et al. 1998; SCHNEIDER et al. 1996).  

 

Hsp90 also plays a central role in innate immunity in higher eukaryotes. In plants, it has 

been shown that Hsp90, SGT1, and RAR1 together regulate the stability of R proteins, a 

family of proteins that is important in disease resistance (AZEVEDO et al. 2002; BOTER et 

al. 2007; LIU et al. 2004; TAKAHASHI et al. 2003; THAO et al. 2007). Recently, it has also 

been shown that Hsp90 plays an important role in the immune response in mammalians. 

This process involves an Hsp90 co-chaperone Sgt1, together they activate the immune 

response by inducing the Nod-like receptor proteins (NLR) to form an inflammasome 

complex (MAYOR et al. 2007). Since the immune response networks in plants and 

mammals share some general components, Hsp90-Sgt1 signaling might be a conserved 

mechanism that regulates the immune response and ensures disease resistance (Figure 4). 

 

1.5. Hsp90 structure and the Chaperone Cycle  

Hsp90 possesses three domains: an N-terminal ATP-binding domain, a central regulatory 

domain involved in client protein-binding, and a C-terminal dimerization domain (Figure 

5A) (PEARL and PRODROMOU 2006). 



 19 

Figure 4. Hsp90, co-chaperones and clients act on different cellular processes 

Hsp90 and its co-chaperones act on a wide range of client proteins kinases, transcription factors, and others 

to control different cellular processes (JACKSON et al. 2004; KORCSMAROS et al. 2007).  
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Figure 4. 
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Emerging evidence suggests the importance of the middle domain of Hsp90 and sheds 

light on its role in the activation of the N-terminal ATP-binding domain. In S. cerevisiae, 

it has been shown that Hsp90 middle domain interacts with Aha1, a co-chaperone that 

stimulates ATP hydrolysis and enhances the efficiency of its client protein activity either 

indirectly or directly (FONTANA J et al. 2002; MEYER et al. 2003; SATO et al. 2000). A 

recent report showed that the middle domain could also play a role in discriminating 

between different types of client proteins (HAWLE et al. 2006). 

 

The N-terminus had been identified by structural studies and biochemical studies to be 

the ATP binding site of Hsp90 and can be also blocked by Geldanamycin (GA), a 

specific Hsp90 inhibitor (BUCHNER 1999; STEBBINS et al. 1997). On the other hand, the 

C-terminus of Hsp90 also has an important role since truncations of this region resulted 

in unviable yeast cells (LOUVION et al. 1996; MINAMI et al. 1994) and also abolished 

ATP hydrolysis (PRODROMOU et al. 2000). These results imply that the N-terminal 

domain of Hsp90, which is important for ATP hydrolysis (RICHTER et al. 2002), is 

enhanced by the C-terminal dimerization (TERASAWA et al. 2005). Conformational 

changes of Hsp90 when bound to ADP or ATP is important to the function of the 

chaperone cycle which includes the transition process between the open and the closed 

structure (Figure 5B) (CSERMELY et al. 1993; GRENERT et al. 1997; SULLIVAN et al. 

1997).  
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Figure 5. Hsp90 structure and Hsp90  ATPase cycle 

(A) Hsp90 contains three domains: (N) the N-terminal (ATP) binding domain, (M) the middle or -protein 

binding domain, (C) the C-terminus or dimerization domain. 

(B) The inactive form of Hsp90 is the open/relaxed structure. ATP binding activates Hsp90 and induces 

conformational changes, creating a closed structure. Adapted from (PRODROMOU et al. 2000; TERASAWA et 

al. 2005) 
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Figure 5. 
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The ADP-bound Hsp90 form, which is the open structure, is capable of capturing the 

client proteins (Figure 6A). ATP binding will induce conformation changes, resulting in a 

closed state (Figure 6B) that will result in client protein encapsulation (RICHTER and 

BUCHNER 2006). There is also evidence that a wide range of co-chaperones play an 

important role in the loading (Figure 6A) and releasing (Figure 6C) mechanisms of 

Hsp90 in a client-specific manner (BUCHNER 1999; KELLERMAYER and CSERMELY 1995; 

PEARL and PRODROMOU 2006). 

 

Natural inhibitors, geldanamycin produced from Streptomyces hygroscopicus (DEBOER et 

al. 1970) and the antifungal antibitotic radicicol produced by Humicola fuscoatra (SOGA 

et al. 2003) bind to the ATP conserved pocket resulting in compromised ATPase activity 

(PRODROMOU et al. 1997; SCHULTE et al. 1999; STEBBINS et al. 1997). Blocking the ATP 

site locks Hsp90 in the ADP confirmation thereby inducing client degradation (Figure 

6D).  

 

1.6. Hsp90 functions in the context of Sgt1 structure  

Sgt1 is found in humans (LEE et al. 2004; STEENSGAARD et al. 2004), Arabidopsis 

thaliana (AZEVEDO et al. 2002), Saccharomyces cerevisiae (KITAGAWA et al. 1999), and 

recently in S. pombe, designated git7 (SCHADICK et al. 2002). Sgt1p contains three 

important domains (Figure 7).  
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Figure 6. Hsp90 Clamp mechanism 

(A) Hsp90 in the open state can capture the client protein. (B) ATP binding induces Hsp90 conformational 

changes resulting in the closed state. The closed structure facilitates client activation and/or assembly with 

another protein. (C) Some co-chaperones will accelerate the ATPase reaction, which results in client 

disassociations. (D) Geldanamycin (GA) blocks the ATP binding site, which will result in client 

destabilization and degradation (BAGATELL and WHITESELL 2004; MEYER et al. 2003; PEARL and 

PRODROMOU 2006; RICHTER and BUCHNER 2006). 
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Figure 6. 
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Figure 7. Schematic of Sgt1 protein structure   

Schematic of Sgt1 protein structure showing the three domains: TRP, CS, and SGS   and the binding site of  

Hsp90. In addition it shows some phenotypes associated with Sgt1 mutants in humans (LEE et al. 2004) and 

Saccharomyces cerevisiae (BANSAL et al. 2004; DUBACQ et al. 2002) compared to its ortholog Git7 in 

Schizosaccharomyces pombe (SCHADICK et al. 2002). Geldanamycin is a drug that inhibits Hsp90 function. 

TRP: tetratricopeptide repeat domain. CS: CHORD domain. SGS: Sgt1 specific domain. 
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Figure 7. 
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The N-terminus contains a tetratricopeptide repeat domain (TRP) (LAMB et al. 1995) 

which is conserved from humans to yeast (KORDES et al. 1998). Proteins that contain the 

TRP motif were found to be involved in protein folding, protein–protein interactions, and 

cell cycle and transcription regulation (BLATCH and LASSLE 1999). 

 

Mutations in this domain alter normal cellular processes due to disruption of protein 

interactions. This domain was found to interact transiently with Hsp90 in S. cerevisiae 

and A. thaliana (BANSAL et al. 2004; TAKAHASHI et al. 2003) an interaction that is 

essential for the formation of the Centromere Binding Factor 3 (CBF3), and the 

kinetochore complex (LINGELBACH and KAPLAN 2004). 

 

Sgt1 works as a linker to connect Hsp90 to Skp1 which results in CBF3 complex 

formation by activating Ctf13. Therefore Sgt1 may function as a co-chaperone that 

recruits specific clients to Hsp90 (CATLETT and KAPLAN 2006). In plants the Hsp90 

interaction with the TRP domain of Sgt1 was found to be important in disease resistance 

(TAKAHASHI et al. 2003). In S. pombe, git7-27 and the git7-235 alleles, which contain 

single missense mutations in the region encoding the amino terminus of Git7 

demonstrates defective phenotype in cAMP signaling, cell wall integrity and septation 

(SCHADICK et al. 2002). 
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The middle domain of Sgt1, referred to as the CHORD (CS) domain, is also conserved 

among species. Proteins that contain this region were found to interact with Hsp90 

(AZEVEDO et al. 2002; DUBACQ et al. 2002). In contrast to S. cerevisiae, human Sgt1 

binds Hsp90 through the CS domain (LEE et al. 2004). Structural analysis using NMR 

and mutational analyses of the CS domain of Sgt1 in Arabidopsis thaliana showed that 

the CHORD II domain of RAR1 and the N-terminus domain of HSP90 interact with 

opposite faces of the CS domain of Sgt1. The Sgt1 function in Rx resistance is 

specifically dependent on its interaction with Hsp90, demonstrating that the role of Sgt1 

may be to recruit chaperone activity to multi protein complexes (BOTER et al. 2007).  

 

The C-terminus of Sgt1 contains the SGS domain, which stands for Sgt1 specific domain. 

This domain is the most evolutionarily conserved region within the protein across 

different species; therefore it might carry a conserved function (AZEVEDO et al. 2002). 

Mutations in this region showed defects in SCF (Skp1p/Cdc53p–Cullin–F-box) 

machinery and the cAMP pathway. These mutants were also sensitive to geldanamycin, 

which indicates Hsp90 involvement in these processes. For example in S. cerevisiae, the 

sgt1-5 allele, which is a mutation in the C-terminus was defective in SCF ubiquitination, 

in adenylate cyclase activity and was sensitive to geldanamycin (BANSAL et al. 2004; 

KITAGAWA et al. 1999).  
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In S. cerevisiae Sgt1 physically interacts with the yeast adenylate cyclase Cyr1p/Cdc35p 

(DUBACQ et al. 2002). However, Sgt1 involvement in cAMP signaling was observed but 

SGT1/Git7 and Cyr1/Git2 interactions were not found in S. pombe (Wang, unpublished 

data). Interestingly cells expressing git7-93, which has duplication in the C-terminal 

coding region, display a defect in cAMP pathway and not in any other functions 

associated with other git7 mutant alleles. Thus, this region is specifically involved in 

cAMP pathway (SCHADICK et al. 2002).   

 
1.7. Focus of research  

Prior to this study, genes that were responsible for mutants defective in glucose 

repression of fbp1 transcription were all cloned with the exception of git10. The initial 

aim is to clone and characterize the git10 gene. I will describe here the cloning process 

and provide evidence that it encodes a heat shock protein Hsp90 that plays an important 

role in cAMP pathway (ALAAMERY and HOFFMAN 2008).  

 

I have determined for the first time that the induction of fbp1 transcription during heat 

stress acts through Hsp90, suggesting a novel link between temperature sensing and 

nutrient sensing through a PKA pathway in S. pombe.  

 

Before this study, Git7 a member of the Sgt1 protein family had been shown to be 

important for septation, cell wall integrity and proper cAMP signaling in S. pombe 
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(SCHADICK et al. 2002). I demonstrated that Git7’s function in maintaining cell wall 

integrity requires functional Hsp90. Furthermore; I showed that Swo1/Hsp90 and Git7 

proteins interact suggesting their presence in the same complex. These findings establish 

a connection between Hsp90 and Git7 that have never been previously revealed in S. 

pombe. In other systems, the interaction between Git7 and Hsp90 is important in the 

transient assembly of protein complexes.  

 

Finally, I analyzed the effect of compromising Hsp90 on key players of the cAMP 

pathway. This analysis indicates that Hsp90 is involved in assembling the cAMP-

signaling complex. 
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MATERIALS AND METHODS 
 
 
2.1. MATERIALS 

2.1.1. Growth Medium  

Yeast was grown and maintained using several types of media. Yeast extract agar (YEA) 

and yeast extract liquid (YEL) are the standard media supplemented with 0.2% casamino 

acids (GUTZ et al. 1974). Defined medium EMM (MP Biochemicals) was supplemented 

with required nutrients at 75 mg/L, except for L-leucine, which was at 150 mg/L. 

Sensitivity to 5-fluoro-orotic acid (5FOA) was determined on SC solid medium 

containing 0.4 g/L 5-fluoro-orotic acid 5FOA and 8% glucose as previously described 

(HOFFMAN and WINSTON 1990). LB medium (1% tryptone, 0.5% yeast extract, 1% NaCl) 

was used to grow E. coli. 

 

2.1.2. Yeast  

Table 1 lists the yeast strains used in this study. Most of the strains in this thesis carried 

the fbp1::ura4+ and ura4::fbp1-lacZ reporters (Figure 8). Both are translational fusions 

integrated at the fbp1+ and ura4+ loci, respectively, as described by Hoffman and 

Winston (HOFFMAN and WINSTON 1990). Strains were grown at 30°C unless otherwise 

indicated. 
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Table 1. Strain list  

Strain   Genotype          

FWP17 mat2-102    ura4-294     lys1-131  

FWP72 h-   fbp1::ura4+   ura4::fbp1-lacZ leu1-32  

FWP87 h+   fbp1::ura4+   ura4::fbp1-lacZ leu1-32  

CHP27    h+   fbp1::ura4+    ura4::fbp1-lacZ     leu1-32   ade6-M210  his7-366   git7-27 

CHP465  h-    fbp1::ura4+    ura4::fbp1-lacZ     leu1-32   ade6-M210 git7-235 

CHP567  h+   fbp1::ura4+    ura4::fbp1-lacZ     leu1-32   ade6-M210   git10-201   

CHP573  h-    fbp1::ura4+   ura4::fbp1-lacZ     leu1-32   ade6-M210   his7-366   git10-201 

CHP894  h-   fbp1::ura4+    ura4::fbp1-lacZ     leu1-32   lys1-131  cdc1-P13   git10-201 

CHP981  h-   fbp1::ura4+    ura4::fbp1-lacZ     leu1-32   ade6-M210   swo1-26  

CHP979  h+   fbp1::ura4+    ura4::fbp1-lacZ     leu1-32  ade6-M210  his7-366   swo1-26  

CHP989  h+   fbp1::ura4+    ura4::fbp1-lacZ     leu1-32    swo1-21  

PR164     h- ura4-D18     leu1-32   swo1-21 

PR165     h- ura4-D18     leu1-32   swo1-25 

CHP362 h90  leu1-32       ade6-M210   lys1-131 

CHP558 h90 fbp1::ura4+   leu1-32  ade6-M216  git2-1::LEU2    

CHP486 h90 leu1-32  lys1-131 git5-1::his7 
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CHP483 h90    ura4::fbp1-lacZ     leu1-32   ade6-M216 

MAP1    h90          fbp1::ura4+    ura4::fbp1-lacZ     leu1-32      git10-201 

MAP10    -         fbp1::ura4+    ura4::fbp1-lacZ  git2-Myc::kan git1-V5::leu+  git7-93 

MAP12    -    fbp1::ura4+    ura4::fbp1-lacZ  git2-Myc::kan git1-V5::leu+ 
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Figure 8. Two translational fusions and their associated phenotypes 

 (A) Two constructed under the fbp1 promoter, used for selecting mutations that are defective in repression 

of fbp1 transcription. (B) Strains carrying fbp1-ura4 and fbp1-lacZ fusions are Ura-, 5FOA-resistant, and 

express little β-galactosidase activity when grown under repressing conditions (8% glucose).  
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Figure 8.  

 

 

A. 

 

 

 

B. 
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2.1.3. Bacteria  

ElectroTen-Blue or XL1-Blue electroporation-competent cells (Stratagene, La Jolla, CA) 

or TOP10 chemical-competent cells were used to amplify plasmids (Invitrogen, San 

Diego). Bacterial transformants were selected on (100 mg/L) ampicillin resistance LB 

plates. 

 

2.1.4. Enzymes  

Restriction endonuclease enzymes, ligation enzymes, and their buffers were purchased 

from New England Biolabs (NEB, Ipswich, MA). Protocols for digestion reactions were 

performed using NEB catalog. NEB cutter software was also used to visualize the 

restriction digestion patterns (VINCZE et al. 2003). AccuPrime Taq DNA polymerase was 

purchased from Invitrogen (Carlsbad,CA). PfuTurbo DNA polymerase was purchased 

from Stratagene (La Jolla, CA). Lastly, the Failsafe PCR kit was purchased from 

(Epicentre Technologies, Madison, WI). 

 

2.2. METHODS  

2.2.1. Strain mating and tetrad dissection  

Stains were patched on YEA solid media prior to mating. The freshly streaked strains 

were then mated on malt-extract agar (MEA) for 24 to 48 h at 30˚C. In the case of 
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homothallic stains, they were pregrown at 37˚C before mating. Asci formed on MEA 

were transferred using a dissection needle to YEA 3% glucose rich plate. Selected 

zygotic asci were then incubated at 37˚C for at least 2 h to facilitate the breakage of the 

cell wall and the release of spores. Tetrads were then needle dissected on the plate and 

moved away from each other to ease the scoring process. Plates were then incubated at 30 

˚C for 3 days and then scored.  

 

2.2.2. β-galactosidase assays of fbp1-lacZ expression  

Cells were cultured for 18 h under repressing conditions (8% glucose) in yeast extract at 

the indicated temperatures (YEL) or PM for transformants. Subcultures were grown to 

exponential phase 1x107 cells/mL. Soluble protein extracts were prepared by glass bead 

in breaking buffer  (0.1 M Tris pH 8, 20% glycerol, 1mM DTT) and PSMF (40mM). The 

assay was performed using Z buffer according to in current molecular biology protocol. 

Ortho-nitrophenyl-β-galactoside (ONPG) was used to start the reaction and Na2CO3 (1 

M) solution was used to stop the reaction when a yellow color appeared. Samples were 

read at OD420. Total soluble protein was measured by BCA assay (Pierce Chemical Co) to 

calculate β-galactosidase-specific activity (NOCERO et al. 1994).  
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2.2.3. X-Gal Filter Lift  

This assay was used to confirm the present of the lacZ reporter in the strain. Strains for 

testing were patched on YEA or solid selective medium and grown for 24 to 48 h before 

testing. Cells were replica-plated directly onto a 0.2µm BioTrace NT nitrocellulose 

membrane filter (Pall Life Sciences, East Hills, NY). The filter that absorbed the cells 

was then submerged into liquid nitrogen for 60 s to lyse the cells. Afterwards, the filter 

was moved from liquid nitrogen and allowed to thaw for 2 min. The filter with the cells 

was laid on a blotting paper saturated with 2.5 mL of Z buffer mixed with 150 µl of 5-

bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) (20 mg/mL). The cells were 

incubated at 30˚C for 15 min or until a color developed. Stains that carried lacZ reporter 

turned blue.  

 

2.2.4. PCR walking  

Polymerase chain reactions (PCR) were performed using the high Fidelity PCR kit for 

enzyme Pfu according to the manufacturer’s instruction. PCR walking method was 

preformed on cosmid SPAC926 to cover the region where git10+ gene was mapped to by 

using the following primers: 

[Git10-1F (5’CTGGAAACCTGACGCGGGTA3’) and Git10-1R (5’CTTTGCAACGTA 
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CTTCTACTCGC3’)], [Git10-2F(5’CCGTACTTCTTACGGCG CTC3’) and Git10-2R( 

5’ GCTGAAAAGCATGCTCCCGA 3’)], [Git10-3F (5’CCGTACTTCTTACGGCG CT 

C3’) and Git10-3R(5’CAAATTTTATACGGCCCGC3’)], [Git10-4F (5’GAATTCCAAA 

ACGCGGGC3’) and Git10-4R (5’TAAGCCAAATTCCGAACGG3’)], [Git10-5F (5’AA 

AATTTCTGACCGCTCGG3’) and Git10-5R (5’GCGTTTGCTGTACGAGAGGG 3’)],  

[Git10-6F(5’CTTCCATAACGTCTTCTACACGC3’) and Git10-6R (5’TCATCAACGT 

ATACGTTCGGG3’)], [Git10-7F (5’TGAGCCATAATAGCCCGAACG3’) and Git10-

7R (5’ACAAATGCAATGCGCCTAAC3’)], [Git10-8F (5’AACTGCAGTGATCGGAC 

GGG3’) and Git10-8R (5’GGGTTACATTTACGCTCTACGC3’)], [Git10-9F (5’ATGG 

CTAGAAAAGGGACGGC3’) and Git10-9R (5’GCAAACCCTTCACGAGTGTC 3’)]. 

 

2.2.5. DNA sequencing 

Mutant alleles of hsp90+ gene (swo1-21, swo1-25, swo1-26, and git10-201) were PCR 

amplified from S. pombe strains and the PCR products were directly sequenced using 

custom oligonucleotides (Integrated DNA Technologies). DNA sequencing was 

performed using the CEQ DTCS-Quick Start kit (Beckman Coulter).  

 

2.2.6. Cloning and Plasmid Constructions 

The S. pombe genomic DNA insert from cosmid SPAC926 was amplified by PCR using 

custom oligonucleotides that divided the insert into nine segments (see Figure 9) and 
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cloned using pNMT41 TOPO cloning vector (Invitrogen) according to the manufacturer’s 

instructions.  

 

2.2.7. Epitope-tagging of Hsp90 

hsp90-for (5’ATGTCGAACACAGAAACTTTCAAG3’) and hsp90-revTAG (5’ 

ATCGACTTCCTCCATCTTGCTC3’) were used in a PCR reaction on wild type S. 

pombe genomic DNA to amplify the hsp90+ ORF. The resultant PCR product, lacking 

the hsp90+ STOP codon, was cloned into the TOPO cloning vector pNMT41 vector 

(Invitrogen) creating plasmid pMAR3, which expresses Hsp90 with a C-terminal V5 

(SOUTHERN et al. 1991) tag followed by a hexahistidine tag (Hsp90-V5his6).  

 

2.2.8. Protein extraction for Western blot analysis 

Strains were grown in YEL 3% glucose to log phase 1x107 cells/mL. Protein extracts 

were prepared on ice by TCA precipitation as described by Volland. (VOLLAND et al. 

1994) 

 

2.2.9. Co-immunoprecipitation  

S. pombe strains MAP12, MAP10, CHP456, and CHP27  were grown to exponential 

phase and broken in lysis buffer (50 mM Tris-HCl [pH 7.5], 0.2% Triton X-100, 300 mM 

NaCl, protease inhibitor) by grinding in liquid nitrogen. A total of 800 µl of cell lysate 

was incubated with 2.5 µl of α-Sgt1 (donated by the Ken Kaplan lab) for 1 h at 4°C on a 
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rotator. 50 µl  of Protein G Sepharose 4 Fast Flow (Amersham Pharmacia) was added in a 

1:1 ratio with lysis buffer and incubated on a rotator for 2 h at 4°C. Precipitated immune 

complexes were isolated by microcentrifugation for 20 seconds. The pellets were washed 

six times with lysis buffer. Pellets were resuspended in 30 µl of Laemmli buffer and 

heated for 3 min at 95°C. Beads were pelleted by centrifugation for 20 seconds, and the 

supernatants were removed for analysis. 

 

2.2.10. Western and immunoblotting  

Protein extracts were separated by 4%-15% SDS-PAGE gradient gel (Biorad; Hercules, 

CA) and transferred to a polyvinylidene difluoride membrane (PVDF) (Millipore; 

Temecula, CA). Membranes were blocked for 3 h at room temperature in 5% nonfat milk 

powder dissolved in Tris-saline-Tween-20 buffer (TBST). The PVDF membrane was 

washed three times with 1 X (TBST). Immunodetection of V5-tagged and Myc–tagged 

proteins were performed using monoclonal mouse α-V5 (Invitrogen) and monoclonal 

mouse α-myc (Santa Cruz Biotechnology). Then, peroxidase-labeled goat α-mouse IgG 

secondary antibody (Kirkegaard & Perry Laboratories) was used as secondary antibodies 

to recognize mouse primary antibodies. Actin protein was detected using mouse 

polyclonal IgG (JLA20) against actin and peroxidase-conjugated goat α-mouse IgG was 

used as a secondary antibody. Gpa2 was detected using α-S. pombe Gpa2 antibody while 

peroxidase-conjugated goat α-rabbit IgG served as a secondary antibody. The Hsp90 was 

detected by using α-Hsp90 (K41220) primary mouse antibody. Then, peroxidase-labeled 
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goat α-mouse IgG was used as secondary antibodies to recognize mouse primary 

antibodies. Samples were visualized using LumiGLO Enhanced chemiluminescence 

(Kirkegaard & Perry Laboratories; KPL) following manufacturer’s directions. 

 

2.2.11. Tandem Affinity Purification (TAP) 

Strains CHP993 (git7-235), and CHP998 (git10-201) both carrying a TAP-tagged 

adenylate cyclase were grown overnight in 1 L of YEL 8% glucose to log phase. Cells 

were then collected by filtration and ground with the filter in liquid nitrogen and glass 

beads. The lysate was transferred to a 50 mL falcon tube and centrifuged in a table 

centrifuge for 5 minutes at 3500 rpm. Then the supernatant was transferred to a Nalgene 

tube and centrifuged for 1 h using the 70Ti rotor at 38,000 rpm.  Then, 800 µl of IgG 

/sepharose in NP-40 buffer (1:1) was added to the clear lysate and incubated for 2 h at 4° 

C on a rotating platform. Then, the lysate the beads were poured into a Biorad Poly 

Chromatography column.The beads were washed with 30 mL IPP150 buffer and by TEV 

cleavage buffer. Then, the TEV was added and the column was closed at the top and 

bottom and incubated for 2 h at 16°C. After 2 h of incubation with TEV, the eluate was 

drained to a new column with 1 mL of TEV CB. CBB buffer was then added to the TEV 

supernatant with 6 µl of 1M CaCl2 and 300 µl of calmodulin resin and incubated for 1 h 

at 4°C. Beads were then washed twice with CBB 0.1% NP-40 and once with CBB 0.02% 

NP-40. Samples were then eluated in 1 mL CEB and 0.02% NP-40 and split in half. Both 

halves were TCA precipitated and washed first with cold acetone and (0.05 N) HCl and 
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then with only acetone. Supernant was removed and pellets were dried using speed 

vacuum. The first half was analyzed by running the samples in SDS-PAGE and then 

silver-stained using a Biorad kit. The other half was analyzed using sent for mass 

spectrometry analysis.  

 

2.2.12. Spot Plating assay  

Spot tests on hsp90+, swo1-26, swo1-21, and git10-201 strains were preformed at 25ºC, 

28ºC, 30ºC, and 37ºC. Strains FWP72 (wild type), CHP567 (git10-201), CHP989 (swo1-

21), CHP979 (swo1-26), were cultured to 1 x 107 cells/mL in YEL liquid medium. Cells 

then were washed with YEL medium and adjusted to 2 x 107 cells/mL along with five 10-

fold serial dilutions. Five microliters of each culture were spotted on a YEA plate and grown 

for 3 days at the indicated temperature before photographing. 

 

2.2.13. Starvation-independent mating test  

To test if homothallic git10-201 cells can conjugate and sporulate in rich medium, 

homothallic (h90) strains CHP362 (git10+), CHP558 (git2Δ), CHP486 (git5Δ), and MAP1 

(git10-201) were grown to exponential phase in PM liquid medium (8% glucose) at 37°C (to 

inhibit conjugation), diluted to 106 cells/mL in PM liquid medium in the presence or absence 

of 5 mM cAMP, and incubated overnight at 30°C without shaking. Cells were then observed 

under the microscope and images were captured. 
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2.2.14. Glucose uptake assay  

Glucose uptake was determined using quantitative glucose (GO) assay kit (Sigma, MO). By 

using glucose oxidase, the glucose in medium was oxidized to gluconic acid and hydrogen 

peroxide, which then reacted with o-dianisidine in the presence of peroxidase to form a 

colored product. Sulfuric acid was then added to form a more stable product. The 

absorbance of the color was measured at 540 nm. The glucose level in YEL was measured 

using the supernatant. The pellet from the same sample was also used for β-galactosidase 

analysis. 

 

2.2.15. Cyclic AMP extraction  

Cells were collected by air vacuum into micropore glass filters (Fisher). Filters were then 

submerged in 1 mL of (1 M) formic acid and vortexed for 30 sec to break the cell walls. 

After removing the filters, the samples were centrifuged for 10 min at 14,000 RPM. Four 

hundred microliters of supernatant was lyophilized using a speed vacuum for 4 h. Finally, 

the pellets were resuspended in 80 µl of (0.1 M) HCl (BYRNE and HOFFMAN 1993). 

Assay was performed using cAMP Direct Kit (Assay Designs). 
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2.2.16. Protein extraction for cAMP  

Cells were pelleted and washed with cold water. The cell pellet then was resuspended in 

500 µl of 0.2 N NaOH. Half of the suspension was transferred into a microcentrifuge tube 

with 0.4 g glass beads. The tubes were then vortexed for 3 min to break the cells. The 

samples were boiled for 3 min followed by centrifugation for at 14,000 RPM for 2 min to 

remove cell debris. Protein quantification was preformed using the BCA kit.  

 

2.2.17. Plasmid rescue from yeast (Smash and Grab)  

Smash and Grab protocol was used to rescue plasmid from yeast (HOFFMAN and 

WINSTON 1987). Cells were grown in selective liquid medium for overnight. Then 

cultures were pelleted, resuspended, and vortexed with glass beads, 0.2 mL phenol-

chloroform, and 0.2 mL of Smash and Grab buffer made as described by Hoffman and 

Winston (HOFFMAN and WINSTON 1987). The cells were then centrifuged for 5 min and 

the supernatant containing the isolated plasmid was transferred to a new tube.  

 

2.2.18. Escherichia coli transformation 

Escherichia coli transformations were done using Ten-Blue or XL1-Blue electroporation-

competent cells (Stratagene). 

 



 49 

2.2.19. Yeast transformation  

Cells were grown in YEL overnight to early log phase 5x10
6
. Cells were pelleted and 

washed twice with cold water and (LiAc/TE) buffer. Pellets were resuspended in 100 µl 

LiAc/TE and mixed with 1 µl boiled salmon testes DNA and 5-10 µl of the sample DNA. 

The samples were kept for 10 min in room temperature before adding 260 µl of (40% 

PEG, 100 mM LiOAc, 10 mM Tris-HCl pH 7.5) buffer. Samples were then incubated at 

30°C for 1 h. The samples then were heat shocked for 5 min at 42°C after adding 43 µl of 

DMSO to the samples. Finally, cells in different dilutions were plated on selective 

medium (BÄHLER et al. 1998). Transformation was also, performed by growing yeast on 

YEA medium for overnight at 30°C. Cells were then collected directly on the plate and 

resuspended in PLATE (40% PEG; 10 mM Tris HCl, 100 mM LiOAc; 1mM EDTA). 

Next, 100 µl of the mixture was used for each transformation with 1 µl boiled salmon 

testes DNA and 5-10 µl of the sample DNA. The samples were incubated at 30°C for 24 

h before they were plated on selective medium. 

 

2.2.20. Microscopy 

The images of cells were captured using a Zeiss microscope with an Orca-ER CCD 

camera. The microscope –camera are connected to a computer equipped with Openlab 

software. Strains were grown in appropriate liquid media to 2-4x106 cells/mL, then cells 

were fixed with paraformaldehyde as previously described (HAGAN and HYAMS 1988) 
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with some modification. Yeast cell walls were digested with 0.5 mg/mL 100T 

Zymolyase. The Hsp90 V5-tagged protein was detected by using α-V5 primary mouse 

antibody (Invitrogen) diluted 1:100 in PEMBAL. The endogenous Hsp90 protein was 

detected by using α-Hsp90 (K41220) primary mouse antibody diluted 1:100 in 

PEMBAL. Both were visualized using secondary antibody Alexa Fluor 488-labeled goat 

α-mouse (Molecular Probes) diluted 1:50 in PEMBAL overnight in the dark. The 

Fluorescence Alexa Fluor 488-labeled antibodies signals were visualized under 

fluorescein isothiocyanate (FITC) filter. Localization of Hsp90 was captured using a 

Nikon confocal microscope system with a Nikon Eclipse inverted microscope and EZC1 

Software system.  Hoechst 33342 was also used to stain the nuclei. Septum was stained 

using calcofluor. Both were visualized under 4', 6-diamidino-2-phenylindole (DAPI) 

filter. 
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CHAPTER THREE 

CLONING AND CHARACTERIZING git10+ 

This chapter is published as a research article in Genetics, Vol. 178, 1927-1936, 

April 2008 
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CLONING AND CHARACTERIZING git10+ 

 

3.1. Genetic mapping and cloning of the S. pombe git10+ gene 

 Git- mutant strains display 5FOA-sensitive (5FOAS) growth due to their inability to 

glucose repress the fbp1-ura4+ reporter (HOFFMAN and WINSTON 1990). To date, nine git 

genes have been shown to play a significant role in fbp1+ repression, with only git10+ 

remaining to be cloned.  Due to the large number of multicopy suppressors encountered 

when screening plasmid libraries during attempts to clone genes in this pathway (DAL 

SANTO et al. 1996; HOFFMAN and WINSTON 1991; JIN et al. 1995; WANG et al. 2005b),  a 

genetic mapping approach to identify the git10+ gene was performed. 

 

Chromosomal mapping of git10-201 by benomyl-induced haploidization of an h-/mat2-

102 diploid strain (ALFA et al. 1993) was carried out with strains FWP17 and CHP573 

(Table 1). This technique allows the formation of haploids from a diploid strain in the 

absence of meiotic recombination, such that the alleles on each of the three parental 

chromosomes form individual linkage groups. All 5FOA-sensitive haploids produced this 

way possessed chromosome 2 from CHP573, containing the fbp1-ura4+ reporter, as well 

as chromosome 1 from CHP573, presumably possessing git10-201 (data not shown). The 

git10-201 allele was further mapped by tetrad dissection, in a cross of strain FWP87 with 

strain CHP894.  
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Figure 9.  Git10 cloning process 

(A) The git10+ gene maps between lys1 and cdc1+. The genetic mapping data suggested that git10+ is 

present on cosmid SPAC926. (B) PCR amplification of SPAC926 was divided into nine fragments and then 

these fragments were TOPO-cloned into plasmids that were used to transform S. pombe strain CHP567. 
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Figure 9. 

 

A. 

 

 

 

B. 
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The git10+ gene maps between lys1+ (23.2 cM with a PD:TT:NPD ratio of 45:39:0) and 

cdc1+ (30.4 cM with a PD:TT:NPD ratio of 38:45:1). The lys1+ and cdc1+ genes are 54.8 

cM from each other with a PD:TT:NPD ratio of 22:56:6.  

 

The genetic mapping data suggested that git10+ is present on cosmid SPAC926 (one of an 

ordered set of cosmids used in the S. pombe genome sequencing project (Figure 9) 

(WOOD et al. 2002). Insert DNA from SPAC926 was divided into nine fragments by PCR 

amplification and TOPO-cloning into a plasmid suitable for transformation of S. pombe.  

Plasmids from this set of clones were used to transform S. pombe strain CHP567 (git10-

201) to Leu+ and transformants were tested for restoration of 5FOA-resistance to indicate 

complementation of the git10- defect. Plasmids pMAR1 and pMAR2, which carry 

fragment number 7, base pairs 2308 to 9026 in either orientation with respect to the 

vector, were the only clones to confer 5FOA-resistance (Figure 10A). These 

transformants also glucose-repress fbp1-lacZ expression as judged by β-galactosidase 

assays (Figure 10B). Plasmids pMAR1 and pMAR2 contain two genes, one of which is 

hsp90+/swo1+. Digestion with NruI followed by ligation removed a 1.4 kb fragment 

internal to the hsp90+ open reading frame and produced plasmids pMAR1A and 

pMAR2B, which lost the ability to suppress the git10-201 mutation (Figure 10). Thus, 

hsp90+ appears to be responsible for suppression of the git10-201 mutant allele.  
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Figure 10. Complementation of git10-201 mutation by plasmid-expressed git10+.  

(A) CHP567 (git10-201) cells were transformed to Leu+ with pNMT41 (empty vector), pMAR1 (git10+), 

pMAR1A (git10∆236-1607), pMAR2 (git10+ cloned in the opposite orientation to that of pMAR1), 

pMAR2B (git10∆236-1607 cloned in the opposite orientation to that of pMAR1A). The git10∆236-1607 

contains a partial dropout of the git10 ORF. The two independent transformants of each plasmid indicated 

in the Figure were spotted on EMM–leu and then replica plated after 2 days to EMM–leu and 5FOA plates. 

Plates were photographed after three days incubation at 30ºC. (B) ß-galactosidase activity was determined 

as described in MATERIALS AND METHODS. The values represent the average ± standard deviation of 

at least two independent transformants.  
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Figure 10. 
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Figure 11. Complementation of git10-201 mutation by plasmid expressed git10-V5 

Plasmid pMAR3 carries only the hsp90 ORF, while plasmids pMAR1 and pMAR2 carry larger segments 

of the chromosomal DNA that include the hsp90+ gene. Plasmid pMAR3 complements the git10-201 

mutation whereas pNMT41 (empty vector) does not. Transformants were spotted on EMM–leu and then 

replica plated after 2 days to EMM–leu and 5FOA plates. Plates were photographed after three days 

incubation at 30ºC. 
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Figure 11.  
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To confirm that hsp90+ is git10+, plasmid pMAR3 was constructed to express an epitope-

tagged form of Hsp90 (see Materials and Methods). CHP567 (git10-201) transformants 

carrying pMAR3 are 5FOA-resistant (Figure 11) proving that hsp90+ is able to suppress 

the git10-201 mutation.  In contrast, transformation by pMAR3 fails to suppress the PKA 

pathway mutations git1-, git2- (cyr1-), git7- or pka1- (Figure 12). 

 

3.2. Hsp90 is required for nutrient regulation of sexual development  

Wild type S. pombe requires either a glucose or a nitrogen starvation signal to initiate 

mating and meiotic entry (STETTLER et al. 1996). Consequently, mutations in genes 

required for glucose/cAMP signaling allow cells to mate and sporulate even in a nutrient-

rich medium (ISSHIKI et al. 1992; JIN et al. 1995; KAO et al. 2006; LANDRY and 

HOFFMAN 2001b; LANDRY et al. 2000; MAEDA et al. 1990; SCHADICK et al. 2002; 

WELTON and HOFFMAN 2000). Consistent with a role in this pathway, the git10-201 allele 

of hsp90+ allows homothallic (h90) cells to mate in a glucose-rich medium, as evidenced 

by presence of meiotic asci (Figure 13). This starvation-independent mating is similar to 

that conferred by deletion of the adenylate cyclase gene (git2+) or the Gß subunit gene 

(git5+; Figure 13).  Addition of 5 mM cAMP to the medium suppresses conjugation in all 

three mutant strains (Figure 13). This starvation-independent, cAMP-suppressible defect 

in the regulation of sexual development is another indication that Hsp90 plays a role in 

the S. pombe glucose/cAMP signaling pathway. 
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Figure 12. Test if git10/hsp90 can act as a high-copy suppressor of mutations in 

other genes in the glucose-sensing cAMP pathway 

Plasmid pMAR3 was expressed into strains carrying mutations in git1+, git2+, git7+, git10+, and pka1+. All 

of these transformants remain 5-FOA-sensitive. On the contrary, plasmid pMAR3 was able to suppress the 

git10-201 mutation. 
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Figure 12. 
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Figure 13. Homothallic git10-201 cells conjugate and sporulate in nutrient-rich medium 

Homothallic git10-201 cells conjugate and sporulate in nutrient-rich medium, similar to other cAMP 

pathway mutants. Homothallic (h90) strains CHP362 (git10+), CHP558 (git2Δ), CHP486 (git5Δ), and 

MAP1 (git10-201) were grown to exponential phase in PM liquid medium (8% glucose) at 37°C (to inhibit 

conjugation), diluted to 106 cells/ml in PM liquid medium in the presence or absence of 5 mM cAMP, and 

incubated overnight at 30°C without shaking.  Starvation-independent conjugation and sporulation, which 

is suppressible by addition of cAMP, is observed in all three mutant strains.   
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Figure 13. 
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Furthermore, a mutation in any gene required for glucose-cAMP signaling will result in a 

defect in the glucose repression of fbp1-lacZ expression and 5FOA sensitive phenotype 

(ISSHIKI et al. 1992; LANDRY and HOFFMAN 2001; LANDRY et al. 2000; MAEDA et al. 

1990; WELTON and HOFFMAN 2000). Therefore, a mutation in git10/hsp90 ORF should 

confer a Git- mutant phenotype, an elevated fbp1-lacZ  expression in cells grown under 

glucose-rich conditions (Figure 10B) and 5FOA sensitive growth due to constitutive 

expression of the fbp1-ura4+ reporter (Figure 10A). These results demonstrate that 

git10/hsp90 is required for the cAMP-dependent regulation of conjugation, as well as 

fbp1 transcriptional regulation. 

 

3.3. Genetic, environmental, and chemical insults to Hsp90 activity derepress fbp1-

lacZ expression 

 To investigate the role of Hsp90 in the regulation of fbp1+ transcription, ß-galactosidase 

activity expressed from the fbp1-lacZ reporter was measured in wild type, git10-, and 

swo1- mutant strains grown at various temperatures (Table 2).  Both the swo1-21 and 

swo1-26 alleles confer a temperature-dependent defect in fbp1-lacZ repression, in 

addition to a temperature-sensitive growth defect.  
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Table 2. Glucose repression of fbp1-lacZ expression as a function of growth 

temperature 

 

         ß-galactosidase activity    

Strain       hsp90 allele         25º      27º        30º       32º        37º    

FWP87 wild type   15±5   11± 0   10 ±6   12 ± 4              392±6 

CHP567 git10-201 154±20    252 ±26 626±30 661±157 1336±131 

CHP981 swo1-26   54±3  144 ±5 517±55 Inviable Inviable 

CHP989 swo1-21 157±12   377±8  605±105 Inviable Inviable 

  

ß-galactosidase activity was measured in cells growing in YEL medium under glucose-
repressing conditions (8% glucose) for 18 hours at the indicated temperature. The values 
given represent specific activity average ± standard deviation from two or three 
independent cultures. 
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The git10-201 allele also confers a temperature-dependent defect in fbp1-lacZ repression, 

however these cells remain viable when cultured at 37ºC. Surprisingly, wild type cells 

display a partial defect in fbp1-lacZ repression when cultured at 37ºC, suggesting that 

temperature stress of wild type cells leads to a reduction in PKA activity, and not simply 

the activation of the Spc1/Sty1 MAPK required for fbp1+ transcription. 

The effect of temperature stress on fbp1-lacZ repression was further examined in a time-

course experiment in which wild type cells were cultured at 30ºC or 40ºC, a temperature 

that does not support growth of S. pombe, but at which cells remain viable for several 

days (C.A. Hoffman and C.S. Hoffman, unpublished results). Increased ß-galactosidase 

activity in response to temperature stress can be detected within one hour (data not 

shown), although it remains modest even after six hours of incubation (Figure 14A). By 

24 hours, however, the ß-galactosidase activity rises to 547 ± 80 units, demonstrating that 

prolonged exposure to heat stress is required for significant fbp1+ derepression. As the 

glucose levels in the media remain above 7.5% in all cultures, the increased fbp1-lacZ 

expression is due to heat stress and not glucose starvation (Figure 14B). 

To independently test whether Hsp90 is required for fbp1+ regulation, I examined the 

effect of chemical inhibition of Hsp90 on fbp1-lacZ expression by exposing cells to the 

Hsp90 inhibitor geldanamycin (WHITESELL et al. 1994).   
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Figure 14.  Prolonged heat stress derepresses fbp1-lacZ transcription.  

 (A) Wild type strain FWP77 was pregrown to exponential phase at 30º and then subcultured at 30º or 40º in 

YEL medium under glucose-repressing conditions. ß-galactosidase activity was measured at the times 

indicated. The values given represent specific activity average ± standard deviation from two or three 

independent cultures. (B) Glucose levels of the same samples were measured. 
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Figure 14. 
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ß-galactosidase activity was measured from wild type strain FWP77 cells grown at 30ºC 

for 18 hours in the presence or absence of geldanamycin (2 µg/ml, 5 µg/ml, 10 µg/ml).  

There was a clear dose-dependent derepression of fbp1-lacZ expression, although the 

levels of expression did not reach those detected in cells subjected to prolonged heat 

stress (Figure 15). 

3.4. Phenotypic differences between swo1- and git10- alleles of hsp90+ 

In the course of assaying ß-galactosidase activity from swo1- and git10- strains, I 

confirmed previous observations that indicated that the swo1- alleles confer temperature 

sensitive growth (ALIGUE et al. 1994), while the git10-201 allele does not. 

 

For a more rigorous comparison, I carried out spot tests on hsp90+, swo1-26, swo1-21, 

and git10-201 strains to examine growth on rich medium at 25º, 28º, 30º, and 37ºC. Both 

swo1- mutants display a severe temperature-sensitive growth defect, even at 30ºC, while 

the git10-201 mutants only displays a slow growth phenotype at 37ºC rather than a loss of 

cell viability (Figure 16). 
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Figure 15. Chemical inhibition of Hsp90 derepress fbp1-lacZ transcription 

ß-galactosidase activity was measured in cells growing in 8% glucose YEL medium for 18 hours in the 

presence of the Hsp90 inhibitor geldanamycin at the indicated concentrations.  The values given represent 

specific activity average ± standard deviation from two or three independent samples. 
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Figure 15. 
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Figure 16. Temperature-dependent growth of hsp90+, swo1-26, swo1-21, and git10-201 strains 

Spot tests were carried out on YEA rich medium at 25º, 28º, 30º, and 37ºC. Strains FWP72 (wild type), 

CHP567 (git10-201), CHP989 (swo1-21), CHP979 (swo1-26), were cultured to 1 x 107 cells/ml in YEL 

liquid medium. Cells were washed with YEL medium and adjusted to 2 x 107 cells/ml and subjected to five 

10-fold serial dilutions. Five microliters of each culture was spotted to a YEA plate and grown for 3 days at 

indicated temperature before photographing. 

 

 

 

 

 

 

 

 

 



 74 

Figure 16. 
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Microscopic examination of hsp90+, swo1- and git10-201 strains growing at 28º, 30º, and 

37ºC was carried out to examine the nature of the temperature-dependent growth defect. 

After 24 hours growth on EMM defined medium, the swo1-21 strain displayed abnormal 

cells that were lysed or binucleate or with misplaced nuclei in cultures grown at 30°C and 

37°C (Figure 17). The swo1-26 strain appeared normal at 30ºC, while most cells had 

improperly placed nuclei at 37º.  These results contrast somewhat with those from the 

spot test of a swo1-26 strain at 30ºC (Figure 16), and appears to be a medium-specific 

effect with these cells displaying a more severe growth defect on YEA rich medium than 

on EMM defined medium as seen in Figure 18.   

 

No growth defects were observed in wild type or git10-201 cells at any temperature 

(Figure 16,17), distinguishing the cAMP pathway defect caused by the git10-201 

mutation from the cell growth defects caused by the swo1-21 and swo1-26 mutations. 
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Figure 17. Temperature-dependent morphology of hsp90+, swo1-26, swo1-21, and git10-201 strains.   

Strains were precultured at 28ºC and then transferred to EMM defined medium and grown for 24 hours at 

28, 30, and 37°C.  Cells were heat-fixes and stained with Hoechst 33342 and Calcofluor.  Images were 

visualized and captured using a Zeiss Axioplan2 microscope with an Orca-ER CCD camera and Openlab 

software. The swo1-21 strain displayed lysed or binucleate cells at 30ºC (Red Arrows). The swo1-26 30ºC 

cells had improperly placed nuclei at 37ºC (Red Arrowheads). The git10-201 cells appeared normal.  
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Figure 17.  
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Figure 18. Cell morphology of hsp90+, swo1-26, swo1-21, and git10-201 strains at 30°C on YEA  

The same strains as shown in Figure 16 were precultured at 28ºC and then transferred to YEA instead of 

defined medium (EMM) and grown for 24 hours at 28°C, 30°C. Cells were heat-fixed and stained with 

Hoechst 33342 and Calcofluor. Hsp90 mutant strains appeared normal at 28°C (data not shown) but show 

defects at 30°C. These cells display more severe growth defect (Arrowheads) on YEA rich medium than on 

EMM defined medium. 
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Figure 18. 
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3.5. Sequence analysis of swo1- and git10- alleles 

 The sequence of the entire hsp90+ open reading frame was determined from strains 

carrying the swo1-21, swo1-25, swo1-26, and git10-201 alleles.  The swo1-25 and swo1-

26 alleles carry the same mutation, changing residue 84 from glycine to cysteine, while 

the mutation in swo1-21 changes residue 654 from leucine to arginine. The git10-201 

allele changes residue 338 from leucine to proline (Figure 19).  Thus, the swo1-25 and 

swo1-26 alleles affect the N-terminal ATP-binding domain, the swo1-21 allele affects the 

C-terminal dimerization domain, and the git10-201 allele affects the central, client 

protein-binding domain.  

 

The locations of these mutations are consistent with the observations that the swo1- 

mutant alleles appear to be general reduction-of-function alleles, while the git10-201 

mutation appears to confer only a modest growth defect, but a significant defect in 

glucose/cAMP regulation of fbp1+ transcription. A similar separation-of-function allele of 

an Hsp90 gene daf-21 has been observed in the cGMP signaling pathway of the nematode 

Caenorhabditis elegans (BIRNBY et al. 2000). The daf-21 mutation as seen in Figure 19 

and Figure 20 is a missense mutation that alters a residue in the Hsp90 central domain not 

far from the residue altered by the S. pombe git10-201 mutation. 
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Figure 19. Alignment of Hsp90 proteins from S. pombe, S. cerevisiae, and C. elegans  

The S. pombe Hsp90 protein (accession number CAB54152) was aligned using ClustalW (THOMPSON et al. 

1994) with the S. cerevisiae Hsc82 protein (accession number CAA89919), C.elegans DAF-21 (accession 

number NP_506626), human Hsp90α (accession number NP_005339), and displayed using BOXSHADE 

3.21. Identical residues are shaded in black, while conserved residues are shaded in gray. Amino acid 

changes associated with the swo1-21, swo1-26, and git10-201 mutant alleles are also indicated, as well as 

that of the C. elegans daf-21 mutation. 
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Figure 19. 
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Figure 20. Crystal structure of the central domain of S. cerevisiae Hsp82  

Hsp82 (accession number AAA02813) showing the location of the residues altered by the S. pombe git10-

201 mutation and the C. elegans daf-21 mutation. The two altered residues are on the same surface of the 

Hsp90 central domain. The graphic image was created using Pymol (DeLano Scientific). 
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Figure 20.  
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The similarity between these two mutations and their associated phenotypes suggest that 

Hsp90 plays a similar role in both S. pombe and C. elegans cyclic nucleotide signaling 

pathways to regulate metabolic pathways in response to temperature and nutritional 

conditions (See summary and future directions).  

 

3.6. Hsp90 localization in S.pombe  

I examined Hsp90 localization using indirect immunofluorescence microscopy on cells 

carrying plasmid pMAR3 (nmt41-Hsp90-V5) and cells carrying an empty vector. The 

signal was detected using α Hsp90 antibody (K41220) against the Hsp90-V5 and the 

endogenous Hsp90 (Figure 21). Cytoplasmic punctate was observed throughout the 

cytoplasm of the cell. This is not surprising as Hsp90 is likely to be one of the most 

abundant proteins in S. pombe. 

 

The localization of endogenous Hsp90 appears the same as Hsp90-V5 although the 

endogenous signal was less intense than the expressed form of Hsp90. These results 

suggest that the immunofluorescent signal using that was observed is real and the Hsp90 

antibody (K41220) is recognizing Hsp90 specifically since the signal was induced when 

Hsp90 was overexpressed. Previous studies in our lab showed similar cytoplasmic 

punctate pattern of other components of the glucose/cAMP pathway including Git1 (KAO 

et al. 2006), Git2 (Wang, unpublished data), and Git7 (SCHADICK et al. 2002) but not 

Git3 (Chandler, unpublished data). 
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Figure 21. Subcellular localization of Git10/Hsp90  

 DIC and fluorescent images of cells expressing tagged Hsp90 to detect the overexpressed Hsp90-V5 as 

indicated. Endogenous Hsp90 was detected using Hsp90 antibodies (K41220). The overexpressed Hsp9-

V50 was detected using αV5 antibodies. Empty vector (EV) and αV5 antibodies was used as a control. 
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Figure 21.  
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Hsp90 Works Together with Git7 in Schizosaccharomyces pombe 
 

4.1. Git7 Interacts With Hsp90 and Requires Functional Hsp90 

 

4.1.1. Sensitivity of git7 mutants to a specific inhibitor of Hsp90 

In the previous chapter, I showed that git10/hsp90 is identical to swo1+, which encodes 

the S. pombe Hsp90 protein. This discovery shed light on the earlier identification of the 

Git7 protein as a member of the Sgt1 family in S. cerevisiae (SCHADICK et al. 2002). Git7 

and Hsp90 are both found to be important in proper cAMP signaling in S. pombe. 

Mutations in any of these genes causes elevated levels of   fbp1gene transcription in cells 

grown in the presence of glucose (HOFFMAN and WINSTON 1990; HOFFMAN and 

WINSTON 1991). To investigate whether the function of Git7 involves Hsp90, I used a 

pharmacological approach to understand the role of Hsp90 and Git7. I monitored the 

growth of wild-type, Git7 mutants, and Hsp90 mutants on YEA plates in the presence of 

a low (2 µg/ml) to high dose (10 µg/ml) of geldanamycin (GA), or Dimethyl sulfoxide 

(DMSO) and observed their ability to form colonies at the permissive temperature. The 

same temperature sensitive Git7 mutants, git7-27, git7-235, as well Hsp90 temperature 

sensitive mutants swo1-21, swo1-26 (Figure 22, 23) displayed drug sensitivity even under 

low doses of geldanamycin.  
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Figure 22. Temperature-dependent growth of wt, git7-235, git7-27, git7-93, swo1-26, swo1-21, and 

git10-201 strains 

The git7-235 and swo1- mutants display a severe temperature sensitive growth phenotype. The git7-93 

mutant grows well at 37ºC, while the git10-201 mutant shows only a partial reduction in growth at 37ºC. 

Spot tests were carried out on YEA rich medium at the indicated temperature. Strains FWP72 (wild type), 

CHP465 (git7-235), CHP27 (git7-27), CHP800 (git7-93), CHP567 (git10-201), CHP989 (swo1-21), and 

CHP979 (swo1-26) were cultured to 1 x 107 cells/ml in YEL liquid medium. Cells were washed with YEL 

medium and adjusted to 2 x 107 cells/ml and subjected to five 10-fold serial dilutions. Five microliters of 

each culture was spotted to a YEA plate and grown for 3 days at the indicated temperature before 

photographing. 
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Figure 22.  
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Figure 23. The git7 mutants and hsp90 mutants display severe drug sensitivity 

git7 mutants and hsp90 mutants show geldanamycin sensitivity whereas, git7-93 mutant grows well even in 

the presence of high concentration of geldanamycin (GA). Spot tests were carried out on YEA rich medium 

containing (2 µg/ml), (5 µg/ml), and (10 µg/ml) of geldanamycin (GA), or Dimethyl sulfoxide (DMSO) at 

the permissive temperature (28ºC). Strains FWP72 (wild type), CHP465 (git7-235), CHP27 (git7-27), 

CHP800 (git7-93), CHP567 (git10-201), CHP989 (swo1-21), CHP979 (swo1-26) were cultured to 1 x 107 

cells/ml in YEL liquid medium. Cells were washed with YEL medium and adjusted to 2 x 107 cells/ml and 

subjected to five 10-fold serial dilutions (left to right). Five microliters of each culture was spotted to a 

YEA plate and grown for 3 days at the indicated temperature before photographing. 
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Figure 23.  
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These results are consistent with the previous finding in Saccharomyces cerevisiae where 

sgt1 temperature-sensitive mutants showed sensitivity to geldanamycin (BANSAL et al. 

