11 research outputs found
Publisher Correction:Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals (Nature Genetics, (2020), 52, 12, (1314-1332), 10.1038/s41588-020-00713-x)
In the version of this article originally published, the e-mail address of corresponding author Patricia B. Munroe was incorrect. The error has been corrected in the HTML and PDF versions of the article
Sudden cardiac death after myocardial infarction: individual participant data from pooled cohorts
Risk stratification of sudden cardiac death after myocardial infarction and prevention by defibrillator rely on left ventricular ejection fraction (LVEF). Improved risk stratification across the whole LVEF range is required for decision-making on defibrillator implantation. The analysis pooled 20 data sets with 140 204 post-myocardial infarction patients containing information on demographics, medical history, clinical characteristics, biomarkers, electrocardiography, echocardiography, and cardiac magnetic resonance imaging. Separate analyses were performed in patients (i) carrying a primary prevention cardioverter-defibrillator with LVEF ≤ 35% [implantable cardioverter-defibrillator (ICD) patients], (ii) without cardioverter-defibrillator with LVEF ≤ 35% (non-ICD patients ≤ 35%), and (iii) without cardioverter-defibrillator with LVEF > 35% (non-ICD patients >35%). Primary outcome was sudden cardiac death or, in defibrillator carriers, appropriate defibrillator therapy. Using a competing risk framework and systematic internal-external cross-validation, a model using LVEF only, a multivariable flexible parametric survival model, and a multivariable random forest survival model were developed and externally validated. Predictive performance was assessed by random effect meta-analysis. There were 1326 primary outcomes in 7543 ICD patients, 1193 in 25 058 non-ICD patients ≤35%, and 1567 in 107 603 non-ICD patients >35% during mean follow-up of 30.0, 46.5, and 57.6 months, respectively. In these three subgroups, LVEF poorly predicted sudden cardiac death (c-statistics between 0.50 and 0.56). Considering additional parameters did not improve calibration and discrimination, and model generalizability was poor. More accurate risk stratification for sudden cardiac death and identification of low-risk individuals with severely reduced LVEF or of high-risk individuals with preserved LVEF was not feasible, neither using LVEF nor using other predictors. [Abstract copyright: © The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology.
Sudden cardiac death after myocardial infarction: individual participant data from pooled cohorts
Background and aimsRisk stratification of sudden cardiac death after myocardial infarction and prevention by defibrillator rely on left ventricular ejection fraction (LVEF). Improved risk stratification across the whole LVEF range is required for decision-making on defibrillator implantation.MethodsThe analysis pooled 20 datasets with 140,204 post-myocardial infarction patients containing information on demographics, medical history, clinical characteristics, biomarkers, electrocardiography, echocardiography, and cardiac magnetic resonance imaging. Separate analyses were performed in patients: (i) carrying a primary prevention cardioverter-defibrillator with LVEF ≤35% (ICD patients), (ii) without cardioverter-defibrillator with LVEF ≤35% (non-ICD patients ≤35%), and (iii) without cardioverter-defibrillator with LVEF >35% (non-ICD patients >35%). Primary outcome was sudden cardiac death or, in defibrillator carriers, appropriate defibrillator therapy. Using a competing risk framework and systematic internal-external cross-validation, a model using LVEF only, a multivariable flexible parametric survival model, and a multivariable random forest survival model were developed and externally validated. Predictive performance was assessed by random effect meta-analysis.ResultsThere were 1,326 primary outcomes in 7,543 ICD patients, 1,193 in 25,058 non-ICD patients ≤35% and 1,567 in 107,603 non-ICD patients >35% during mean follow-up of 30.0, 46.5, and 57.6 months, respectively. In these three subgroups, LVEF poorly predicted sudden cardiac death (c-statistics between 0.50 and 0.56). Considering additional parameters did not improve calibration and discrimination, and model generalisability was poor.ConclusionsMore accurate risk stratification for sudden cardiac death and identification of low-risk individuals with severely reduced LVEF or of high-risk individuals with preserved LVEF was not feasible, neither using LVEF nor using other predictors. <br/
Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies
Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in\ua0proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development
Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies
Chronic kidney disease (CKD) affects -10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development
Recommended from our members
Trans-ethnic genome-wide association study of kidney function provides novel insight into effector genes and causal effects on kidney-specific disease aetiologies
Chronic kidney disease (CKD) affects ∼10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assembled genome-wide association studies (GWAS) 1-3 of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals from four ancestry groups. We identified 93 loci (20 novel), which were delineated to 127 distinct association signals. These signals were homogenous across ancestries, and were enriched for protein-coding exons, kidney-specific histone modifications, and transcription factor binding sites for HDAC2 and EZH2. Fine-mapping revealed 40 high-confidence variants driving eGFR associations and highlighted potential causal genes with cell-type specific expression in glomerulus, and proximal and distal nephron. Mendelian randomisation (MR) supported causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure (DBP) and hypertension. These results define novel molecular mechanisms and effector genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development
Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies
Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development
Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
Abstract
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 x 10(⁻⁸)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.A Publisher Correction to this article was published on 16 March 2021
Publisher Correction:Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals (Nature Genetics, (2020), 52, 12, (1314-1332), 10.1038/s41588-020-00713-x)
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10−8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets