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Diverse synaptic plasticity mechanisms
orchestrated to form and retrieve memories
in spiking neural networks
Friedemann Zenke1, Everton J. Agnes1,2 & Wulfram Gerstner1

Synaptic plasticity, the putative basis of learning and memory formation, manifests in various

forms and across different timescales. Here we show that the interaction of Hebbian

homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when

complemented with slower homeostatic changes and consolidation, sufficient for assembly

formation and memory recall in a spiking recurrent network model of excitatory and inhibitory

neurons. In the model, assemblies were formed during repeated sensory stimulation and

characterized by strong recurrent excitatory connections. Even days after formation, and

despite ongoing network activity and synaptic plasticity, memories could be recalled through

selective delay activity following the brief stimulation of a subset of assembly neurons.

Blocking any component of plasticity prevented stable functioning as a memory network.

Our modelling results suggest that the diversity of plasticity phenomena in the brain is

orchestrated towards achieving common functional goals.

DOI: 10.1038/ncomms7922 OPEN

1 School of Computer and Communication Sciences and School of Life Sciences, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne
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T
he concepts of cell assembly and Hebbian learning1

have inspired generations of experimental and theoretical
work2. A cell assembly, loosely formulated as a group

of neurons with strong connections among each other,
can be interpreted as a functional circuit of brain activity.
Cell assemblies may be activated during memory recall,
as evidenced by delay activity of neurons during working
memory tasks3,4 or during recognition of abstract items5–7.
While models of cell assemblies for fixed, preset connectivity
can be readily constructed8–11, the question of whether
Hebbian learning rules can be used to form and recall
such assemblies in a robust, stable manner is not well
understood12–14.

The reason why models fail to form functional memory
assemblies in plastic networks of spiking neurons could be linked
to either one specific or a combination of several features of
biological networks, which were not addressed in these models.
First, there are many different types of neurons in the brain, and
experimental forms of plasticity depend on both the type of
neuron and its connections15. Second, plasticity manifests in
multiple concurrently active forms. This includes, but is not
limited to rate-dependent16, voltage-dependent17 and spike-
timing-dependent18–20 homosynaptic as well as heterosynaptic
plasticity21,22. Third, induction of synaptic plasticity needs to be
distinguished from processes of synaptic consolidation and
maintenance23,24. Finally, additional nonstandard forms of
plasticity such as structural plasticity25,26, short-term plasticity
(STP)27,28 or homeostatic synaptic changes29 complicate the
picture.

Here we show that a well-orchestrated combination of a
plausible Hebbian plasticity model30 together with non-Hebbian
forms of plasticity and globally modulated inhibitory plasticity
leads to the formation of cell assemblies. Importantly, the
emergent assemblies are stable and do not degrade or inflate
during ongoing activity and memory recall. In order to
distinguish different forms of plasticity in our model, we use
the following terms and criteria. First, we call contributions to
synaptic plasticity that depend only on the state of the
postsynaptic neuron, but not on those of the presynaptic
neurons, ‘heterosynaptic’. Manifestations of synaptic plasticity
that depend jointly on pre- and post-synaptic activity are called
‘homosynaptic’. Similarly, changes of the synapse that depend
only on the transmitter release, but not on the state of the post-
synaptic neuron, are called ‘transmitter-induced’. By definition,
heterosynaptic and transmitter-induced plasticity are non-
Hebbian, while homosynaptic plasticity can either be Hebbian
or anti-Hebbian. Second, in our terminology we also consider the
timescale on which synaptic changes manifest themselves. We
refer to slow compensatory processes that act on a timescale
above 10 min as ‘homeostatic’. They are contrasted by rapidly
‘induced’ plasticity caused on the one hand by typical plasticity
protocols (lasting a few seconds to tens of seconds), for example,
for the induction of long-term potentiation (LTP) and depression
(LTD), and on the other hand by fast compensatory mechanisms
that include non-Hebbian forms of plasticity. Third, a
mathematical rule of synaptic plasticity is considered as ‘local’
if it depends only on the activity of the presynaptic neuron and
the state of both synapse and postsynaptic neuron. Moreover,
a plasticity rule can be under the influence of global factors31–33

such as neuromodulators33,34 or other secreted factors35.
Note that in this nomenclature ‘local’ does not exclude
‘heterosynaptic’21. We show that the concerted action of
local homosynaptic, heterosynaptic and transmitter-triggered
forms of plasticity at excitatory synapses leads to stable
assembly formation and recall in recurrent networks of spiking
neurons.

Results
We simulated a network of 4,096 excitatory and 1,024 inhibitory
randomly connected integrate-and-fire neurons containing a cell
assembly of 400 excitatory neurons. In a first experiment, the
assembly is defined by intra-assembly synapses that are initialized
at stronger values than those of the rest of the network (Fig. 1a,b).
In the absence of plasticity, the network functions as a working
memory that exhibits delay activity (Fig. 1c,d) consistent with
earlier findings9–11,13,36; however, when we switch on a standard
homosynaptic model of spike-timing-dependent plasticity30

(STDP), the activity of neurons within the assembly,
characterized by their firing rates, increases dramatically,
followed by a slower increase in neuronal activity outside the
assembly (Fig. 1e).

Network dynamics interact with plasticity. The biologically
unrealistic increase in firing rates in this and similar, homo-
synaptic Hebbian models37–39 results from an interaction of the
network dynamics with synaptic plasticity13. The change of
synaptic weight from a presynaptic neuron j to a postsynaptic
neuron i in standard homosynaptic plasticity models such as the
classical Bienenstock–Cooper–Munro rule40 or modern N-
methyl-D-aspartate (NMDA) receptor-dependent39, spike-
timing-dependent30,38 or voltage-dependent41 variants requires
that the activity (pre)j of the presynaptic neuron is multiplied
with the activation of some postsynaptic variables (post)i that can
be summarized as Dwijp(pre)j� (post)i� F((post)i–yi), with a
function F that vanishes if (post)i¼ yi (for example, F(x)¼ x; yi is
the threshold for LTP). It is a homosynaptic rule because a
synapse that is not presynaptically activated ((pre)j¼ 0) does not
change. If presynaptic activity occurs (pre)j 40 then it depends
on the present state of the postsynaptic neuron whether the
weight changes upwards or downwards. Even in the presence of
presynaptic activity, the weight change is zero if the postsynaptic
variable is zero (post)i¼ 0 or equal to the threshold yi. Activity
values at which the weight does not change are called fixed points
of the synaptic dynamics.

The synaptic dynamics interact with the neuronal dynamics of
cell assemblies in a memory network. During memory recall, the
assembly is strongly active while background neurons (that is,
those not participating in the assembly) show weak spontaneous
activity (Fig. 1c). In the presence of a homosynaptic plasticity rule
with the above structure, the spontaneous activity of background
neurons and the higher activity of the assembly neurons leads to
an increase in all those synapses projecting on an assembly
neuron i (Fig. 1f). This finding can be understood in the
framework of graphical network analysis of working memory
models11. During memory recall, assembly neurons receive input
from neurons of the same assembly. Input firing rates are
transformed into output firing rates by an effective transfer
function, closely related, but not identical, to the neuronal f–I
curve. Stable memory recall requires that the rates of input
neurons (that is, cells in the assembly) and output neurons (other
cells in the same assembly) match (Fig. 1gi). Since memory recall
should not change the contents of the memory, the overall
dynamics during recall has to be at a fixed point. However, in
general, there is a mismatch between the network dynamics and
synaptic dynamics (Fig. 1gii). Matching the fixed points by a
compensatory shift of the threshold yi (ref. 40) only succeeds if
the shift is faster than the dynamics of induced synaptic
plasticity42. It is therefore inconsistent with the notion of
homeostasis as a slow adaptation towards a physiologically
desired state.

Orchestrated plasticity. We wondered whether a combination of
different forms of plasticity could work in concert to match the
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fixed points of network and synaptic dynamics. To do so, we
orchestrated several distinct forms of plasticity in a single model.
This model comprises STP, homosynaptic LTP and LTD, het-
erosynaptic up- and downregulation of synapses and transmitter-
induced plasticity as well as consolidation.

STP is the fastest form of plasticity in our model. Like in earlier
models27,28, short-term depression contributes to a robust firing
rate bistability in a cell assembly because the saturation of
synapses at high presynaptic frequencies provides the effective
transfer function with the curvature43–45 necessary for a stable
fixed point at intermediate firing rates (Supplementary Fig. 1a–d
and Supplementary Methods). Thus, short-term depression
counteracts the linearization of f–I curves observed with
adapting neurons46,47.

Orchestrated plasticity makes synapses bistable. The formation
of cell assemblies proceeds via Hebbian plasticity at excitatory
synapses1. In our model we use a standard triplet STDP rule of
long-term plasticity30, which is, like all forms of Hebbian
plasticity, unstable48. Stability is restored through the direct
interaction of triplet STDP with two local non-Hebbian plasticity
mechanisms that act on the same timescale. First, at low rates,
transmitter-induced potentiation counteracts homosynaptic LTD
in a push–pull manner to prevent the network from falling silent.
Similarly, at high rates, heterosynaptic depression prevents
explosive run-away potentiation of strong synapses. For sensible
parameter choices the interplay of the three forms of plasticity
generates two stable fixed points of the weight dynamics, which
coincide with the activity fixed points of neurons in cell
assemblies (Fig. 2a)—one at low firing rates (E1 Hz) and one
at elevated firing rates (E30 Hz; Supplementary Figs 1–3).

To check for bistability in simulations, we stimulated a single
postsynaptic neuron with Poisson spike input from 80 pre-
synaptic excitatory neurons at 10 Hz, while 80 other presynaptic
excitatory neurons firing at 1 Hz served as a control. Depending
on the strength of synaptic weights at the beginning, the firing
rate converged during the simulation to one of two different
values (Fig. 2b; Supplementary Fig. 3). In all cases firing rates at
first evolved quickly through the action of rapidly induced forms
of plasticity (Fig. 2b), which was followed by slow changes
on the timescale of consolidation dynamics (Methods; Fig. 2b;
Supplementary Fig. 3b,d). Importantly, synaptic weights did not
saturate at the maximally allowed value (wmax¼ 5), but stayed at
intermediate levels whose values were pathway-dependent
(Supplementary Fig. 3c,d). The firing rate at the upper stable
state was dependent on the parameter b that characterizes the
strength of heterosynaptic plasticity (Fig. 2c; Methods) and on the
number of synaptic inputs (Supplementary Fig. 3g,h), while
the firing rate in the other stable state depended on the parameter
d of the transmitter-induced form of plasticity (Supplementary
Fig. 1f) and was independent of the number of connections
(Supplementary Fig. 3g). When stimulated with a localized
stimulus that changes its position on average once every 20 s, the
postsynaptic neuron develops a localized receptive field
(Fig. 2d,e), similar to earlier models40,41,49.

In a recurrent network, the fixed point of synaptic plasticity at
elevated firing rates is, based on theoretical arguments (cf. Figs 1g
and 2a), expected to self-adjust to match the dynamics of a cell
assembly, provided the network activity remains asynchronous
and the number of neurons partaking in each cell assembly is
limited. Like in previous models10,11 the latter is achieved
through global inhibition. In our model, inhibitory synapses are
subject to a spike-timing-dependent learning rule which is
reminiscent of experimental results50 and modulated by a
hypothetical global secreted factor (Methods). This modulation
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allows inhibitory plasticity to regulate activity globally35 at the
network level during ongoing plasticity at excitatory synapses.

Assembly formation and recall. We studied whether the com-
bination of inhibitory plasticity with excitatory homosynaptic,
heterosynaptic and transmitter-induced plasticity could work in
symphony to enable stable assembly formation and recall in a
spiking recurrent network model. To that end we implemented all
forms of plasticity described above in the random network of
excitatory and inhibitory neurons (Fig. 3a). Each excitatory
neuron received recurrent input from the network, but also from
a small patch of sensory neurons that defines the spatial location
of its receptive field (Fig. 3a). All excitatory synapses were initi-
alized with a common value such that the recurrent network
exhibited asynchronous irregular firing51,52 (Fig. 3b,c). Synapses
evolved freely according to the orchestrated plasticity rules
described above. The network was then stimulated by applying
repeatedly and stochastically one of four possible full-field input
patterns (Fig. 3a,d). Stimulus identity, stimulus duration and
interstimulus interval were randomized (Methods), while the
stimulus intensity was kept fixed. Plasticity of feed-forward
synapses induced the development of spatially structured feature
detectors within the receptive fields (Fig. 3e) that caused neurons
to respond to specific input patterns (Fig. 3g,h). Plasticity of
recurrent excitatory connections led to the development of
strongly connected assemblies (Fig. 3i), reminiscent of recent
experimental findings in the sensory cortex53. In our model,
however, recurrent connections grew strong enough that
assemblies could sustain selective delay activity following a brief
stimulation of one of the patterns (Fig. 3j; Supplementary
Movie 1) consistent with signatures of attractor dynamics in
experiments3–7. Neurons that participated in an assembly
exhibited a broad range of firing rates during delay activity

(Fig. 3k). Background neurons had a firing rate of around 1 Hz or
less (Fig. 3k) and showed a large trial-to-trial variability (Fig. 4a).
Some background neurons exhibited weakly inhibited or elevated
responses to a specific assembly, whereas others did not (Fig. 4a).
A large fraction of neurons did not belong to any of the
assemblies (that is, never fired at high rate; Fig. 3h), which
suggests that there is a ‘reserve pool’ that could become sensitive
to novel patterns not included in the stimulation paradigm (see
below).

To check whether recall is associative, we stimulated the plastic
network with partial input by occluding up to three quarters of
the input field. In most cases, we found activation of the
appropriate assembly corresponding to the partial information,
indicating memory recall from partial cues (Fig. 4b;
Supplementary Fig. 4a). Despite ongoing plasticity the learned
assemblies were stable and did not degrade during days of
ongoing network activity (Supplementary Fig. 4b). Completely
novel stimuli, unrelated to those previously encountered, or an
ambiguous combination of known patterns could initiate
memory recall of a single memory with overlap with the
stimulated pattern (Fig. 4b; Supplementary Fig. 4a). In some
rare cases memory recall failed and could lead to a brief
deactivation of all assemblies. However, this background state was
generally short-lived and followed by the spontaneous activation
of one of the stored assemblies. Without external input,
spontaneous state transitions occurred occasionally after several
minutes of selective delay activity of a single pattern. On shorter
timescales the individual neuronal firing rates during delay
activity were approximately stable. However, the inclusion of
neuronal adaptation on a timescale of seconds54 (Methods)
caused firing rates to change more rapidly and state transitions
between memory items to occur more frequently (Fig. 4c–e;
Methods). Nevertheless, state transitions could still be caused by
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external stimuli, indicating that the recurrent network remained
responsive to sensory input.

Timescales of plasticity. The stability in our model is a direct
consequence of the orchestrated interplay of multiple plasticity
mechanisms on different timescales. First, on the timescale of
several hundred milliseconds the nonlinearity of STP creates the
possibility for firing rate bistability in cell assemblies at inter-
mediate levels of neuronal activity (see Supplementary Fig. 1b,c;
Supplementary Methods). Second, on the timescale of seconds,
induction of plasticity is achieved by a combination of triplet
STDP with heterosynaptic and transmitter-induced plasticity (see
Methods). Transmitter-induced plasticity of strength d, in our
model, is proportional to the presynaptic activity (pre)j and
ensures low neuronal baseline firing rates55. Similar to earlier
models21,49, heterosynaptic plasticity of strength b changes all

synapses on neuron i whenever the postsynaptic activity (post)i

reaches a high value. The direction of change depends on the
present value wij of the synaptic weight in relation to a reference
weight ~wij consistent with experiments of tetanic burst
induction49 (Fig. 5a). The combination of transmitter-induced,
heterosynaptic and Hebbian plasticity at the excitatory synapse
between neuron j and the postsynaptic neuron i induces weight
change schematically described by

