18 research outputs found

    Model architecture for associative memory in a neural network of spiking neurons

    Get PDF
    AbstractA synaptic connectivity model is assembled on a spiking neuron network aiming to build up a dynamic pattern recognition system. The connection architecture includes gap junctions and both inhibitory and excitatory chemical synapses based on Hebb’s hypothesis. The network evolution resulting from external stimulus is sampled in a properly defined frequency space. Neurons’ responses to different current injections are mapped onto a subspace using Principal Component Analysis. Departing from the base attractor, related to a quiescent state, different external stimuli drive the network to different fixed points through specific trajectories in this subspace

    Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks

    Get PDF
    Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic changes and consolidation, sufficient for assembly formation and memory recall in a spiking recurrent network model of excitatory and inhibitory neurons. In the model, assemblies were formed during repeated sensory stimulation and characterized by strong recurrent excitatory connections. Even days after formation, and despite ongoing network activity and synaptic plasticity, memories could be recalled through selective delay activity following the brief stimulation of a subset of assembly neurons. Blocking any component of plasticity prevented stable functioning as a memory network. Our modelling results suggest that the diversity of plasticity phenomena in the brain is orchestrated towards achieving common functional goals

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Interacting synapses stabilise both learning and neuronal dynamics in biological networks

    No full text
    Distinct synapses influence one another when they undergo changes, with unclear consequences for neuronal dynamics and function. Here we show that synapses can interact such that excitatory currents are naturally normalised and balanced by inhibitory inputs. This happens when classical spike-timing dependent synaptic plasticity rules are extended by additional mechanisms that incorporate the influence of neighbouring synaptic currents and regulate the amplitude of their efficacy changes accordingly. The resulting control of excitatory plasticity by inhibitory activation, and vice versa, gives rise to quick and long-lasting memories as seen experimentally in receptive field plasticity paradigms. In models with additional dendritic structure, we observe experimentally reported clustering of co-active synapses that depends on initial connectivity and morphology. Finally, in recurrent neuronal networks, rich and stable dynamics with high input sensitivity emerge, providing transient activity that resembles recordings from motor cortex. Our model provides a general framework for codependent plasticity that frames individual synaptic modifications in the context of population-wide changes, allowing us to connect micro-level physiology with network-wide phenomena

    Inhibitory plasticity: Balance, control, and codependence

    No full text
    Inhibitory neurons, although relatively few in number, exert powerful control over brain circuits. They stabilize network activity in the face of strong feedback excitation and actively engage in computations. Recent studies reveal the importance of a precise balance of excitation and inhibition in neural circuits, which often requires exquisite fine-tuning of inhibitory connections. We review inhibitory synaptic plasticity and its roles in shaping both feedforward and feedback control. We discuss the necessity of complex, codependent plasticity mechanisms to build nontrivial, functioning networks, and we end by summarizing experimental evidence of such interactions

    Regimes and mechanisms of transient amplification in abstract and biological networks

    Get PDF
    We use upper triangular matrices as abstract representations of neuronal networks and directly manipulate their eigenspectra and non-normality to explore different regimes of transient amplification. Counter–intuitively, manipulating the imaginary distribution can lead to highly amplifying regimes. This is noteworthy, because biological networks are constrained by Dale’s law and the non-existence of neuronal self-loops, limiting the range of manipulations in the real dimension. Within these constraints we can further manipulate transient amplification by controlling global inhibition

    Synchronization regimes in a map-based model neural network

    No full text
    The dynamical activity of a neural network model composed of electrically connected map-based neurons is investigated. After detailing the behavior of the isolated neuron for a wide parameter range, collective network states are depicted using the activity, spatial correlation and time phase distribution as measures. A detailed discussion on the stability of global and partial synchronization states is presented

    Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields

    Get PDF
    Cortical areas comprise multiple types of inhibitory interneurons, with stereotypical connectivity motifs that may follow specific plasticity rules. Yet, their combined effect on postsynaptic dynamics has been largely unexplored. Here, we analyze the response of a single postsynaptic model neuron receiving tuned excitatory connections alongside inhibition from two plastic populations. Synapses from each inhibitory population change according to distinct plasticity rules. We tested different combinations of three rules: Hebbian, anti-Hebbian, and homeostatic scaling. Depending on the inhibitory plasticity rule, synapses become unspecific (flat), anticorrelated to, or correlated with excitatory synapses. Crucially, the neuron's receptive field (i.e., its response to presynaptic stimuli) depends on the modulatory state of inhibition. When both inhibitory populations are active, inhibition balances excitation, resulting in uncorrelated postsynaptic responses regardless of the inhibitory tuning profiles. Modulating the activity of a given inhibitory population produces strong correlations to either preferred or nonpreferred inputs, in line with recent experimental findings that show dramatic context-dependent changes of neurons' receptive fields. We thus confirm that a neuron's receptive field does not follow directly from the weight profiles of its presynaptic afferents. Our results show how plasticity rules in various cell types can interact to shape cortical circuit motifs and their dynamics

    Context-modular memory networks support high-capacity, flexible, and robust associative memories

    No full text
    Context, such as behavioral state, is known to modulate memory formation and retrieval, but is usually ignored in associative memory models. Here, we propose several types of contextual modulation for associative memory networks that greatly increase their performance. In these networks, context inactivates specific neurons and connections, which modulates the effective connectivity of the network. Memories are stored only by the active components, thereby reducing interference from memories acquired in other contexts. Such networks exhibit several beneficial characteristics, including enhanced memory capacity, high robustness to noise, increased robustness to memory overloading, and better memory retention during continual learning. Furthermore, memories can be biased to have different relative strengths, or even gated on or off, according to contextual cues, providing a candidate model for cognitive control of memory and efficient memory search. An external context-encoding network can dynamically switch the memory network to a desired state, which we liken to experimentally observed contextual signals in prefrontal cortex and hippocampus. Overall, our work illustrates the benefits of organizing memory around context, and provides an important link between behavioral studies of memory and mechanistic details of neural circuits
    corecore