2004; DUBACQ et al. 2002). Surprisingly, a strain carrying the git7-93 allele, which 

contains duplication in the C-terminal coding region showed neither temperature 

sensitivity nor a geldanamycin supersensitive effect (Figure 22, 23). 

 

4.1.2. Association of Git7 with Hsp90 in Schizosaccharomyces pombe 

The Git7 protein is a member of the Saccharomyces cerevisiae Sgt1 protein family. 

Recent studies show that Sgt1 interacts with Hsp90 in S. cerevisiae (KITAGAWA et al. 

1999) in Arabidopsis (TAKAHASHI et al. 2003) and in humans (LEE et al. 2004). The 

structures of Git7/Sgt1 proteins and Hsp90 are highly conserved and their functions are 

essential for viability in yeast and plants. It was also suggested that Sgt1 might act as an 

Hsp90 co-chaperone in S. cerevisiae (DUBACQ et al. 2002; SCHADICK et al. 2002)  

To test if Hsp90 and Git7 interact in S. pombe, I carried out an immunoprecipitation 

experiment in wt, git7-235, git7-27, git7-93, and in git10-201 strains using α-Sgt1 

antibodies that have been shown to cross-react with Git7 (CHARLTON, 2005). The 

specificity of the immunoprecipitation was confirmed by western blot analysis. Previous 

efforts to precipitate Hsp90 and Git7 have been unsuccessful (CHARLTON, 2005). 

Therefore, the immunoprecipitation protocol was repeated with some modification. One 

important alteration was performing protein extraction in liquid nitrogen instead of using 
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the Bead Beater (See Material and Methods).  

Although, little to no interaction between Hsp90 and Git7 was observed in the wild type 

strain, I was able to demonstrate the presence of Hsp90 in the Git7 immunoprecipitates in 

git7 mutants and git10-201. The interaction was modest in git7-93, and greater in git7-27 

strain. A significant interaction was observed between Git7 and Hsp90  in git7-235 strain  

which has a mutation in the N-terminus and in git10-201/hsp90-201 strain  which has a 

mutation in the middle domain of Hsp90 (Figure 24; See summary and future directions). 

 

4.1.3. Git7 requires a functional Hsp90 to maintain cell wall integrity, normal 

septation and proper cAMP signaling  

Previous analysis showed that Git7 has additional essential functions that are unrelated to 

cAMP signaling. The git7 temperature sensitive mutants developed cytokinetic defects 

when incubated at the restrictive temperature (SCHADICK et al. 2002). This led to test if 

Git7 needs Hsp90 to be able to carry out these functions properly. Therefore, I tested 

whether the previous cytokinetic defect of the git7 mutants was due specifically to the 

need of functional Hsp90. 
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Figure 24. Git7 and Hsp90 interact in Schizosaccharomyces pombe 

Immunoblot of protein extracts probed with Hsp90 antibodies (K41220) from α-Sgt1 immunoprecipitation. 

Cells were grown under repressing conditions (3% glucose). Protein extracts were prepared from strains 

MAP12 (wt), CHP465 (git7-235), CHP27 (git7-27), MAP10 (git7-93) and CHP567 (git10-201) by grinding 

cells in liquid nitrogen as described in the Material and Methods. Approximately 30 µl of protein extracts 

were loaded into a 4%-15 SDS-PAGE gradient gel. Crude extracts, along with fractions that bound or 

failed to bind an α-Sgt1 antibodies, were probed with Hsp90 antibodies and visualized at approximately 90 

kDa. Note that Git7 protein detection in the bound lane was hindered due to the fact that Git7 is 

approximately 43 kDa in size and runs at the same mobility of the IgG heavy chain. 
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Figure 24.  
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This test was possible by using geldanamycin (GA), a specific Hsp90 inhibitor. Wild type 

cells, Git7 mutants, and Hsp90 mutants were grown under the permissive temperature 

(28ºC) in the presence of (GA) (Figure 25A). For comparison, the same strains were also 

grown at restrictive temperatures (30ºC, 37ºC) (Figure 25B). The cells were fixed by heat 

and stained with Hoechst 33342 and Calcofluor to visualize the nuclei and septa, 

respectively. Interestingly, the same cytokinesis defects that were detected in Git7 and 

Hsp90 temperature sensitive mutants at restrictive temperatures were seen in these cells 

treated with the geldanamycin at permissive temperatures. The wild-type strain showed 

mononucleate cells, while the git7-235, git7-27, swo1-21 and swo1-26 strains contained 

mainly multinucleate cells and a multiseptum phenotype in the presence of the drug, 

which is consistent with the temperature dependent phenotype.  

 

Consistent with git7-93 being a separate-of-function allele, git7-93 exhibited no defect in 

the presence of geldanamcyin. In contrast, git7-235 showed a severe defect of elongated 

multinucleated cells in the presence of geldanamycin. This phenotype was also observed 

at elevated temperatures (Figure 25A,B). The git10-201 strain showed moderate 

temperature sensitivity and only moderate sensitivity to geldanamycin (Figure 22, 23). 
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Figure 25. Cells display morphological defects in Hsp90 and Git7 mutants under elevated 

geldanamycin or temperature, but not in git7-93 and wt strains 

(A) Geldanamycin-dependent morphology of wt, git7-27, git7-235, git7-93, swo1-26, swo1-21, and git10-

201 strains. Strains were grown in the presence of geldanamycin at the permissive 28°C for 18 hours. (B) 

Temperature-dependent morphology of wt, git7-27, git7-235, git7-93, swo1-26, swo1-21, and git10-201 

strains. Strains were precultured at 28º and then transferred and grown for 18 hours at 28°C, 30°C and 

37°C.  Cells were heat-fixed and stained with Hoechst 33342 and Calcofluor. Red arrows indicate 

multinucleate cells. Red arrowheads indicate multi septum cells.  
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Figure 25. (A) 
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(B) 
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The git7 ts alleles (git7-27 and git7-235) and swo-1 alleles of hsp90 confer a cell 

septation and a temperature/geldanamycin sensitive phenotype not observed in git7-93 

strain and seen mildly in git10-201 (Figure 25A,B) suggesting that both Git7 and Hsp90 

have a separate and independent role from cAMP. Cells lacking adenylate cyclase did not 

show abnormal morphology even under high concentration of geldanamycin consistent 

with the idea that cAMP defect is not the cause of the septation defect (Figure 26). 
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Figure 26. Cells display no morphological defects in git2 deletion strain under elevated geldanamycin 

concentration 

Cells display no morphological defects in git2 deletion (FWP190) or wild type (FWP72) strains under 

elevated geldanamycin concentration whereas (CHP567) git10-201 strain displayed multinucleate cells at 

high concentration of geldanamycin. Strains were precultured in 8% glucose YEL medium at 30ºC and then 

transferred and grown for 26 hours at 30°C in the presence of geldanamycin. Cells were heat-fixed and 

stained with Hoechst 33342 and Calcofluor.  
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Figure 26. 
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4.2. Hsp90 and Git7 Act in the Assembly of the cAMP Signaling Complex 

 

4.2.1.  Hsp90 and Git7 are not regulated by glucose unlike other proteins of cAMP 

Pathway 

Glucose concentration had no effect on Hsp90 and Git7 protein abundance, unlike Git1 

and Git2 (Protein proven to be part of the cAMP core complex). MAP5 strain expressing 

GFP-tagged Hsp90, V5-tagged Git1 and Myc-tagged Git2 were cultured in YEL 0.1% 

glucose (derepressing) and YEL 8% glucose (repressing conditions). 

 

Protein extraction and immunoblot analysis showed no significant change of Hsp90 

abundance in either condition, whereas Git1 and Git2 were significantly affected (Figure 

27). Similar to Hsp90, Git7 levels do not appear to be regulated by glucose (CHARLTON,  

2005). Despite that a mutation in either the git7 or hsp90 genes can result in high β-

galactosidase activity for an fbp1-lacZ reporter, Hsp90 and Git7 protein levels were not 

regulated by the glucose conditions. In contrast, Git1 and Git2 protein levels were 

regulated by glucose conditions (Figure 27). Grandy, 2004 from Hoffman lab had also 

demonstrated that glucose addition to starved cells causes approximately a twelve-fold 

decrease in the transcription of git1 and a thirteen-fold decrease of git2 after thirty 

minutes of glucose addition (GRANDY, 2004). 
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Figure 27. Hsp90 protein levels are not regulated by glucose; Git1 and Git2 are regulated by glucose 

conditions  

Immunoblot analysis of protein extracts obtained from a MAP5 a wild type strain harboring GFP-tagged 

Hsp90, V5-tagged Git1, and Myc-tagged Git2. Cells were grown under glucose-repressing/glucose rich (R) 

or derepressing/glucose starved (D) conditions. Actin was used as a loading control.  
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Figure 27. 
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Therefore, glucose might directly affect the core component of the cAMP complex (Git1 

and Git2), but not proteins required for complex assembly (Hsp90 and Git7; See 

summary and future directions). 

 

4.2.2. Significant delay between inhibition of Hsp90 and defect in glucose signaling  

I have already proven that Hsp90 and Git7 work together in S. pombe. In order to 

understand the role of these proteins in cAMP pathway, I wanted to test the involvement 

of Hsp90 in the stabilization of key players in cAMP pathway and to investigate Hsp90’s 

possible involvement in the assembly of cAMP complex. Hsp90 is a chaperone that is 

involved in stabilizing multiple signaling complexes in the cell. The form of Hsp90 

required for chaperone activity is the ATP-bound form that allows regulation of the 

stability of proteins, and permits their activation in signaling cascades. In contrast, when 

Hsp90 is in the Hsp90-ADP form, its clients will be targeted to the proteasome for 

degradation. Geldanamycin (GA) is a drug that binds the N-terminal ATP-binding site of 

Hsp90 and will lock Hsp90 into the inactive form (ADP form). This will result in 

inhibiting Hsp90 normal function and subjecting its targets to degradation (Figure 6). 

Therefore, this drug has been widely used to study the role of Hsp90 in modulating the 

function of signaling proteins, and to aid in Hsp90 client discovery. 

 

In Chapter 3 (Figure 15) I demonstrated that GA treatment affected fbp1-lacZ expression. 

When I examined the effect of geldanamycin (GA) (2, 5, 10 µg/ml) on fbp1-lacZ 
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expression after 18 hours there was a clear dose-dependent derepression of fbp1-lacZ 

expression, although the levels of expression did not reach the levels of that detected in 

cAMP/glucose mutants. To further test this observation at the protein level, I tested the 

effect of disrupting Hsp90 using GA on some key players in the glucose/cAMP pathway. 

After exposing a strain (MAP5) that carries tagged forms of Git1, Git2, and Hsp90 to GA 

for 18 h, cells were harvested and total protein was extracted by a TCA precipitation 

method (see Materials and Methods). By conducting immunoblot analyses against the 

endogenous Git1-V5, Git2-Myc, Gpa2, Hsp90 –GFP and Actin I determined whether the 

Git1, Git2, or Hsp90 protein levels were affected by GA treatment (Figure 28). In a dose-

dependent manner, GA significantly reduced Git1, Git2 and Gpa2 protein levels. In 

contrast, Hsp90 and Actin levels were not affected (Figure 28). These results demonstrate 

that functional Hsp90 is important for cAMP signaling since components of this signaling 

pathway were notably affected.  

 

Therefore I investigated how long it would take GA to have an effect on Git1, and Git2 

after drug treatment. MAP5 strain was grown in 3% glucose YEL medium for overnight 

to log phase. A time course experiment was performed using high does of GA (10 

µg/ml).  
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Figure 28. Hsp90 inhibition affects the stability of cAMP components after 18 hours of drug addition  

Cells were treated for 18 h with an increased amount of GA (2 µg/ml, 5 µg/ml, 10 µg/ml). Equivalent 

amounts of total protein were analyzed by Western blotting. A wild type strain (MAP5) that expresses 

Git1-V5, Git2-Myc, and Hsp90-GFP was subcultured in YEL 3% glucose o.n. to log phase and then sub-

cultured into a fresh YEL 3% glucose with the drug. After 16 h cells were harvested by TCA precipitation, 

and the western was performed. GA reduced Git1, Git2 and Gpa2 protein levels. As a control I used a Gpa2 

deletion. Note the intensity of the nonspecific band above Gpa2 did not change with increase in GA doses. 
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Figure 28. 
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Cells were collected before GA addition (0 time point) and after (15, 30, 60, and 90 

minutes) GA addition; cells were kept on ice and then harvested, and proteins were 

extracted between time points. By conducting immunoblot analyses against the 

endogenous Git1-V5, Git2-Myc and Actin we determined if their protein levels were 

affected by GA treatment. Unlike the obvious decline in Git1 and Git2 levels after long 

GA exposure (18 h) (Figure 28), brief exposure to GA (2 h) fails to reduce Git1 or Git2 

levels (Figure 29).  

 

To examine if Hsp90 is a part of the cAMP core complex, I examined the possibility that 

GA treatment of cells could alter cAMP levels after a brief exposure. Seeing an effect 

shortly after drug treatment would be a likely consequence of the cAMP complex falling 

apart. To test this hypothesis, FWP72 strain was grown in EMM complete overnight to 8 

X10 6 (cells/ml). The cultures were then treated with either a high dose of GA (10 µg/ml) 

or with an equivalent amount of DMSO as control. After two hours, cells were collected 

by filtration before, and 10 min after exposure to a final concentration of 100 mM 

glucose. Intracellular cAMP levels were immediately measured as previously described 

(BYRNE and HOFFMAN 1993) and by using a cAMP kit (Assay Designs). 
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Figure 29. The abundance of Git1 and Git2 was not affected by brief exposure of GA 

MAP5 were grown in YEL 3% glucose medium o.n. to early log phase. A high dose of GA (10 µg/ml) was 

added and cells were collected before GA addition (0 time point) and after 15, 30, 60, and 90 min after GA 

addition. Cells were immediately placed on ice and proteins were extracted between time points. A western 

blot was then performed against the endogenous Git1-V5, Git2-Myc and Actin. 
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Figure 29.   
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The results showed that the glucose-triggered cAMP response in the presence of GA 

were similar to that observed for cells treated with DMSO; they both respond to glucose 

exposure with almost four-fold increase in cAMP levels (Figure 30). Considered side by 

side, the cAMP experiment and immunblot analysis indicate that GA treatment does not 

rapidly alter protein stability or function of the cAMP pathway. 
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Figure 30. Cyclic AMP response to glucose in the presence of GA  

To examine the effect of brief exposure of GA treatment on cAMP signaling, we assayed the glucose-

triggered cAMP response after incubating the culture with GA for two hours. Cells were cultured overnight 

in EMM complete to log phase. Then, cells were either treated with DMSO or with (10 µg/ml) of GA. 

cAMP levels were immediately measured as previously described (BYRNE and HOFFMAN 1993) and by 

using by a cAMP kit (Assay Design) prior to glucose addition to the cultures, as well as 10 min after 

glucose addition to cultures either grown in the presence of DMSO or GA for 2 h. Both display a similar-

fold increase in cAMP levels after addition of glucose. 
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Figure 30. 
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SUMMARY AND FUTURE DIRECTIONS 

 
From yeast to mammals, Hsp90 and Sgt1 family proteins (including Git7) are highly 

conserved proteins, which function together as chaperones. In S. cerevisiae, the Hsp90 

and Sgt1 interaction is important for the formation of the CBF3 complex (LINGELBACH 

and KAPLAN 2004). In Arabidopsis thaliana, the Hsp90-Sgt1-RAR1 interaction is 

involved in forming the disease resistance complex (BOTER et al. 2007). This thesis is the 

first demonstration of Hsp90 and Git7 functioning together in S. pombe in the initial 

assembly of the cAMP signaling complex. In this section I will summarize and discuss 

findings from this thesis and propose a model for the role of Hsp90 and Git7 in cAMP 

pathway.  

 

5.1. Git10 encodes an Hsp90 protein involved in the cAMP pathway  

I have cloned git10, and shown that it encodes an Hsp90/Git10/Swo1 protein that acts in 

the S. pombe cAMP-signaling pathway. This pathway senses environmental glucose to  

repress transcription of genes involved in sexual development and gluconeogenesis, such 

as the fbp1+ gene (HOFFMAN 2005a; HOFFMAN 2005b). I found that attenuating Hsp90 

function either by mutation, pharmacological inhibition, or temperature stress impairs 

cAMP-mediated glucose signaling, consistent with a specific role for Hsp90 in the 

glucose/cAMP pathway.   
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Figure 31. Git10 in cAMP signaling pathway encodes an Hsp90 protein  

A new member of the cAMP pathway (Git10) was identified as an Hsp90 protein. The Git3 receptor detects 

glucose and transfers the signal to the Gα subunit that in turn activates Git2 adenylate cyclase, which 

produces cAMP. Three other proteins Git7, Git10/Hsp90, and the Git1 are also required for the activation 

of Git2. Hsp90 interacts with Git7 (Sgt1 homolog) and has a critical role in the cAMP/glucose signaling. 
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Figure 31.  
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A defect in cAMP signaling in a git10-201 mutant strain was previously demonstrated 

(BYRNE and HOFFMAN 1993), as was suppression of the fbp1+ regulatory defect by cAMP 

addition to the growth medium or by overexpression of the git2+/cyr1+ adenylate cyclase 

gene (HOFFMAN and WINSTON 1991).  Therefore, Hsp90 activity appears to be required 

for cells to detect glucose and activate adenylate cyclase.  