DwijðtÞ ¼
AðpreÞj�ðpostÞ2i �BiðpreÞj�ðpostÞi Hebb ðtriplet STDPÞ
� b�ðwij� ~wijÞ�ðpostÞ4i Heterosynaptic

þ d�ðpreÞj: Transmitter� induced

ð1Þ

64 x 64 Poisson units

0 10 20 30 40 Input

Stimuli:

Plastic

Exc Inh

ISP

Static 0

25
6 

U
ni

ts

25
6 

U
ni

ts

5 10 0 0

0.3 s

8 2
0.5h

80

40

0A
ct

iv
ity

 (
H

z)

0.5s

116

Rate (Hz)

Input

1.8 h

80

40

0A
ct

iv
ity

 (
H

z)

25
6 

U
ni

ts

Output
800 800

Pre

0 1 2

20 400

81%

Rate (Hz)

15 s
0 1 2 3

0.4

0.2

0.0

M
ea

n 
w

 (
1)

Selectivity

Post

C
el

ls
 (

1)

–150
0

53

100

40

47
0
–150

w
ijex

t  (
a.

u.
)

|S| (s) CV |S| (1)

CV |S| [1]

Firing rate (Hz)

Figure 3 | Stable formation and recall of memory assemblies. (a) Schematic representation of the network model (top right). Top left: input layer

composed of 64�64 Poisson neurons. Each network neuron receives input from a circular subset (orange circle) of input units centred at a random

position. Inset: initial receptive field of a network neuron (compare e). Connection types are indicated below. Solid lines: no long-term plasticity. Dashed

lines: orchestrated Hebbian and non-Hebbian plasticity. Dotted line: inhibitory plasticity (ISP). Four overlapping geometric shapes (bottom) are presented

at random times via the input units. (b) Spike raster of the initial network activity. (c) Network statistics from b: histograms of the firing rates, the interspike

intervals (vertical axis logarithmic) and the coefficient of variation of the interspike intervals (CV ISI). The mean values indicated by arrow heads.

(d) Network activity after 30 min. Top: spike raster. Coloured bars indicate time, duration and identity of the stimuli (cf. a). Bottom: temporal evolution of

the population firing rate of assembly neurons coding for the respective stimuli (Methods). (e) Receptive fields of four randomly chosen network neurons

after learning. Points represent existing connections and their position in the 2D input space (compare a). Colour encodes the connection strength. Bottom:

zoom on receptive fields. The initial state of panel 1 is shown in a. (f) Covariance matrix of stimulus-evoked firing rates of the input neurons (Methods).

(g) Same as f, but for the observed network activity after learning. Numbers on the diagonal indicate the percentage of the maximum value. (h) Bar plot

illustrating the relative fraction of cells selective per stimulus. Black: no preference. Colours as in a. (i) The mean weight strength of the recurrent weights

between neurons ordered according to stimulus preference (t¼ 1 h). (j) Same as d, after B1.8 h of simulated time. Note the delay activity during the

interstimulation interval (after t¼ 1 h: TOff¼ 20 s). For clarity only every fifth spike is plotted. Black range bar indicates data range used for spike statistics in

k. (k) Histograms of firing rates and CV ISI in the network during the interval marked in j.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7922 ARTICLE

NATURE COMMUNICATIONS | 6:6922 | DOI: 10.1038/ncomms7922 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


In the triplet STDP model, LTP is quadratic in the postsynaptic
variable and of strength A, whereas LTD is linear in the
postsynaptic variable and of strength Bi. The fourth power in the
description of heterosynaptic plasticity implements a threshold
on the postsynaptic activity and acts as a burst detector
(cf. Fig. 2a). In standard STDP protocols, the heterosynaptic
effect is small and equation (1) describes frequency dependence of
STDP20,30 (Fig. 5b). If, however, pre- and postsynaptic neurons
fire stochastically at high rates, the heterosynaptic term
counteracts homosynaptic LTP (Fig. 5c; ref. 49). This creates
the additional stable fixed point at elevated firing rates, necessary
to co-stabilize plasticity and assembly dynamics (Fig. 2a;
Supplementary Fig. 2b).

Third, processes such as homeostasis or consolidation that act
on timescales much longer than plasticity induction may
influence the stability of induced synaptic weight changes. In
the simulations of Figs 1–4, we have neglected homeostasis and
preconfigured the network with appropriate parameter values. In
particular, we initialized the weight values of the external afferent
connections such that novel stimuli evoked responses in network
neurons strong enough to drive them above the LTP threshold. A
20% change of the initial weight value in either direction did not
yield a qualitatively different outcome of the simulation.
However, when weights were initially too weak or afferent
connections were chosen randomly (that is, no predefined spatial
receptive fields) all neurons remained at the low activity fixed
point and no assembly structure was formed (Supplementary
Fig. 5a).