 

The hsp90+ is one of seven genes required for adenylate cyclase activation, which form at 

least two functionally-distinct groups as determined by the ability of mutations to be 

suppressed by the mutationally-activated Gpa2R176H Gα or by overexpression of the wild 

type Gpa2+ protein (LANDRY and HOFFMAN 2001; WELTON and HOFFMAN 2000).  

Increasing Gpa2 function bypasses the loss of the Git3 GPCR or Git5-Git11 Gβ Gγ, but 

not mutations affecting the Git1 C2-domain protein (KAO et al. 2006), the Git7 Sgt1-

family member protein (SCHADICK et al. 2002), or the Git10 Hsp90 protein.  

 

The central domain of Hsp90 appears to be a major site for client protein interactions 

(FONTANA et al. 2002; MEYER et al. 2003; SATO et al. 2000). Recent findings revealed 

this domain could also play a role in distinguishing between different types of client 

proteins (HAWLE et al. 2006). Therefore, the git10-201 L338P mutation in the central 

domain might impair client protein activity in the cAMP pathway specifically, whereas 

the temperature sensitive alleles swo1-21 which affects the N-terminal ATP-binding 

domain and swo1-26 which affects the C-terminal dimerization domain might cause a 
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universal impairment of Hsp90 function in the cell. Thus, git10-201 represents a 

separation-of-function allele of hsp90+, which confers a defect in cAMP signaling, but 

not other essential processes. A similar observation was reported in C. elegans in that loss 

of Hsp90/DAF-21 involved in cGMP signaling confers an early larval lethality; however, 

a missense mutation affecting a residue in the middle domain produces a viable adult 

with a chemosensory defect (BIRNBY et al. 2000). The daf-21 mutation allows C. elegans 

to enter the dauer larval form in the absence of temperature or nutritional stress signals 

similar to the S. pombe git10-201 mutation that allows mating and sporulation without the 

need of a starvation signal (Figure 13). Mapping of the residues altered by the da-f21 

mutation and by the git10-201 mutation onto the crystal structure of the S. cerevisiae 

Hsc82p central domain reveals that these two residues are in close proximity to each 

other (Figure 20).  Therefore, these two separation-of-function alleles may affect their 

individual cyclic nucleotide signaling pathways via the same mechanism.  

 

5.2. A novel link between glucose and heat sensing appears to involve Hsp90 

This thesis also revealed a new insight into heat stress in S. pombe. It has been long 

known that heat stress activates the Spc1/Sty1 SAPK pathway required for fbp1+ 

transcription, presumably by regulating the activity of the Pyp1 tyrosine phosphatase 

(SAMEJIMA et al. 1997). Data from this thesis further indicate that in addition to 

activating the SAPK pathway, heat stress reduces PKA activity. Stresses such as nitrogen 

starvation and osmotic stress, which activate the SAPK pathway, do not derepress fbp1+ 
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transcription (DEVOTI et al. 1991; JANOO et al. 2001; STETTLER et al. 1996; STIEFEL et 

al. 2004; YANG et al. 2003), indicating that reduction of PKA activity is required for 

fbp1+ derepression. Therefore, I have discovered a novel link between glucose and heat 

sensing that appears to involve Hsp90. Heat stress may redirect Hsp90 from acting in the 

cAMP pathway to acting upon targets that are critical to survival of heat stress (Figure 

32).  As a secondary effect, the ability of heat stress to reduce PKA activity and thus 

mimic glucose starvation may assist in producing a growth arrest that enhances cell 

survival at elevated temperatures. Greater insight into the relationship between heat stress 

and glucose signaling might be gained by studying glucose triggered cAMP signaling by 

assaying cAMP levels. Heat stress might alter the formation of the cAMP complex that is 

required for glucose repression. Comparing the cAMP complex composition (Git2-Git1 

complex) purified under starvation conditions (nutrition stress) and purified under 

elevated temperature (heat stress) could also provide new insights. Another avenue of 

research would test whether Hsp90 is required for the localization of any of the cAMP 

complex proteins (Gpa2, Git1, and Git2) to either the plasma membrane or to punctate 

structures in the cytoplasm. This can be accomplished easily by immunofluorescence 

using geldanamycin or heat stress, which might induce the delocalization of these 

proteins. 
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Figure 32. Stress may redirect Hsp90 from acting in the cAMP pathway to acting upon targets that 

are critical to survival of heat stress.  

(A) Hsp90 is involved in different processes in the cell including the cAMP signaling discovered in this 

thesis. (B) Heat stress might lead to accumulation of misfolded proteins might titer away Hsp90 from 

cAMP resulting in the release of fbp1 transcription under repression conditions.  
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Figure 32.  
 

A. 
 

 
 
B. 
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5.3. Hsp90 and Git7 transiently interact in S. pombe 

Human, S. cerevisiae, and Arabidopsis thaliana Hsp90 proteins have been shown to 

interact with the Sgt1 protein (homologous to Git7), which appears to function as a co-

chaperone to Hsp90. Sgt1 recruits specific clients to Hsp90 and aids in the transient 

assembly of protein complexes (CATLETT and KAPLAN 2006);(LINGELBACH and KAPLAN 

2004; TAKAHASHI et al. 2003). In S cerevisiae, this interaction is essential for the 

formation of the CBF3 (LINGELBACH and KAPLAN 2004). In Arabidopsis thaliana, the 

Hsp90-Sgt1-RAR1 interaction is involved in forming the disease resistance complex 

(BOTER et al. 2007). Both Sgt1 and Hsp90 are highly conserved in eukaryotes; thus, this 

chaperone co-chaperone interaction might be conserved from yeast to humans. 

 

Findings that Sgt1 interacts with Hsp90 in other systems and the demonstration that git7 

mutants are geldanamycin supersensitive (Chapter 4) led me test whether Git7 and Hsp90 

form a co-chaperone complex in S. pombe. Experiments revealed an interaction between 

Git7 and Hsp90 in S. pombe. Surprisingly, mutations in both git7 and git10/swo1 act to 

strengthen this interaction (Figure 24). These mutations might change the conformation 

of the proteins, and therefore could stabilize a transient interaction. This result indicates 

that the Hsp90-Git7 interaction must remain transient for the complex to function 

properly. 
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Other research has also indicated that Hsp90 transient interactions can be stabilized by 

mutations in interacting proteins. A study by Piper al et. 2004 showed that many Hsp90 

interactions with other proteins are transient, preventing an analysis of these associations 

by the two-hybrid system. However, they demonstrated that these Hsp90/Hsp82 

interactions could be stabilized in vivo by using an Hsp90/Hsp82 mutation that inhibits 

the ATP hydrolysis step of the Hsp90 chaperone cycle (MILLSON et al. 2005). Similarly, 

the Sgt1 interaction with Hsp90 and Skp1 in S. cerevisiae is stabilized by a mutation 

affecting the C-terminus of Sgt1 designated as sgt1-5, disrupting CBF3 assembly and 

affecting cell growth (LINGELBACH and KAPLAN 2004). Thus, it is evident that the 

transient interaction between Hsp90 and its Sgt1/Git7 co-chaperone is critical to the 

function of this complex.  

 

Observations in this thesis do not address whether the Git7-Hsp90 interaction is direct but 

could represent that they are in the same complex. Additional proteins might be required 

to mediate the Git7-Hsp90 interaction. This can be investigated by using yeast two-

hybrid to test these interactions. Further studies are also needed to determine which 

domains in Git7 and Git10/Hsp90 are involved in the interaction. In addition, different 

conformational states of Hsp90 (Hsp90-ADP open structure /Hsp90-ATP closed 

structure) might have an effect on the nature of these interactions. This can be tested by 

performing Hsp90-Git7 co-immunoprecipitation in wt and different git mutants and 

git10-201 in the presence of geldanamycin (to lock Hsp90 in the ADP–bound 
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conformation) or molybdate  (to lock Hsp90 in the ATP–bound conformation) and assess 

the effect of these different conditions on Git1-Git2 interaction.  

 

5.4. Git7 is an Hsp90 co-chaperone 

As mentioned above, Sgt1 is involved in kinetochore assembly, cAMP signaling, and 

disease resistance in different organisms. Results from our lab revealed that although 

Git7 protein is essential, it does not appear to be involved in kinetochore function in S. 

pombe. Deletion of git7 is lethal, thus indicating its involvement in cellular processes 

other than cAMP signaling, which is not essential for cell viability in S. pombe 

(SCHADICK et al. 2002).  The presences of three git7 glucose insensitive mutations (git7-

235, git7-27, and git7-93) were informative in studying its function in S. pombe (Figure 

33). The git7-235 and git7-27 mutations confer defects in cell wall integrity and septation 

as well cAMP signaling, but git7-93 confers only a cAMP defect. Therefore, mutations 

affecting either the N-terminal (TPR domain) or in the highly conserved C-terminus 

(SGS domain) disrupt cAMP signaling. However, the N-terminus of Git7 serves another 

function in addition to a role in cAMP signaling. Figure 33 summarizes phenotypes 

associated with git7 mutants in S. pombe.  

 

After Git10 was identified as Hsp90, we significantly advanced our understanding of the 

function of Git7 in S. pombe. As discussed above, I was able to show that Hsp90 co-

immunoprecipitates with the Git7 in S. pombe. However, these observations alone do not 
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demonstrate that Git7 is an Hsp90 co-chaperone.  

 

Findings from other researchers indicating that Hsp90 and Sgt1 interact in various 

pathways in different organisms have assisted my exploration of Hsp90 function in S. 

pombe. A mutation in git7 or in hsp90 causes elevated levels of fbp1 transcription 

(HOFFMAN and WINSTON 1990; HOFFMAN and WINSTON 1991). Hence, both Git7 and 

Hsp90 are important in proper cAMP signaling in S. pombe. Abrogating Hsp90 function 

using a pharmacological approach confirmed the genetic data. Furthermore I found that 

temperature-sensitive Git7 mutants (git7-27 and git7-235) display GA super sensitivity at 

the permissive temperature. Schadick et al.2002 showed that that git7 temperature-

sensitive mutants develop cytokinetic defects when they are incubated at the restrictive 

temperature. Therefore, I used geldanamycin to test whether the previous cytokinetic 

defect observed in git7 mutants at elevated temperature was specific to Hsp90 function 

with Git7. Consistent with Schadick et al.2002 findings, this analysis revealed that 

Geldanamycin-treated git7 mutants (git7-27 and git7-235) exhibit similar deleterious 

cytokinesis defects (Figure 25,33). Remarkably, git7-93 and a git2 deletion show no 

cytokinesis defect in the presence of geldanamycin although they both displayed severe 

defects in cAMP signaling, demonstrating that the cytokinesis is not due to the defect in 

cAMP signaling.  
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Figure 33. Schematic of Git7 protein structure   

Schematic of the Git7 protein structure showing the three domains: TRP, CS, and SGS and the phenotypes 

associated with git7 mutants in S. pombe presented in this thesis. A star represents a mutation.   
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Figure 33. 
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Recently, it was reported that Hsp90 has a role in assembling the myosin II complex, 

which is important for forming the actomyosin ring involved in cytokinesis (MISHRA et 

al. 2005). The git7 mutants show phenotypic similarities to hsp90, myo2, and rng3 

mutants. The multinucleated phenotypes of the S. pombe git7 alleles git7-235 and git7-27 

suggest that the git7 mutants might also be defective in actomyosin ring assembly as seen 

with hsp90, myo2, and rng3 mutants. Therefore, Git7 in addition to Hsp90 and Rng3 

might assist in proper Myo2p function in the fission yeast S. pombe.  

 

Temperature, pharmacological, and western analyses in this thesis suggest that Hsp90 

and Git7 function in tandem in S. pombe. Git7 with Hsp90 can help in forming at least 

two complexes. Given that git7-27 and git7-235 mutant alleles confer both morphological 

defects and cAMP signaling phenotypes similar to those of the swo1- mutant alleles, it 

suggests that Hsp90 and Git7 work in partnership in at least two different processes, cell 

division and in cAMP signaling. Furthermore, the presence of the separation-of-function 

alleles, git7-93 and git10-201, implies that these proteins act on a specific client protein 

or on the assembly of a protein complex acting in the cAMP pathway and argues against 

a model in which mutations that impair Git7 and/or Hsp90 activity simply create a 

general stress that mimics a glucose-starvation signal. The focus should remain on 

investigating their roles in cAMP, not their role in other processes, which can be 

tempting. Focusing on git7-93 and gi10-201 alleles, both of which confer defects in 

cAMP but do not affect essential process, would be appropriate to restrict studies to 
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cAMP signaling. In addition, mutations in the git7 middle domain would be worth 

investigating since little is known about this domain. 

 

5.5. A model of the roles of Hsp90 and Git7 function in the cAMP pathway  

Hsp90 and Sgt1/Git7 maintain the activity of a number of cellular proteins that are 

involved in signal transduction. It is proposed that Hsp90 and its co-chaperone Sgt1 act in 

signal transduction by assisting in complex formation. The downstream effector of Git7 

and Hsp90 in the S. pombe cAMP signaling pathway is still unclear. In S. cerevisiae, 

Dubacq et al.2002 demonstrated that cAMP activity was affected by the sgt1-5 mutation. 

In addition, they showed that Sgt1 physically interacts with adenylate cyclase 

(Cyr1/Cdc35) although this is only detected when the two proteins are over-expressed. In 

S. pombe, Hsp90 and Git7 are both required even in a strain carrying an activated gpa2 

allele. Therefore Hsp90 and Git7 may be required for stabilization of Gpa2 or adenylate 

cyclase, or for efficient coupling of Gpa2 to adenylate cyclase. 

 

The Hsp90 machinery appears to regulate signaling pathways in cells by one of two 

mechanisms: in some cases it appears to stabilize client proteins; in others it functions in 

the assembly of protein complexes. In order to understand the role of Hsp90 in cAMP 

pathway, I tested three models (Figure 34). The first model suggests the involvement of 

Hsp90 in the stabilization of key players in cAMP pathway. The second model is that 

Hsp90 is a permanent structural component of the cAMP complex. Finally, the third 
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model is that Hsp90 is involved in the assembly of cAMP complex (Git2-Git1-Cap-

Actin) (Figure 34). 

 

To test the first model, I performed a time point experiment where brief exposure of GA 

to cells (2 h) demonstrated no change in Git1 and Git2 abundance (Figure 29). This 

indicates that Hsp90 does not stabilize Git1 or Git2 in the cAMP pathway.  

 

To test the second model, I showed that cells treated with GA for 2 h were still able to 

produce cAMP signal in response to glucose addition (Figure 30). If Hsp90 is a 

permanent component of the cAMP pathway, I would have expected GA treatment to 

produce rapid loss in signaling. Therefore, my data indicate that Hsp90 is not part of the 

core Git1-Git2 cAMP complex.  

 

To test the third model, I showed that GA treatment significantly reduced Git2, Git1, and 

Gpa2 protein levels after a long period of drug exposure (18 h) (Figure 28). This delay in 

cAMP defects suggests that Hsp90 is not a core component of the cAMP complex but is 

required for the complex assembly. These results might also imply that compromising 

Hsp90 function by GA only destabilized the newly synthesized Git2, Git1, Gpa2 (the free 

forms), but did not affect the pre-existing assembled complexes. 
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Figure 34. Three models proposed to test the function of Hsp90 in cAMP pathway 

Geldanamycin (GA) is a drug that binds the N-terminal ATP-binding site of Hsp90 and will lock Hsp90 

into the inactive form (ADP form). This will result in inhibiting Hsp90 normal function and subjecting its 

targets to degradation. Therefore, this drug has been used in this thesis to test the three proposed models to 

investigate Hsp90 role in cAMP signaling. (A) The first model suggests the involvement of Hsp90 in the 

stabilization of key players in cAMP pathway. (B) The second model suggests that Hsp90 is a permanent 

structural component of the cAMP complex. (C) The third model suggests that Hsp90 is involved in the 

assembly of the cAMP complex. 
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Figure 34. 

 

 

 

 

 

 

 

 

 

 

 



 138 

Previous findings in our lab have shown that adenylate cyclase (Git2) forms a complex 

with Git1 by co-immunoprecipitation (KAO et al. 2006) and that TAP tag purification 

(Wang ,unpublished data) of Git1 and Git2 in a wild type strain did not show the 

association of Git7 with Hsp90 (Figure 35A). However, it maybe that Hsp90 and Git7 

work together in an initial step to aid in Git-Git2 complex formation and that this 

interaction is transient to detect in a TAP tag experiment. We hypothesized that if this 

were the case, we might observe loss of Git1-Git2 interaction in a Git7 or Hsp90 mutant 

background. To test this hypothesis I performed TAP purification in two mutant 

backgrounds: git10-201 and git7-235. Git2-TAP tag purifications in these strains were 

not successful (data not shown). However, TAP tag purifications of Git2-TAP in strains 

carrying git7-93 mutation and git2-7 were successful (Wang, unpublished data). The 

Git1-Git2 interaction was lost in these mutants background and interestingly, Hsp90 was 

also found with Git2-TAP.  

 

Findings from git7-93 and git2-7 Git2 TAP tag purifications suggest that Git7, an Hsp90 

co-chaperone, is not a core component of the cAMP complex but a critical element for 

maintaining the Git1 and Git2 interaction, since the absence of functional Git7 protein 

resulted in a defect in complex assembly. Furthermore, Hsp90 detection with Git2-TAP 

in git2 and git7 mutant backgrounds supports the idea that Hsp90 is not a regular 

component of the active core complex but rather assists in assembly process. This 

abnormally stable interaction of Hsp90 with Git2 might prevent Git1 assembly with Git2 
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or might freeze the complex in an inactive state due to a defect in a component in the 

signaling pathway (Figure 35 B,C).  

 

Consistent with this role for Hsp90-Git7, analyses of the cAMP response and of Git1, 

Git2, and Gpa2 levels after exposure to GA demonstrate that the effect of GA is not 

immediate loss of protein stability or cAMP signaling. In addition, unlike the core 

components of cAMP complex Git1 and Git2, Hsp90 and Git7 proteins levels are not 

regulated by glucose conditions; even though a mutation in either gene can result in fbp1-

derepression. This further supports the idea that Hsp90 and Git7 are not core members of 

the cAMP complex but are required in the complex assembly.  

 

Therefore, on the basis of the research performed for this thesis and other findings from 

our laboratory I propose a model where Git7 and Hsp90 form a co-chaperone complex 

and probably function together as an initial step to aid in Git1-Git2-Cap-Actin complex 

formation (Figure 31,35A). 
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Figure 35. Git7 and Git10/Hsp90 are required for the assembly of the cAMP complex  

Schematic diagram showing the composition of the cAMP complex by using TAP and mass spectrometry 

analysis in different strain backgrounds. The Git2-Git1 interaction is lost in git7-93 and git2-7 mutants. 

Defective Git2-complexes contain Hsp90 in git7-93 and git2-7. Incorporating the current findings from our 

lab in addition to the new data presented here support the idea that Git7 and Hsp90 are required for the 

assembly of the cAMP complex but are not permanent structural components of the active complex.  
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Figure 35.  

 

 

 

A.     B.     C.  
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To further understand the role of Hsp90-Git7 in cAMP complex formation, an 

immunoprecipitation and western analysis will be useful to check the presence of both 

Hsp90 and Git7 in Git2-Git1 complexes in different mutant backgrounds (git7-235, git7-

93, git7-27, git10-201, swo1-21, swo1-26, and git2-7) and under different glucose 

conditions. Hsp90 and possibly Git7 might be also present in Git2 immunoprecipitates in 

some of these mutant backgrounds. These results might show that Hsp90 and Git7 bind to 

Git2 prior to complex assembly and that their presence with cyclase prevents Git1 from 

binding Git2. In addition, Hsp90 might be absent or reduced from the adenylate cyclase 

complex under conditions where the complex should be functional and active.  

 

How does the co-chaperone complex (Hsp90-Git7) function to activate the Git1-Git2 

complex in cAMP/glucose signaling pathway? Future studies could focus on the regions 

of Git1 and Git2 that interact with each other, as well with the Hsp90-Git7 complex. 

Findings from fission yeast will provide an additional regulatory mechanism of this co-

chaperone complex that will contribute to a better understanding of their functions in 

other organisms.  
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1. INTRODUCTION  

 
1.1. Cyclic AMP  

Cyclic AMP is synthesized from adenosine triphosphate (ATP) by adenylate cyclase and 

is degraded by cAMP phosphodiesterase. Cyclic AMP activates protein kinase A (PKA), 

which consists of two catalytic and two regulatory subunits. It binds the regulatory 

subunits of a protein kinase, and this causes the dissociation of the regulatory and 

catalytic subunits resulting in the activation of the catalytic subunits. Concentration of 

cAMP in the cell is critical. Any change in this process can result in aberrant cell 

behavior. For example, impaired cAMP signaling may contribute to the pathophysiology 

of cardiovascular, neurological, metabolic and inflammatory disorders (CAI et al. 2001; 

MOORE and WILLOUGHBY 1995; MOVSESIAN and BRISTOW 2005).  

 

1.2. Phosphodiesterases  

Phosphodiesterases (PDEs) are enzymes that hydrolyze the cyclic nucleotide second 

messengers, cAMP and cGMP. There are 21 genes that encode 11 families of mammalian 

PDEs. There are PDEs which are cAMP-specific enzymes (PDE4, PDE7, PDE8), cGMP-

specific (PDE5, PDE6, PDE9) and also PDEs, which can act on both cAMP and cGMP 

(PDE1, PDE2, PDE3, PDE10, and PDE11). Chemical inhibitors of PDEs are potential 

therapeutic compounds for the treatment of a variety of diseases including Alzheimer’s 

Disease, Parkinson’s Disease, Huntington’s Disease, schizophrenia, asthma, pulmonary 
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disease, hypertension, stroke, rhinitis, chronic lymphocytic leukemia, prostate cancer, 

thyroid disease, cardiac disease, multiple sclerosis, rheumatoid arthritis, penile erectile 

dysfunction and depression. PDE enzymes are good targets for pharmacological 

inhibition due to their unique tissue distribution, structural and functional properties. 

 

1.3. PDE7 

PDE7 is a cAMP specific family. There are two PDE7 genes, PDE7A (has three splicing 

variants A1, A2, A3) and PDE7B (has three splicing variants B1, B2, B3). Both PDE7A 

and PDE 7B show 70% catalytic domain homology. PDE7 is sensitive to the nonselective 

PDE inhibitor IBMX (Figure 1) and resistant to rolipram, a PDE4 selective drug.  

 

1.4. PDE7A  

Expression of PDE7A1 RNA has been detected in pancreas, lung, spleen, testis, brain, B 

cells and in CD4+ and CD8+ T cells. It has been shown that PDE7A is upregulated in 

CD4+ T cells, and that inhibition of PDE7A up-regulation with an antisense oligo leads to 

inhibition of cell proliferation, suggesting PDE7A involvement in the regulation of T cell 

proliferation (LI et al. 1999).  
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Figure 1. Human PDE7A binding to IBMX  

PDE7A (1zkl) ribbon and surface structure showing the location of IBMX binding (Black color). The 

graphic image was created using Pymol (DeLano Scientific) and by MBT protein workshop (MORELAND et 

al. 2005) available on the PDB website. Human PDE7A crystal structure data was obtained from (WANG et 

al. 2005a). 
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Figure 1. 
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1.5. Using Schizosaccharomyces pombe to screen for PDE inhibitors  

Since cAMP signaling is present in simpler single cell organisms such as fission yeast, 

these cells serve as a convenient model for studying these complex pathways. The fission 

yeast Schizosaccharomyces pombe monitors glucose to regulate a wide range of 

biological processes such as sexual development and metabolism.  

 

Our lab (Hoffman lab, Boston College) has a history in studies regarding glucose –

mediated transcriptional regulation identifying mutations in genes that confer constitutive 

fbp1+ transcription, by using two reporters fbp1-ura4 and fbp1-lacZ (VASSAROTTI and 

FRIESEN 1985); (HOFFMAN and WINSTON 1990). These genes are called the glucose 

insensitive transcription (git) genes (HOFFMAN 2005b). One of the genes is git2+/cyr1+ 

which encodes adenylate cyclase (HOFFMAN and WINSTON 1991). The function of 

adenylate cyclase is to produce the second messenger cAMP from ATP in order to 

activate PKA. Additional git genes are required for adenylate cyclase activation. Four 

genes encode the Git3 G protein-coupled receptor (WELTON and HOFFMAN 2000) and its 

cognate heterotrimeric G protein composed of the Gpa2, Gα (ISSHIKI et al. 1992; 

NOCERO et al. 1994), the Git5 Gβ (LANDRY et al. 2000), and the Git11 Gγ (LANDRY and 

HOFFMAN 2001). Mutations in any of these genes result in the reduction of cAMP levels, 

and confer constitutive fbp1+ transcription which will result in a Ura+ /5FOAs phenotype 

(Figure 2A). Therefore, this system can be used to screen for PDE inhibitors, since a PDE 
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inhibitor should restore 5FOAR growth by elevating cAMP levels to repress fbp1-ura4 

transcription (Figure 2B).  

 

1.6. Focus of research  

The recent identification of PDE7-specific inhibitor (BRL 50481) demonstrates the 

importance of PDE7 inhibition in the treatment of inflammatory illnesses. BRL 50481 

was able to block TNF secretion and inhibit T cell proliferation in a dose-dependent 

manner (LERNER and EPSTEIN 2006; SMITH et al. 2004). Therefore the discovery of more 

PDE7A inhibitors is necessary to develop successful drugs that have the potential for 

treating anti-inflammatory disorders.  

 

The power of this research is using S. pombe to develop in vivo assay to screen for 

inhibitors of Human PDE7A. This has been accomplished by replacing the S. pombe PDE 

with human PDE7A, in the presence of either the git3 or gpa2 mutation. This reduced 

cAMP levels, and consequently conferred a 5FOA-sensitive (5FOAS) phenotype. In the 

presence of PDE7A inhibitor, cells should restore 5FOAR growth by elevating cAMP 

levels to repress fbp1-ura4 transcription. I will describe herein human PDE7A integration 

and the strain optimization process. Using it I was able to discover novel specific PDE7A 

inhibitors and show their direct effect on cAMP levels.  
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Figure 2. cAMP pathway in S. pombe  

(A) Mutations in genes involved in glucose –mediated transcriptional regulation confer constitutive fbp1+ 

transcription. These genes are called the glucose insensitive transcription (git) genes. (AC) is git2+/cyr1+, 

which encodes adenylate cyclase that produces the second messenger cAMP from ATP to activate PKA. 

Additional git genes are required for (AC) activation. Four genes encode the Git3 G protein-coupled 

receptor and its cognate heterotrimeric G protein composed of the Gpa2 (Gα, Gitγ, Gβ). Mutations in any 

of these genes result in lowering cAMP levels, and confer constitutive fbp1+ transcription which will result 

in a Ura + /5FOA s phenotype. 

(B) Phosphodiesterase (PDE) is the enzymes that hydrolyze the cyclic nucleotide second messengers, 

cAMP. In the presence of a PDE inhibitors cAMP levels should get elevated and repress fbp1-ura4 

transcription that will restore 5FOAR growth.  
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Figure 2.  
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2. Materials and Methods  

 

2.1. Growth Medium  

Yeast were grown and maintained using several types of media. Yeast extract agar (YEA) 

for plates, yeast extract liquid YEL for gene transformation (GUTZ et al. 1974), defined 

medium EMM (Biochemicals) were supplemented with required nutrients at 75 mg/L, 

except for L-leucine, which was at 150 mg/liter, and 2.5 mM cAMP was used for pre-

growth for screening purposes. SC liquid or solid medium containing 0.4 g/L 5-fluoro-

orotic acid (5FOA) and 8% glucose were used for screening, as previously described 

(HOFFMAN and WINSTON 1990).  

 

2.2. Yeast  

Yeast strains used in this study are two strains carried the fbp1::ura4+ and ura4::fbp1-

lacZ reporters (Table 1). Both are translational fusions integrated at the fbp1+ and ura4+ 

loci, respectively, as described by Hoffman and Winston (HOFFMAN and WINSTON 1990). 

Strains were grown at 30°C unless indicated otherwise. 

 

2.3. Strain mating and tetrad dissection  

Mating was performed on malt-extract agar (MEA) for 24 to 48 h at 30°C. In the case of 

homothalic strains, they were pre-grown at 37°C prior to mating. Asci formed on MEA 
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were transferred using a dissection needle to a YEA 3% glucose rich plate. Zygotic asci 

that were selected were then incubated at 37°C for at least 2 h to facilitate the breakage of 

the cell wall and the release of the spores. Tetrads were then dissected and plates were 

subsequently incubated at 30°C for 3 days and then scored.  

 

2.4. β-galactosidase assays of fbp1-lacZ expression  

Cells were grown under repressing conditions (8% glucose) in yeast extract at the 

indicated temperatures (YEL). Subcultures were grown to exponential phase until 

reaching a density of 1 x 107 cells/ml. Soluble protein extracts were prepared by glass 

beads in breaking buffer (0.1 M Tris pH 8, 20% glycerol, 1 mM DTT) and PSMF (40 

mM). The assay was performed using Z buffer, made as described in current protocol in 

molecular biology. Ortho-Nitrophenyl-β-galactoside (ONPG) was used to start the 

reaction and Na2CO3 (1 M) solution was used to stop the reaction when yellow color 

started to develop. Samples were read at OD420 for each sample. Total soluble protein was 

measured by BCA assay (Pierce Chemical Co). 

 

2.5. PDE7A sequencing 

PDE7A was PCR amplified from a plasmid clone obtained from the Beavo lab and the 

ends of the PCR product were sequenced using custom oligonucleotides (Integrated DNA 
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Technologies). DNA sequencing was performed using the CEQ DTCS-Quick Start kit 

(Beckman Coulter).  

 

2.6. PCR   

Human PDE7A was amplified using primers that were designed according to deduction 

by using the sequencing results. A high fidelity enzyme, Herculase, was used for 

amplification according to the manufacturer’s instructions. Colony PCR was performed 

to screen for positive integrants by using Taq polymerase. 

 

2.7. Cyclic AMP and protein extraction 

Cells treated with a drug or DMSO were collected by air vacuum into a micropore glass 

filter (Fisher). Filters were then submerged into 1 ml of 1 M formic acid and vortexed for 

30 s to break the cell walls. Filters were removed and the samples centrifuged for 10 min 

at 14000 x g. 400 ml of supernatant was lyophilized using a speed vacuum for 4 h 

(BYRNE and HOFFMAN 1993). Finally, the pellets were resuspended in 80 ml 0.1 HCl. 

Assay was performed using cAMP Direct kit (Assay Designs). Proteins from the same 

samples were extracted by resuspending the cells in 0.2 N NaOH with 0.4 g of glass 

beads. The tubes were then vortexed for 3 min to break the cells. The samples were 

boiled for 3 min followed by centrifugation for at 14,000 x g for 2 min to remove cell 

debris. Protein quantification was performed using a BCA kit.  
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2.8. PDE7A transformation and screen for positive integration  

Cells were grown in YEL overnight to early log phase 5 x 106 cells/ml. Then cells were 

pelleted and washed twice with cold water and buffer (LiAc/TE). Pellets were 

resuspended in 100 ml LiAc/TE and mixed with 1 ml boiled salmon testes DNA and 10 

ml of concentrated PDE7A DNA (8 samples were combined and ethanol precipitated 

then dissolved in 10 ml of dH20). The samples were kept for 10 min at room temperature 

before adding 260 ml of (40% PEG, 100 mM LiOAc, 10 mM Tris-HCl pH 7.5) buffer. 

Samples were then incubated at 30˚ C for 1 h, then were heat shocked for 5 min at 42˚C 

after adding 43 ml of DMSO to each sample. The cells were grown in 3% YEL for 20 h 

for recovery. Finally, cells in different dilutions were plated on the 5FOA medium 

(BÄHLER et al. 1998). Colonies were screened for positives (PDE7A integrated colonies) 

after 6-8 d post gene transformation. Plates were inverted over iodine vapors for 5 min. 

Positive colonies that carry active PDE7A in them stain dark brown by iodine vapor. The 

amount of staining reflects the sporulation frequency. Sporulation was also confirmed 

microscopically. Positive colonies were streaked on fresh YEA medium and PCR 

analysis confirmed the presence of PDE7A in S. pombe (See Results). 

 

2.9. Microscopy  

The DIC Images of cells were captured using a Zeiss microscope with an Orca-ER CCD 

camera. The microscope – camera are connected to a computer that is equipped with 

Openlab software. 
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2.10. Screening process  

High throughput drug screens were performed at the Broad Institute’s Chemical Biology 

Program screening facility. Figure 3A summarizes the screening process. PDE7A 

cultures (CHP1189) were pre-grown in EMM complete medium, containing 2.5 mM 

cAMP for overnight growth. Cells were washed, mixed very well, then transferred to 

384-well microtiter dishes into 5FOA medium at a final density 1 x 105 cells/ml and a 

final volume of 50 ml. 100 nl of compounds were pinned to the bottom of the wells at a 

final concentration of 20 µM. Control plates received 100 nl DMSO. Positive control 

plates had 5mM cAMP added in the 5FOA medium. Cultures were incubated for 48 h at 

30ºC, and sealed in a container with moist paper towels to prevent evaporation. Optical 

density (OD600) of cultures was measured after mixing the cells with a plate mixer. 

Positive Hits should show a high OD reading that can be even visible by eye, as seen in 

the case of one of the PDE7A inhibitors (Figure 3B).  

 

2.11. Bioinformatics  

Files from the Optical density (OD600) readings were sent to the Bioinformatics team at 

the Broad institute in order to determine the CompositeZ scores. Hits were visualized and 

analyzed in the lab by using the Spotfire software (Spotfire, Inc., Somerville, MA).  
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Figure 3. PDE7A screening process  

(A) This figure summarizes the screening process. 25ml of 5FOA medium was delivered to a 384-well 

microtiter plate. 100 nl of compounds were pinned into the wells to a final concentration of 20 mM. 

Control plates received 100 nl DMSO. (CHP1189) PDE7A expressing cells were then washed, mixed very 

well, and transferred to the prepared plates at a final density of 1 x 105 cells/ml and a final volume of 50 ml 

of 5FOA medium. Plates were stacked and incubated for 48 h at 30ºC, sealed in a container with moist 

paper towels to prevent evaporation. Optical density (OD600) of cultures was measured after mixing the 

cells with a plate mixer. (B) “Hits” can be visible by eye as seen in the case of one of PDE7A inhibitors. 
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Figure 3. 

A. 

 

B. 
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3. RESULTS  

3.1. Construction of strains that express human PDE7A  

I integrated human PDE7A in S. pombe by replacing the cgs2+ gene (S. pombe PDE) with 

the PDE7A gene using homologous recombination. To accomplish this, PDE7A was 

amplified by PCR using primers that create product with PDE7A copies with flanking 

cgs2 sequence for direct integration (Figure 4). The PCR product was then transformed 

into a cgs∆::ura4+ strain (JZ666), using a DMSO transformation protocol. Cells were 

grown in YEA3% glucose as a recovery period, then were plated on 5FOA (5FOA is 

being used for counter-selection) to identify and distinguish candidates that express the 

human PDE7A, from the cgs2 locus.  

 

A strain that carries an active PDE should be able to sporulate under starvation 

conditions, as seen in (Figure 5) with PDE7A integrants. Positive colonies were streaked 

onto fresh YEA medium and PCR analysis confirmed the presence of PDE7A in S. 

pombe. (See Materials and Methods for details in screening for positives). 

Finally, crosses were performed to construct strains that contained the PDE7A construct 

with fbp1-ura4 and fbp1-lacz reporters along with either the gpa2 Gα subunit mutation or 

git3 glucose receptor mutation, both of which are required for glucose detection, 

adenylate cyclase activation, and transcriptional repression of the fbp1 gene.  
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Figure 4. Human PDE7A integration process to S.pombe  

Human PDE7A integration into S. pombe by replacing the cgs2+ gene (S. pombe PDE) with the PDE7A 

gene using homologous recombination. PDE7A was amplified by PCR using primers that create PDE7A 

copies with flanking cgs2 sequence for direct integration.  
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Figure 4. 
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Figure 5. Human PDE7A integrants are able sporulate under starvation conditions  

PDE7A integrants were able to sporulate under starvation a condition, which indicates the presence of an 

active PDE. 
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Figure 5. 
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The expression level of ura4 and lacZ reporters in these strains reflects the activity level 

of PDE7A. β-galactosidase activity in these strains, demonstrate PDE7A was active 

compared to a strain expressing defective truncated PDE (Cgs2-2) (data not shown). 