This behaviour was changed when we allowed the strength
of LTD to change through homeostatic metaplasticity on the
timescale of tens of minutes to hours30,40,41,56. With homeostatic
plasticity our model formed cell assemblies even when the initial
weights were weak and connectivity was random (Supplementary

Figs 6 and 7). The behaviour of the network was similar to Fig. 3,
except that, in addition, we noticed the emergence of a single
random pattern that was not correlated to any of the learned
stimuli (Supplementary Fig. 7a).

Learning of novel memories. Biological networks retain the
ability to acquire new memories over time. Since after 2h strong
receptive fields had already been formed, novel stimuli, presented
within the same visual stimulation paradigm, were classified as
one of the four learned patterns and did not lead to novel
memories, even if presented repeatedly (Supplementary Fig. 8).
To test whether the recurrent connections could in principle store
new assemblies, we continued the simulation of the network from
Fig. 3, but stimulated two pools (R1/R2) of network neurons
through synaptic input from a different input modality (Fig. 6a,b;
Methods). As a consequence, the two pools formed new assem-
blies capable of maintaining selective delay activity (Fig. 6b).
During recall of the new assemblies, we noticed the occasional
partial activation of one of the previous patterns with one of the
new patterns (Fig. 6b), which might be linked to overlap between
the assemblies. When input from the original input modality was
restored after 2 h, there was no notable effect on the recall
behaviour of the four original assemblies (Fig. 6c,d), indicating
that new memories can be added without destroying existing
ones.

Stability of memories. Spontaneous or induced memory recall
potentially plays a role in refreshing previously stored mem-
ories57. To test the stability of synaptic weights of an inactive
assembly during the extended recall of another pattern, we
recorded the evolution of synaptic weights during a 4-h-long
activation period of a single assembly (Fig. 7a,b; Methods).
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Figure 4 | Network states are associative and serve as working memory. (a) Spike raster of typical single unit responses to a particular stimulus.

From top to bottom: four excitatory units (one assembly neuron coding for ‘triangle’, two background units and one neuron coding for a different

assembly) as well as three randomly selected inhibitory neurons are shown. The different trials (n¼ 30) are aligned on stimulus onset (dashed line).

(b) Population-averaged peristimulus time histograms (PSTH) of the four relevant readout populations for all different distorted stimuli presented (keys

on the right). (c) Spike raster of 128 excitatory neurons with a slow spike-triggered adaptation current54 with a time constant of 20 s (cf. Methods).

At around 139 min the currently active assembly is switched off by a brief external stimulus (arrow). All other state changes are spontaneous.

(d) Histogram of firing rates averaged over the interval marked with a black bar in c. Vertical axis logarithmic. (e) Histogram of coefficient of variation

of the interspike interval distribution (CV ISI) averaged over the interval marked in c.
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During this period external connections to both, active and
inactive cell assemblies, as well as recurrent connections of the
active assembly, hardly changed (Fig. 7c). Connections within an
inactive assembly showed a slow decay. Recall from partial cues
was demonstrated 4 h later (Fig. 7b).

Role of consolidation. In our model, synaptic weights are
consolidated24 on the timescale of 20–60 min (Supplementary
Fig. 2; Methods). To study the effects of the consolidation
dynamics, we considered two identical network simulations and
blocked the consolidation dynamics in one of them, while the
other network served as a control. Both networks were prepared
with an initial feed-forward connectivity in which three blocks of
input neurons, consisting of 400 neurons each, were connected
through strong connections (wij) to equally sized blocks of
neurons in the network (Supplementary Fig. 9a,b). All recurrent
connectivity was initially unstructured and all reference weights
~wij were initialized at zero (Supplementary Fig. 9a,b; Methods).
After B13 min of repeated stimulation of each of the three
inputs, both recurrent networks had formed cell assemblies
corresponding to these three inputs and exhibited selective delay
activity (Supplementary Fig. 9c,d), while other neurons in the
network remained at low firing rates. After 20 min of simulated
time we increased the mean interstimulation interval from

TOff¼ 2 s to TOff¼ 20 s. While external stimulation in the
control network continued to reliably evoke switches of the
network state during the subsequent 20 min (Fig. 8a;
Supplementary Fig. 9e), the network with blocked consolidation
showed little response to external stimulation so that delay
activity was mostly decoupled from the external input (Fig. 8b;
Supplementary Fig. 9f). The effect was accompanied by a decrease
in the synaptic strength of the input and the recurrent
connections projecting on the respective assemblies in the
consolidation-blocked (Supplementary Fig. 9d,f), but not in the
control network (Supplementary Fig. 9c,e). Thus, a network
without synaptic consolidation can no longer recall memories
from external cues. These findings suggest a potentially important
computational role of consolidation.
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After 2 h of stimulation (*) with the original input modality (cf. Fig. 3), two

subsets of neurons R1 (yellow) and R2 (cyan) were stimulated repeatedly

for 2 h through synapses from a different input modality (Methods). At r
the input modality is reverted back to the same as the previous. (b) The

network activity towards the end of the stimulation phase of R1/R2. Spike

raster (top left) and population activity (bottom left) are shown. The

histograms on the right characterize the firing rates and the CV ISI of the

spiking activity during the interval highlighted with the black bar in the

raster plot on the left. (c) Same as b, but shortly after the original synaptic

input was restored (cf. r in a). (d) Same as c, but 1 h after the original

synaptic input was restored.
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Blockage of individual plasticity mechanisms. To further
investigate the individual roles of the various plasticity mechan-
isms in our model we ran additional simulations in which specific
forms of plasticity were selectively disabled. First, when disabling
transmitter-induced plasticity the network was able to form and
recall cell assemblies. However, about one third of all cells in the
network became quiescent during the induction protocol and
remained silent thereafter (Supplementary Fig. 5b). The deacti-
vation of heterosynaptic plasticity alone (b¼ 0) resulted in an
immediate and irreversible increase in neuronal firing rates fol-
lowing stimulation that prevented the network from forming
useful stimulus representations or working memory states
(Supplementary Fig. 5c).