 

Introducing a defect in cAMP (git3/gpa2) will confer 5FOA sensitive phenotype by 

reducing cAMP production. Therefore, this strain can be used to screen for PDE7A 

inhibitors. In the presence of an inhibitor, PDE7A activity will be reduced elevating 

cAMP levels. As a result,  fbp1- ura4 expression will be repressed, which will then result 

in 5FOA resistant growth  (Figure 6).  

 

3.2. PDE7A optimization 

To determine the best conditions for high throughput drug screening, a number of factors 

need to be taken into consideration including the right genetic background, the right 

cAMP concentration for pre-growth conditions, and final cell densities, all important 

elements in the optimization process. As a first test, strain CHP1169 expressing PDE7A 

in the git3 deletion background was pre-grown in EMM medium containing different 

concentrations (0, 0.5, 1, 1.5, 2.5) mM of cAMP and different final cell densities (0.5 x 

105, 1 x 105, 4 x 105, then cultures were transferred to 5FOA in the presence or absence 

of 5 mM cAMP. The OD600 measurements were taken after 48 h of incubation at 30ºC 

(cells were grown in the presence of cAMP in order to repress the fbp1-ura4 reporter 

prior to exposure to 5FOA medium). 
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Figure 6. PDE inhibitors screening concept  

(A) S. pombe PDE replaced with human PDE7A, in the presence of either the git3 or gpa2 mutation, which 

will result in the reduction in cAMP levels, should confer a 5FOA-sensitive (5FOAS) phenotype. (B) In the 

presence of a PDE7A inhibitor cells should restore 5FOAR growth by elevating cAMP levels to repress 

fbp1-ura4 transcription.  
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Figure 6. 
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I found that the best conditions were when the strain was pre-grown in EMM with 2.5 

mM of cAMP and by using 1 x 105 as final cell density when transferred to 5FOA. I also 

found that the PDE7A doubling time was 3.5 - 3.7 h. Testing the strain CHP1169 

(PDE7A) in git3 deletion background in the lab in a 96-well plate gave an OD600 of 0.93 

+/- 0.05 in wells where cAMP was added to the cultures, while an OD600 of 0.07 +/- 0.01 

was observed for wells where cAMP was not added (Figure 7). 

 

To further test the best genetic background for high throughput drug screening, strains 

CHP1169 expressing PDE7A in a git3 deletion background and the strain CHP1189 

expressing PDE7A in a gpa2 deletion background were pre-grown in EMM medium 

containing 2.5 mM cAMP and then transferred to 5FOA medium in 384-well microtiter 

plates in the presence 5mM of cAMP (representing the positives), or the absence of 

cAMP (representing the negatives). OD600 measurements were taken after 48 h of 

incubation at 30ºC. In each strain, the addition of cAMP restored 5FOAR growth. In 

strain CHP1169, the OD600 of the cultures +cAMP was 1.45 +/- 0.074, while the OD600 of 

the cultures –cAMP was 0.61+/- 0.05 when the final density was 1x105. When using 

strain CHP1189 , the OD600 of the cultures +cAMP was 1.31 +/- 0.03, while the OD600 of 

the –cAMP cultures was 0.060+/- 0.01 when the final density was 1x105. The Z factors 

for these screens were 0.65 and 0.91, respectively. The Z factor is a statistical assessment 

of the quality of datasets used in high throughput screening. A strain should have a Z 

factor above the value 0.5 in order to qualify for screening (Figure 8). 
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Figure 7. Optimization conditions of strain CHP1169  

The best conditions for strain CHP1169 PDE7A in the git3 deletion background is to pre-grow the stain in 

EMM with 2.5 mM of cAMP and by using 1x105 cells/ml as the final cell density in 5FOA. Results showed 

an OD600 of 0.93 +/- 0.05 in wells where cAMP was added to the cultures, and an OD600 of 0.07 +/- 0.01 in 

wells where cAMP was not added. 
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Figure 7.  
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Figure 8. Test different PDE7 genetic background  

 Strain CHP1189 behaves much better than strain CHP1169. Strain CHP1169 expressing PDE7A in a git3 

deletion background and the strain CHP1189 were pre-grown in EMM medium containing 2.5 mM cAMP, 

then transferred to 5FOA medium with 5mM of cAMP (positives = orange bars) or the absence of cAMP 

(negatives = brown bars). OD600 measurements were taken after 48 h of incubation at 30ºC. In strain 

CHP1169, the OD600 of the cultures +cAMP was 1.45 +/- 0.074, while the OD600 of the cultures –cAMP 

was 0.61+/- 0.05. In strain CHP1189 the OD600 of the cultures +cAMP was 1.31 +/- 0.03 and the OD600 of 

the –cAMP cultures was 0.060+/- 0.01. The Z factors for these screens were 0.65 and 0.91, respectively. 

1X=1*105, 2X=1.5*105 final cell densities added to 5FOA medium.  
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Figure 8. 
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From these data, I identified the best genetic background for which PDE7A activity was able 

to show the 5-FOA growth sensitive phenotype. By testing strain CHP1189, a PDE7A in a 

gpa2 deletion background, and, CHP1169 a PDE7A in a git3 deletion background, I found 

that strain CHP1189 behaves much better than strain CHP1169 even though both confer the 

5FOA sensitive phenotype, and had a Z factor above 0.5. Since loss of gpa2 creates a greater 

defect in cAMP than the loss of git3, it displayed less background growth, represented by the 

negative values. Based on these results, I decided to use CHP1189 for high throughput 

screening.  

 

3.3. Strain expressing PDE7A responds partially to IBMX but not to rolipram  

Before performing high throughput screening, I wanted to further test the strains against 

commercially available drugs to validate the use of CHP1189 for screening. Thus, I tested the 

effects of a known PDE4 inhibitor (rolipram), and the nonselective PDE inhibitor (IBMX) on 

the expression of the fbp1-lacZ fusion in the human PDE7A expressing strain. As seen in 

Figure 9, rolipram did not reduce β-galactosidase activity, while IBMX partially reduces  β-

galactosidase activity expressed from the PDE7A strain (35 % reduction). These results 

support results reported from previous studies indicating that PDE7 is sensitive to the 

nonselective PDE inhibitor IBMX and resistant to rolipram a PDE4 selective drug. 
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Figure 9. The PDE7A is partially sensitive IBMX and resistant to rolipram 

The PDE7 strain CHP1189 is sensitive to the nonselective PDE inhibitor IBMX and resistant to rolipram, a 

PDE4 selective drug. Rolipram did not reduce β-galactosidase activity in strain CHP1189. Whereas, the 

nonselective PDE inhibitor IBMX reduces β-galactosidase activity expressed from the PDE7A strain 

partially (35 % reduction).  
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Figure 9. 
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3.4. Screening and Hits analysis  

Using CHP1189 (5FOAs strain expressing PDE7A), I screened for compounds that would 

inhibit PDE7A to confer 5FOAR growth. By performing five major experiments 

(1091.0126, 1091.0127, 1091.0128, 1091.0129, 1091.0130), I was able to screen all of 

the available libraries at the Broad Institute (Bioactive, PK04, Analyticon, Forma, 

Natural extracts, and Commercials compounds). All available libraries at that time 

represent screening of almost 50,000 compounds. Figure10A displays the results from 

these screens. In the Figure, yellow circles represent the positive controls (cells +cAMP) 

which show high Z scores as expected; Red circles represent the negative control (cells 

+DMSO) which display low Z scores; while the purple circles represent the 50,000 

compounds that were screened. Also note the diagonal distribution of spots, which 

represents high data reproducibility of the screens, which were performed in duplicates.  

 

Duplicate plates were screened and compounds that confer such growth with composite Z 

scores of ≥8.53 were identified as “Hits” which comprised almost 750 compounds 

(Figure 10B). Most of the hits that were identified were from the commercial libraries 

representing 40 % of the total hits (Figure 11).   
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Figure 10. PDE7A screening results  

(A) Display of the results from the screen, yellow circles represent the positive controls (cells +cAMP) 

which show high Z scores as expected; Red circles represent the negative control (cells +DMSO) which 

display low Z scores, while the purple circles represent the all compounds that were screened.  

(B) Compounds that confer such growth with composite Z scores of ≥8.53 were identified as “Hits” which 

comprised almost 750 compounds. 
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Figure10. 

A. 
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Figure 11. Most of PDE7A hits were identified from the commercial libraries 

Most of the 750 hits that were identified were from the commercial libraries (experiment number 

1091.0129-purple and 1091.0130-green) representing 40% of the total hits. 
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Figure 11. 
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These results were then compared with those from screens against other PDEs (PDE2A, 

PDE4A, PDE4B, and Cgs2) to identify PDE7A-specific inhibitors. This comparison 

resulted in 20 specific compounds with composite Z scores of ≥ 44.5, identified as 

“PDE7A specific Hits” (Figures 12). Four of these specific hits were picked for further 

analysis (compounds 11, 12, 13, 14).  

 

3.5. PDE7A specific inhibitors restore 5FOAR growth  

I performed additional 5FOA assays to confirm “PDE7A specific hits”, and to identify 

the ED50 (The dose of a compound that is pharmacologically effective to stimulate 

growth to 50% of the OD of a saturated  culture ) of compound (11, 12, 13, 14, 15, PAN). 

Compound 15 = BRL 50481, is the only specific PDE7 inhibitor commercially available 

whereas, PAN is a compound that stimulates  the growth of  most of the PDE-expressing 

strains. Compound number 15 and PAN were used as controls to validate our assays. 

Cells were subjected to 18 serially-diluted concentrations of each drug starting from 

500mM and ending with 0.5 mM(2/3 serial dilutions).  

 

In the presence of PDE7A inhibitors, cells should restore 5FOAR growth by elevating 

cAMP levels to repress fbp1-ura4 transcription. As seen in (Figures 13, 14) compound 

11, 12, 14, 15, and PAN, all except drug 13, significantly exhibit compound -dependent 

growth. PDE7A was inhibited by less than 10 mM of compound 11, and 14.  
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Figure 12.  PDE7 specific inhibitors 

 The 750 hits were compared with other PDE (PDE2A, PDE4A, PDE4B, and Cgs2) hits to identify PDE7A 

specific inhibitors. This resulted in 20 specific compounds with composite Z scores of ≥ 44.5, identified as 

“PDE7A specific Hits”. Four of these specific hits were picked for further analysis (compound #11, #12, 

#13, #14).  
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Figure 12. 

 

 

 

 

 

Expt Num Comp Lab Num PlateName Well Raw ValueA Raw ValueB ZScoreA ZScoreB Reproducibility Composite Z

1091.0129 14 2005 B21 0.835 0.734 123.92 103.24 0.9959 160.6258

1091.0126 ND 2158 O06 1.144 1.145 93.86 82.88 0.9981 124.9724

1091.0127 ND 2181 N05 1.196 1.152 89.28 70.52 0.9932 112.997

1091.0128 ND 2055 G05 0.937 0.924 82.73 78.87 0.9997 114.2724

1091.0128 ND 2058 I14 0.845 0.785 74.17 66.11 0.9984 99.1982

1091.0129 12 2009 A18 0.556 0.498 79.81 67.29 0.9964 104.0182

1091.0126 ND 2159 B09 0.81 0.938 65.04 67.19 0.9999 93.4985

1091.0126 11 2160 G10 0.83 0.812 67.19 57.6 0.9971 88.2396

1091.0128 ND 2002 D09 0.684 0.64 58.41 52.63 0.9987 78.5153

1091.0128 ND 2057 G05 0.646 0.666 55.38 55.36 1 78.3038

1091.013 ND 2071 P12 0.442 0.493 46.97 57.56 0.9949 73.9171

1091.013 ND 2044 D16 0.417 0.38 43.96 42.75 0.9999 61.31

1091.0127 ND 2281 O07 0.653 0.65 46.17 37.78 0.995 59.3637

1091.013 ND 2073 D15 0.366 0.332 37.99 36.38 0.9998 52.5913

1091.013 ND 2074 J08 0.353 0.356 36.15 39.69 0.9989 53.6276

1091.013 13 2064 J21 0.326 0.381 32.88 42.64 0.9918 53.406

1091.0128 ND 2070 N01 0.435 0.431 33.54 32.93 1 47.0062

1091.0127 ND 2094 F23 0.495 0.521 34.06 29.63 0.9976 45.0371

1091.0127 ND 2093 B11 0.498 0.502 34.07 28.23 0.9956 44.0504

1091.0128 ND 2070 G18 0.491 0.338 38.86 24.35 0.9747 44.6967
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11  
    
 

 
13          
 
 

1091.0126 Bioactives
1091.0127 PK04
1091.0128 Analyticon+Forma+Natural Extracts
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Figure 13. PDE7A specific inhibitors restore 5FOAR growth 

In the presence of PDE7A inhibitors, cells should restore 5FOAR growth by elevating cAMP levels to 

repress fbp1-ura4 transcription. Drugs 11, 12, 14, 15, and PAN (the exception is drug 13) significantly 

exhibit drug dependent –growth.  
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Figure 13.  
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Figure 14. Comparing PDE7A specific inhibitors effect in 5FOA medium 

Compound 11, 14 and 12 are potential PDE7 inhibitors. By comparing the compounds with each other, 

PDE7A was inhibited by < 10 mM of compound 11, and 14, whereas compound 12 and 15 inhibited 

PDE7A in a much lower concentration showing 3.9 and 1.5 ED50s, respectively. Compound 13 did not 

inhibit PDE7. 
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Figure 14. 
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3.6. PDE 7A specific inhibitor elevate cAMP levels   

To determine if the effect of drugs 11, 12, 13, 14 and 15 is through PDE7A inhibition, I 

measured cAMP levels before and after drug treatment. As shown in Figure 15, cAMP 

levels increase within 1 h of exposure to 100 mM inhibitor in response to drug 11, 14, 15, 

and 13. Interestingly, drug 13 shows an increase in cAMP level even though showed the 

least stimulation of 5FOAR growth. Drug 12 did not show significant increase in cAMP 

levels (See Summary and Discussion). 
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Figure 15. Comparing PDE7A specific inhibitors effect on cAMP levels  

PDE 7A specific inhibitor elevates cAMP levels. cAMP levels were measured before (blue bars) and after 

(red bars) the compound treatment. cAMP levels increase in response to drugs 11, 14, 15, and 13, but, drug 

12 did not show significant increase in cAMP levels.  
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Figure 15. 
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Compound 12 and 15 inhibited PDE7A in a much lower concentration showing 3.9 and 

1.5 ED50s, respectively (See Discussion). 

 

CONCLUSION  

4.1. Summary  

I have integrated human PDE7A into the S. pombe genome and identified a strain for use 

in a cell-based screening platform for finding PDE7A inhibitors. Using strain CHP1189, I 

have successfully screened 50,000 compounds and detected novel PDE7A inhibitors. 

High throughput screens performed against compound libraries identified almost 750 

compounds that promote 5FOAR growth. Comparing the results with other PDE hits from 

our lab identified at least 20 specific inhibitors with high Z scores.   

 

The recently identified PDE7A specific inhibitor (BRL 50481) (LERNER and EPSTEIN 

2006; SMITH et al. 2004) promotes PDE7A-expressed cells 5FOAR growth and shows 

remarkable increases in cAMP levels upon cell treatment, supporting the validity of our 

assay and our hits.   

 

Compound 11 and 14 were highly effective against PDE7A on cAMP and confer 5FOAR 

growth. On the other hand, compound 13 promotes 5FOAR growth poorly, but elevated 

cAMP level in 1 h of exposure. These data may suggest that compound 13 is less stable 

than other drugs, since we don’t see any growth effect after 48 h of incubation. Therefore, 
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it is possible that drug 13 cannot maintain PDE7A inhibition for a long time, while we 

still can observe its effect on cAMP in 1 h after treatment. Another interesting finding is 

that a low dose of drug 12 was enough to confer 5FOAR, but growth plateaus at 6 µM of 

drug and display no elevated cAMP levels after 1 h of drug treatment.  

 

4.2. Future directions  

Results from this study suggest that compound 12 might function differently when 

inhibiting PDE7A. One reason for not seeing an effect on cAMP levels is that 1 h of 

exposure was not enough for drug 12 to inhibit PDE7A. Thus, it would be interesting to 

do a cAMP and 5FOA assay in a time course manner to determine when the cells plateau, 

and investigate if more than 1 h of treatment can increase cAMP levels. These 

experiments may uncover the mechanism of how drug 12 inhibits PDE7A. In addition, 

testing more drugs out of the “PDE7A specific collection” will help us understand the 

mode of action of these drugs, especially since some of the drugs share structural 

similarity (data not shown). 

 

Little is known about PDE7 function and tools such as these inhibitors could help in the 

characterization of PDE7. Smith et al 2004 found that BRL 50481(SMITH et al. 2004) 

was able to block TNF secretion in a dose-dependent manner in aged monocytes and was 

more efficient when combined with the PDE4 inhibitor rolipram. In addition, T-2585 a 

dual PDE4/PDE7 inhibitor that suppresses the proliferation of T cells was more effective 
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than RP 73401 (piclamilast) a PDE4 selective inhibitor (LERNER and EPSTEIN 2006; 

SMITH et al. 2004). Therefore, finding and testing an inhibitor from our libraries that can 

target PDE7 and PDE4 can possibly be more effective as an anti-inflammatory drug.  
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SCREENING FOR HUMAN PDE7A ACTIVATORS USING A YEAST CELL-
BASED SYSTEM 

 
1. INTRODUCTION  

Finding new PDE7A activators can advance our understanding of the function of that 

enzyme. Thus it can potentially improve basic research and therapeutic approaches. I will 

describe herein an in vivo screen for identifying chemical activators of PDE7A using the 

same assay platform utilized for finding PDE7A inhibitors (APPENDIX I).  

 

A potential PDE activator should confer growth in SC-ura or EMM medium to a strain 

that expresses high cAMP levels by reducing its cAMP levels, which will allow fbp1-

ura4 transcription. A suitable strain for screening must fail to grow in a SC- Ura /EMM-

Ura medium in the absence of PDE7A stimulation.   

 

2. SCREENING PROCESS  

High throughput drug screens were performed at the Broad Institute’s Chemical Biology 

Program screening facility. PDE7A cultures (CHP1171) were pre-grown in EMM 

complete medium overnight. Cells were then washed, mixed very well and transferred to 

384-well microtiter dishes into EMM-Ura or SC-ura medium at a final density 1.5 x105 

cells/ml and a final volume of 50 ml. 100 nl of compounds were pinned into the wells at a 

final concentration of 20 mM. Control plates received 100 nl DMSO. Cultures were 

incubated for 48 h at 30ºC, sealed in a container with moist paper towels to prevent 
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evaporation. Optical density (OD600) of cultures was measured after mixing the cells with 

a plate mixer.  

 
 
 
3. RESULTS  

 
3.1. Strain optimization 

To determine the best conditions for high throughput for chemical PDE7A activator 

screening, I used a PDE7A-strain that has an fbp1-ura4 reporter that expresses high 

cAMP levels. This strain should not grow in SC- Ura /EMM-Ura medium in the absence 

of a PDE7A activator. Therefore, I performed an optimization experiment to determine 

the appropriate optimal cell densities that give low coefficient of variation (CV) value 

(The cut-off used by the Broad Institute’s Chemical Biology Program requires a ≤15 % 

value). This is needed for screens for screens for which a positive control is not available 

as seen in Figure 1 by using 1.5x105 cell density, I was able to lower the CV values using 

SC- Ura /EMM-Ura.  

 

3.2. Strain Screening and Hit’s  

Using CHP1171, a strain expressing human PDE7A which express high basal cAMP 

levels, I screened for compounds that if activated, PDE7A should confer Ura+ growth due 

to repression of fbp1-ura4 expression. By performing two experiments (1091.0133) and 

(1091.0134) I screened the Bioactive, Natural extracts libraries and some additional 
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plates from Analyticon library. Experiment number (1091.0133) was performed in EMM 

-ura while screen number (1091.0134) was performed in SC -ura. Both experiments were 

incubated for 48 h. I also read experiment (1091.0134) plates after 67 h of incubation, 

and renamed the experiment number (changed to 1091.0135). Duplicate plates were 

screened and compounds that confer such growth with composite Z scores of ≥8.53 were 

identified as “Hits”. One general finding in all of the activator screens is the presence of 

spots scattering away from the diagonal direction creating an “L” shape. This was due to 

problems with the reproducibility of the replicates. 
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Figure 1. Optimization of strain CHP1171  

Optimization experiment of strain CHP1171 to determine the right cell densities that give lower coefficient 

of variation (CV) values (The cut-off used by the Broad Institute’s Chemical Biology Program requires a 

≤15 % value). Using 1.5x105 cell densities gave the lowest the CV values using SC- Ura /EMM-Ura. 
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Figure 1. 

 

 

 

 

 

 

 

 

1x=0.5*10
5

2x=1*10
5

3x=1.5*10
5

EMM-ura1x EMM-ura1x

avg 0.04311719 avg 0.04141146

stdev 0.01791278 stdev 0.0162791

CV 41.544402 CV 39.3106177

EMM-ura2x EMM-ura2x avg 0.04595182

avg 0.0506276 stdev 0.006449

stdev 0.01655371 CV 14.0342623

CV 32.6970106

EMM-ura3x EMM-ura3x

avg 0.06648307 avg 0.05430339

stdev 0.01416313 stdev 0.00600003

CV 21.3033617 CV 11.0490972

Sc-ura1x avg 0.04129557 Sc-ura1x avg 0.04057943

stdev 0.01047079 stdev 0.00637989

CV 25.3557183 CV 15.7219706

Sc-ura2x Sc-ura2x

avg 0.0459349 avg 0.04480208

stdev 0.01121758 stdev 0.01062898

CV 24.4206048 CV 23.7242884

Sc-ura3x Sc-ura3x

avg 0.05585286 avg 0.05167448

stdev 0.01415367 stdev 0.00490837

CV 25.3409958 CV 9.49863009
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3.2.1. Experiment 1091.0133 Hits 

Using CHP1171, a strain expressing human PDE7A for screening in EMM-Ura, I only 

obtained two hits from the Natural extract library, which were highly reproducible with a 

composite Z of 11 and 10.5, respectively, as seen in Figure 2.  

 

3.2.2. Experiment 1091.0134 Hits 

Using CHP1171, a strain expressing human PDE7A for screening in SC –Ura , I obtained 

15 hits (Figure 3 A, B), three of them were DMSO, as seen in (Figure 3C) highlighted in 

gray. The plates of this experiment were read again after 67 h and renamed to experiment 

1091.0135. Results from these experiments are shown in (Figure 4) were it is displayed 

shared hits between PDE7A and PDE8 and PDE2 (See Discussion).  
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Figure 2. Experiment 1091.0133 Hits 

CHP1171 growth in EMM-Ura displayed only two hits, which were reproducible with a composite Z 11, 

and 10.5. Note the presence of spots scattering away from the diagonal direction creating an “L” shape due 

to low reproducibility of replicates. Red circles represent the negative control (cells+DMSO), while the 

blue circles represent compounds that were screened.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 201 

Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate Type Well ZScoreA ZScoreB CompositeZ Reproducibility Compound Name 
2091 Cpd D19 7.1 8.6 11.1002 0.9955 LDV0794.217I.Frx2(5) 
2144 Cpd K04 6.1 8.78 10.5235 0.9842 86.3983V.35 

 

 

Cpd 
Neg 
 

> 8.5 
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Figure 3. Experiment 1091.0134 Hits  

(A) Display of PDE7A screen results using CHP1171 strain in SC -Ura. (B) Display of 15 hits on the 

diagonal (green circle), although this indicates three DMSO negatives control wells (red circles highlighted 

in gray). Note the presence of spots scattering away from the diagonal direction creating an “L” shape due 

to low reproducibility of replicates. Red circles represent the negative control (cells +DMSO), while the 

blue circles represent compounds that were screened. (C) Table show 15 hits, three of them were DMSO 

highlighted in gray. 
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Figure 3. 

A. 

 

 

 

 

 

 

 

 

 

B. 
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Z > 8.5   but Reproducibility Low 
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(C) 

 

Plate Well ZScoreA Type ZScoreB CompositeZ Reproducibility Compound Name 

2099 C20 9.99 Cpd 15.18 17.7997 0.9795 
malachite green 
carbinol base 

2099 G17 5.63 Cpd 7.02 8.9429 0.994 thionin acetate 
2099 I05 10.06 Cpd 9.66 13.9448 0.9998 mitoxantrone 

2104 H08 14.01 Cpd 6 14.1506 0.9284 
3,4-
Dichloroisocoumarin 

2160 F18 7.98 Cpd 9.84 12.604 0.9946 
mitoxanthrone 
hydrochloride 

2160 K03 11.9 Cpd 8.03 14.0906 0.9816 menthone 
2160 L14 16.33 Cpd 9.31 18.1308 0.9645 tropicamide 
2161 I18 8.33 Cpd 11.2 13.8141 0.9894 gentian violet 
2162 L02 7.79 Con 8.39 11.4427 0.9993 DMSO 
2163 K12 9.35 Cpd 6.02 10.8686 0.9774 isobutylmethylxanthine 
2163 P05 13.13 Cpd 8.37 15.2029 0.9763 4-nonylphenol 
2165 B08 10.14 Cpd 4.64 10.448 0.9372 Azathymine, 6 
2166 H04 6.75 Cpd 8.39 10.708 0.9942 Butacaine 
Base K05 5.35 Con 6.82 8.6049 0.9928 DMSO  
Base L10 7.92 Con 7.8 11.1151 1 DMSO  
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Figure 4. Experiment 1091.0135 Hits  

The plates of experiment 1091.0134 were read again after 67 h and renamed to experiment 1091.0135. (A) 

Display PDE7A screen results using (CHP1171) strain in SC –Ura after 67 h (B) Display hits on the 

diagonal (green check mark). Note the presence of spots scattering away from the diagonal direction 

creating an “L” shape due to low reproducibility of replicates. Red circles represent the negative control 

(cells +DMSO), while the blue circles represent compounds that were screened. 
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Figure 4.  
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Table 1. Shared hits between (PDE7A, PDE8 and PDE2) 

This table demonstrates the compounds that were shared hits among activators screens 

carried out against strains expressing PDE7A, PDE8 and PDE2. Yellow: PDE7A Hits (48 

and 67 h). Green: PDE7A and PDE2 shared hits. Blue: PDE7, PDE8 and PDE2 shared 

hits. The presence of spots scattering away from the diagonal direction creating an “L” 

shape is due to low reproducibility of replicates. 
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Table 1. 
 

 
 
 
 
 
 
 
 
 

Type Plate Well ZScoreA ZScoreB CompositeZ Reproducibility Compound Name 
Cpdm 2104 E07 60.59 90.6 106.904 0.9809 Oxindole I 
Cpd 2105 L03 37.27 34.84 50.9863 0.9994 Ro-31-8425 
Cpd BioKin1 C11 41.65 29.6 50.3835 0.986 BiomolKI2_000016 
Cpd 2099 C20 14.41 21.9 25.6722 0.9794 malachite green carbinol base 

Cpd 2159 J11 13.03 22.13 24.8568 0.9681 
uridine triphosphate 
trisodium 

Cpd 2099 K06 14.69 16.69 22.1907 0.998 
N,N-dimethyl-D-erythro-
sphingosine 

Cpd 2104 H08 20.77 9.33 21.2855 0.9347 3,4-Dichloroisocoumarin 
Cpd 2099 I05 14.69 15.12 21.0774 0.9999 mitoxantrone 
Cpd 2161 I18 12.26 17.23 20.8522 0.9861 gentian violet 
Cpd 2160 F18 11.87 15.52 19.3698 0.9912 mitoxanthrone hydrochloride 
Cpd 2160 K03 16.14 9.22 17.9328 0.9648 menthone 
Cpd 2163 E20 14.26 9.29 16.649 0.9784 6-aminonicotinamide 
Cpd 2160 L14 11.49 11.89 16.5325 0.9999 tropicamide 

Cpd 2099 G06 10.99 11.48 15.8939 0.9998 
N,N,N-trimethyl-D-erythro-
sphingosine 

Cpd 2099 L13 11.18 10.88 15.5998 0.9999 
D-lactosyl-B1-1'-D-erythro-
sphingosine 

Cpdweak 2099 G17 8.62 10.27 13.3617 0.9962 thionin acetate 
Cpd 2163 K12 11.13 7.23 12.9811 0.9781 isobutylmethylxanthine 
Con Base L10 10.16 7.7 12.6346 0.9906 DMSO  
Con 2162 L02 7.69 9.84 12.3963 0.9925 DMSO  
Cpdm 2165 B08 11.24 4.91 11.4229 0.9312 Azathymine, 6 
Cpdm 2166 H04 7.37 8.65 11.3345 0.9968 Butacaine 
Cpd 2105 G02 9.68 3.71 9.4705 0.9133 Sphingosylphosphorylcholine 

Cpd 2165 F11 5.93 6.73 8.9539 0.998 
Chicago sky blue 6B;4-
aminoantipyrine 

Con Base K05 4 8.31 8.7058 0.9439 DMSO  
Con 2160 G01 8.18 3.89 8.534 0.9424 DMSO  
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DISCUSSION  

One challenge of doing this type of screen is problems with the reproducibility of 

replicates (including the DMSO, which in some cases were showing up as positives in 

one of the two replicates). Comparing this screen with other screens performed on 

PDE2A and PDE8 in EMM-Ura (Wang, Demirbas) all three screens identified compound 

2099 C20 (malachite green carbinol base) as a modest hit. Whereas, PDE7A screens 

carried in SC-ura compared with PDE2A screen have 8 shared hits. Therefore, despite the 

reproducibility problem encountered doing this screen, finding shared suggest that the 

growth is not due to PDE stimulation.  
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APPENDIX THREE 

OPTIMIZATION OF DIFFERENT STRAINS TO BE USED 

FOR HIGH THROUGHPUT SCREENING  
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OPTIMIZATION OF DIFFERENT STRAINS TO BE USED FOR HIGH 

THROUGHPUT SCREENING 

 

1. INTRODUCTION  

To determine the best conditions for high throughput drug screening, a number of factors 

need to be taken into consideration including the right genetic background, the right 

cAMP concentration for pre-growth conditions, and final cell densities, all important 

elements in the optimization process. Here, I will show the best cell densities that should 

be used for four strains CHP1156, CHP1156, CHP1132 and CHP1142 to perform high 

throughput screening, as shown in Table 1.  

 

2. STRAIN OPTIMIZATION 

2.1.  Strain CHP1156 optimization  

Strain CHP1156 expressing Trypanosoma cruzi PDE in git3 deletion background was 

pre-grown in EMM medium containing concentration 5 mM of cAMP and different final 

cell densities (2x105, 2.5 x105) then cultures were transferred to 5FOA in the presence or 

absence 5mM cAMP. All plates received 100 nl DMSO. The OD600 measurements were 

taken after 48 h of incubation at 30ºC. Cells were grown in the presence of cAMP in 

order to repress the fbp1-ura4 reporter prior to exposure to 5FOA medium. I found that 

the best cell densities for this strain was 2.5 x105 as final cell density when transferred to 

5FOA (Figure 1).  
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2.2. Strain CHP1155 optimization  

Strain CHP1155 expressing PDE4A in the gpa2 deletion background was pre-grown in 

EMM medium containing 2.5 mM of cAMP and different final cell densities (0.75x105, 

1x105) then cultures were transferred to 5FOA in the presence or absence 5 mM cAMP. 

Rolipram was also used as positive control for this strain. All plates received of 100 nl 

DMSO. OD600 measurements were taken after 48 h of incubation at 30ºC. Cells were 

grown in the presence of cAMP in order to repress the fbp1-ura4 reporter prior to 

exposure to 5FOA medium. I found that the best cell density for this strain was 1 x105 as 

the final cell density when transferred to 5FOA (Figure 2). 

 

2.3. Strain CHP1132 and CHP1142 optimization 

Strain CHP1132 and CHP1142 were expressing S. pombe cgs2 in a git32 deletion 

background with different mating types h- and an h+, respectively. Both were pre-grown 

in EMM medium containing 2.5 mM of cAMP and different final cell densities (1.5x105, 

2x105 cells/ml) then cultures were transferred to 5FOA in the presence or absence 5 mM 

cAMP. All plates received 100 nl of DMSO. OD600 measurements were taken after 48 h 

of incubation at 30ºC. Cells were grown in the presence of cAMP in order to repress the 

fbp1-ura4 reporter prior to exposure to 5FOA medium. I found that the best cell density 

for both strains is 1.5 x105 cells/ml as the final cell density when transferred to 5FOA 

(Figure 1).   
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3. CONCLUSION 

All of these strains are ready to go through high throughput screening (HTS) since I 

was able to obtain a Z factor higher than 0.5.  
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Figure 1. Strains optimizations with 1x cell density  

Two experiments were performed on different days on strains CHP1132, CHP1142, CHP1155, CHP1156 

using these cells densities 1x=1.5x105, 1.5 x105, 0.75 x105, 2x105 cells/ml respectively. Z factors of all the 

strains were higher than the Broad institute cut off. 
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Figure 1.  

 

 

 

 

 

 

 

 

 

 

First experiment Second experiment 

CHP 1132 POS NEG Z CHP 1132 POS NEG Z

avg 1.21 0.07 0.92 avg 0.79 0.1 0.81

stdev 0.02 0.01 stdev 0.04 0.01

CV 1.84 10.1 CV 4.69 6.29

CHP1142 POS NEG Z CHP1142 POS NEG Z

avg 1.25 0.09 0.9 avg 1.07 0.1 0.81

stdev 0.03 0 stdev 0.05 0.01

CV 2.8 4.99 CV 4.89 7.52

CHP 1155 POS NEG Z CHP 1155 POS NEG Z

avg 1.27 0.05 0.88 avg 1.21 0.05 0.9

stdev 0.04 0.01 stdev 0.04 0

CV 3.37 14.6 CV 3.04 6.63

CHP 1155 RolipramPOS NEG Z CHP 1155 Rolipram POS NEG Z

avg 0.86 0.05 0.56 avg 1.07 0.05 0.67

stdev 0.11 0.01 stdev 0.11 0

CV 13.1 12.9 CV 10.2 6.38

CHP 1156 POS NEG Z CHP 1156 POS NEG Z

avg 1.27 0.1 0.86 avg 1.06 0.35 0.6

stdev 0.03 0.02 stdev 0.06 0.04

CV 2.74 18.9 CV 5.33 11.4

CHP 1169 POS NEG Z CHP 1169 POS NEG Z

avg 1.52 0.78 0.58 avg 1.39 0.44 0.71

stdev 0.04 0.06 stdev 0.05 0.04

CV 2.91 7.66 CV 3.29 9.97
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Figure 2. Strain optimizations with 2X cell density  

Two experiments were performed on different days using higher cell densities than shown in Figure 1 on 

strains CHP1132, CHP1142, CHP1155, CHP1156. Cell densities used for theses strains were 2X= 2x105, 2 

x105, 1x105, 2.5 x105, respectively. Z factors of all strains under these conditions were also higher than the 

Broad Institute cut off. 
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Figure 2. 
 

 

 

 

 

 

 
 
 
 
 
 

First experiment Second experiment 

CHP 1132 POS NEG Z CHP 1132 POS NEG Z

avg 1.21 0.07 0.92 avg 0.79 0.1 0.81

stdev 0.02 0.01 stdev 0.04 0.01

CV 1.84 10.1 CV 4.69 6.29

CHP1142 POS NEG Z CHP1142 POS NEG Z

avg 1.25 0.09 0.9 avg 1.07 0.1 0.81

stdev 0.03 0 stdev 0.05 0.01

CV 2.8 4.99 CV 4.89 7.52

CHP 1155 POS NEG Z CHP 1155 POS NEG Z

avg 1.27 0.05 0.88 avg 1.21 0.05 0.9

stdev 0.04 0.01 stdev 0.04 0

CV 3.37 14.6 CV 3.04 6.63

CHP 1155 RolipramPOS NEG Z CHP 1155 Rolipram POS NEG Z

avg 0.86 0.05 0.56 avg 1.07 0.05 0.67

stdev 0.11 0.01 stdev 0.11 0

CV 13.1 12.9 CV 10.2 6.38

CHP 1156 POS NEG Z CHP 1156 POS NEG Z

avg 1.27 0.1 0.86 avg 1.06 0.35 0.6

stdev 0.03 0.02 stdev 0.06 0.04

CV 2.74 18.9 CV 5.33 11.4

CHP 1169 POS NEG Z CHP 1169 POS NEG Z

avg 1.52 0.78 0.58 avg 1.39 0.44 0.71

stdev 0.04 0.06 stdev 0.05 0.04

CV 2.91 7.66 CV 3.29 9.97
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