Finally, blocking inhibitory plasticity at the beginning of the
simulation resulted in substantially higher firing rates, although it
did not prevent the network from learning or function as a
working memory (Supplementary Fig. 5d). However, when we
first simulated the full network with all plasticity mechanisms

enabled and then blocked inhibitory plasticity during associative
recall, we did not find any notable difference in the overall
network dynamics compared with the network in which
inhibitory plasticity was active (data not shown). These results
suggest that inhibitory plasticity is helpful to set inhibition to
appropriate levels, but is not necessary to readjust inhibitory
weights during recall and delay activity.

Discussion
We have demonstrated that Hebbian plasticity becomes intrinsi-
cally stable by including two or more local forms of non-Hebbian
plasticity. In a spiking recurrent neural network model, the
orchestrated interplay of these plasticity rules with STP enables
the stable formation and recall of cell assemblies. The removal of
any one of these mechanisms impaired network function as a
memory module. Our results indicate that multiple plasticity
mechanisms encountered in the brain work in symphony to
enable memory function.

In our model, excitatory synapses are subject to multiple
plasticity rules that act on different timescales. First, on the
timescale of hundreds of milliseconds, the nonlinear influence of
STP on the effective input–output relation of cell assemblies
contributes to firing rate bistability at low and intermediate rates.
To achieve firing rate bistability through inhibitory feedback11

requires fine tuning and spike frequency adaptation (SFA) alone
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Figure 8 | Blocking consolidation causes cell assemblies to decouple

from external input. (a) Control network with normal consolidation
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can also be excluded as an alternative because of its overall
linearizing effect on neuronal f–I curves.

Second, on the timescale of seconds to minutes, triplet STDP30

acts as a plausible form of homosynaptic Hebbian STDP. It is
complemented by two non-Hebbian forms of plasticity that act
on the same timescale. First, at low firing rates, transmitter-
induced potentiation compensates the effects of homosynaptic
LTD and ensures a baseline level of activity in the network.
Second, at high rates, heterosynaptic depression of strong
synapses counteracts LTP and prevents synaptic growth.

Heterosynaptic plasticity in the model is triggered by
postsynaptic burst firing, which is in qualitative agreement with
experimental findings21,58. The interaction of heterosynaptic
plasticity with consolidation implies that each synapse in our
model ‘remembers’ its baseline value so that induced synaptic
changes can be reverted during a time window of up to 20–60 min
(ref. 58). This is achieved by a bistable time-dependent reference
weight ~w that follows the synaptic weight w on a much longer
timescale than that of induction of plasticity59. In our model,
depending on the relative difference of the synaptic weight w and
the reference weight ~w, heterosynaptic plasticity can be induced
bi-directionally, which provides a possible explanation of
experimental data21,49,58.

From the plethora of plasticity phenomena in biological
networks we incorporated a small subset into our model. It is
likely that some plasticity mechanisms could be replaced by
others or that their role could be fulfilled by multiple redundant
parallel plasticity pathways. For example, the role of transmitter-
induced plasticity could be taken over by fast forms of synaptic
scaling60. Regardless of the exact identity of the underlying
mechanism, we expect two important requirements to be met in
any case. First, unstable (Hebbian) forms of plasticity are
complemented with compensatory (non-Hebbian) forms of
plasticity acting on the same timescale21,42. Second, to create
multiple stable fixed points in long-term plasticity dynamics,
compensatory plasticity mechanisms must exist that set in at high
postsynaptic activity (cf. equation (1)). Experimentally, such
mechanisms would reveal their presence as burst detector with a
resetting effect58 (for example, depotentiation). In our model, this
is implemented as a high-power term in the postsynaptic activity
(cf. equation (1)), but models with a binary activity threshold also
fall into this category49.

Our model relies on fast forms of plasticity that are able to
compensate each other. Slow homeostatic processes were not
necessary, when the initial parameters were set to sensible values
through manual parameter tuning. Homeostasis ensured network
functionality over a broader range of parameter values,
exemplified here by homeostatic metaplasticity30,40 (cf.
Supplementary Figs 6 and 7), which pushed the network
dynamics to an activity regime were cell assemblies emerged
naturally. Owing to the intrinsic stability of plasticity,
homeostasis in our model acts on the slow timescale observed
in experiments29,56. On a similarly slow timescale, synapses in
our model change their internal state, which we called the
‘reference weight’. In our model, this consolidation mechanism is
crucial for stabilizing associations between cells. We expect this,
or similar, consolidation mechanisms to play an important role
for memory capacity61.

Inhibitory synapses in our model were subject to a hypothetical
form of inhibitory STDP, which is modulated by a global secreted
factor35. During high global activity this plasticity rule is Hebbian
and, similarly to previous work62, stabilizes network activity. If,
however, global activity is too low, global modulation changes the
rule to anti-Hebbian such that it becomes reminiscent of ref. 50.
In contrast to ref. 62 the proposed learning rule does not enforce
a target firing rate for individual neurons, but rather a network-

wide constraint, which is consistent with the notion that
inhibitory homeostatic plasticity is modulated by global factors35

rather than individual neuronal activity. The fact that, for sensible
parameter choices, delay activity in our model emerges also
without inhibitory plasticity (cf. Supplementary Fig. 5d) suggests
that inhibitory plasticity plays a homeostatic role.

Despite its ability to capture the stable formation and recall of
cell assemblies, our model has several shortcomings. First, our
plasticity model does not capture depotentiation induced by low-
activity LTD-like protocols63; however, extensions of the model in
this direction are possible. Second, our network model does not
exhibit a global background state; however, one of the memories
is always active. While in some simulations we observed the
emergence of a background-like attractor state that did not
correlate with any of the learned patterns, the systematic
investigation of mechanisms to generate a stable background
state is beyond the scope of the present study.

The emergence of cell assemblies through Hebbian synaptic
plasticity has been studied in the past14,41,57. Yet, stable learning
and recall of memories without run-away of firing rates or the
erasure of stored information has been challenging. While ref. 41
illustrated that cell assemblies can be learned in recurrent
network models using a plausible learning rule, the model did
not produce sufficient self-feedback to actively recall patterns.
Mongillo et al.14 first illustrated assembly formation and recall in
larger networks and highlighted the importance of short-term
depression to prevent implausibly high firing rates. The work
employed a phenomenological model of Hebbian plasticity, in
which weights are binary and switch on the timescale of tens of
milliseconds. Finally, Litwin-Kumar et al.57 studied assembly
formation and recall in large networks with plausible models of
plasticity induction, but focused on transient recall and
spontaneous switching between memory items on short
timescales (hundreds of milliseconds). For stability this model
required rapid homeostatic synaptic scaling on the timescale of
seconds.

Several aspects of our model can be tested in experiments. First,
in the current form, our plasticity rule links depotentiation with
heterosynaptic plasticity. This aspect could be tested in induction
experiments of LTP or LTD, which are shortly followed
(o10 min) by a ‘post only’ burst protocol. Our model predicts
an at least partial reversal of plasticity in the induction pathway,
but no or only very little change at other synapses. Second, the
reversal effect should disappear for intervals between induction
and reversal longer than the timescale of consolidation. Third,
from the interaction between heterosynaptic plasticity with
Hebbian plasticity in our model, we predict the existence of a
presynaptic activity threshold for the induction of LTP in
protocols with high postsynaptic activity. That is, LTP will only
occur when high postsynaptic activity is paired with high
presynaptic activity. This behaviour should be robust even if
the duration of the protocol is chosen to saturate the synaptic
change. In contrast to that, current models of plasticity predict a
mere modulation of rate of change with presynaptic activity.
Finally, our model states that inhibitory plasticity should be
modulated globally by secreted factors to normalize activity at the
network level.

In summary, we have shown that the combination of multiple
forms of plasticity leads, in an unsupervised manner, to the
emergence of stable associative memories in models of spiking
recurrent neural networks. Recall of stored memories was
demonstrated by selective delay activity. Different forms of
plasticity stabilize each other by interacting on comparable
timescales in a push–pull manner. Slow homeostatic processes
facilitate the learning process, by driving the network and
plasticity rules to a suitable working point. Overall, our results
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highlight the importance of non-Hebbian, rapidly induced forms
of plasticity that complement and stabilize Hebbian plasticity of
excitatory synapses. Inhibitory as well as globally modulated
forms of plasticity will deserve further study, both experimentally
and computationally.

Methods
To study the formation and recall of cell assemblies, we simulated spiking neural
network models with sparse random connectivity and multiple forms of synaptic
plasticity. The networks we studied consisted of 5,120 integrate-and-fire neurons
(4,096 excitatory and 1,024 inhibitory). In the following we describe the different
elements of the model. For clarity we only quote the most relevant parameters in
the text. A complete tabular description of the model is supplied in the
Supplementary Information (Supplementary Tables 1 and 2).

Neuron model. We use leaky integrate-and-fire neurons with SFA, which receive
conductance-based synaptic input. The temporal evolution of the membrane
voltage Ui of neuron i is described by

tm dUi

dt
¼ ðU rest �UiÞþ gexc

i ðtÞðUexc �UiÞþ ggaba
i ðtÞþ ga

i ðtÞ
� �

ðU inh �UiÞ

ð2Þ

where inhibitory synaptic input ggaba
i ðtÞ and a contribution to spike-triggered

adaptation ga
i ðtÞ evolve according to

dggaba
i

dt
¼ � ggaba

i

tgaba
þ
X
j2inh

wijSjðtÞ ð3Þ

dga
i

dt
¼ � ga

i

ta
þDaSiðtÞ: ð4Þ

The value of ggaba
i jumps by an amount wij at the moment of spike arrival from

presynaptic inhibitory neurons SjðtÞ ¼
P

k dðt� tk
j Þ where d denotes the Dirac

d-function and tk
j ðk ¼ 1; 2; � � �Þ are firing times of neuron j. Analogously, ga

i jumps
at the occurrence of postsynaptic action potentials Si(t) by Da, the strength of
adaptation.

Where this is mentioned explicitly (see Fig. 4c) we add a second adaptation
variable with the same temporal evolution as in equation (4), but with different
values for Da and ta. The resulting long-lasting adaptation54 mimics cellular
behaviour.

Depolarizing current in equation (2) results from excitatory synaptic input

gexc
i ðtÞ ¼ agampa

i ðtÞþ ð1� aÞgnmda
i ðtÞ ð5Þ

with a fast AMPA-like component gampa
i ðtÞ and a slowly rising and decaying

NMDA-like component gnmda
i ðtÞ. Their temporal evolution is given by

dgampa
i

dt
¼ � gampa

i

tampa
þ
X
j2exc

wij ujðtÞxjðtÞ|fflfflfflfflffl{zfflfflfflfflffl}
Short�term plasticity

SjðtÞ ð6Þ

tnmda dgnmda
i

dt
¼ � gnmda

i þ gampa
i ð7Þ

where tampa and tnmda are time constants and the variables uj(t) and xj(t) describe
the state of STP (see below).

An action potential is triggered when the membrane voltage of neuron i rises
above the threshold value Wi . Following a spike the voltage Ui is reset to U rest

i . At
the same time, the threshold Wi is transiently increased Wi ! Wspike to implement
refractoriness. In the absence of further spikes the dynamic threshold Wi relaxes to
its resting state Wrest

tthr dWi

dt
¼ Wrest � Wi ð8Þ

with time constant tthr.

Synaptic plasticity. Our model combines different forms of plasticity. Excitatory
synapses exhibit STP, STDP, heterosynaptic plasticity and transmitter-induced
plasticity. Inhibitory synapses on excitatory neurons are plastic and obey an STDP
rule that is globally modulated by a secreted factor.

Short-term plasticity. All excitatory connections in our model exhibit STP10,28.
The temporal evolution of the STP state variables ui(t) and xi(t) (cf. equation (6)) is

described by

d
dt

xjðtÞ ¼
1� xjðtÞ

td
� ujðtÞxjðtÞSjðtÞ ð9Þ

d
dt

ujðtÞ ¼
U � ujðtÞ

tf
þU 1� ujðtÞ

� �
SjðtÞ ð10Þ

with a fixed parameter set for all synapses (td ¼ 200 ms, tf ¼ 600 ms and U¼ 0.2).

Long-term plasticity of excitatory synapses. Plastic excitatory connections are
subject to three different plasticity mechanisms: triplet STDP30 as well as
transmitter-induced55 and heterosynaptic plasticity21. All three forms of plasticity
affect the synaptic weights wij directly as follows

d
dt

wijðtÞ ¼ Azþj ðtÞzslow
i ðt� EÞSiðtÞ triplet LTP ð11Þ

�BiðtÞz�i ðtÞSjðtÞ doublet LTD ð12Þ

� b wij� ~wijðtÞ
� �

z�i ðt� EÞ
� �3

SiðtÞ heterosynaptic ð13Þ

þ dSjðtÞ: transmitter� induced ð14Þ
The first two expressions (Expressions (11) and (12)) correspond to the

published triplet STDP model30. The high power of the postsynaptic firing rate in
Expression (13) acts as a burst detector that implements heterosynaptic plasticity.
Finally, Expression (14) represents the term responsible for transmitter-induced
plasticity. The parameters A, b and d are fixed. Moreover, Bi(t)¼A (unless
mentioned otherwise) and the reference weights ~wijðtÞ evolve according to their
own dynamics (see below). All occurrences of the state variable zx

j=iðtÞ denote
synaptic traces that can occur as pre- or postsynaptic quantities. The offset in the
time argument ensures that the current action potential is not counted in the trace.
Each synaptic trace evolves independently according to the following differential
equation

dzx
i

dt
¼ � zx

tx
þ SiðtÞ ð15Þ

with individual time constants tx . In all simulations the synaptic weight wij was
additionally algorithmically constrained to the interval 0rwijr5. However, unless
heterosynaptic plasticity was turned off (b¼ 0; cf. Supplementary Fig. 5c), synaptic
weights never reached the upper bound.

Consolidation dynamics. Similar to existing work the reference weight ~w follows
the negative gradient of a double well potential23,48,59,64. Its evolution is driven by
the difference between current weight wij and ~wij as described by the following
expression

tcons d
dt

~wijðtÞ ¼wijðtÞ� ~wijðtÞ

�P~wijðtÞ
wP

2
� ~wijðtÞ

� �
wP� ~wijðtÞ
� �

;

ð16Þ

in which the parameter P controls the strength of the double-well potential. For
wijðtÞ ¼ ~wijðtÞ, wP¼ 0.5 defines the upper stable fixed point and the lower stable
fixed point lies at ~wijðtÞ ¼ 0. If wij is slightly larger than ~wij , the values of the two
stable fixed points of ~wij increase. For wij � ~wij only one fixed point at a high
value remains. Finally, tcons ¼ 20 min characterizes the rate of convergence
towards a stable equilibrium point.

Homeostatic regulation of LTD. In most simulations, we keep the rate Bi(t) of
LTD fixed (Bi(t)¼A) and choose initial synaptic strength such that a subset of
neurons responds with rates above the LTP threshold to external stimulation. We
thereby implicitly assume that the network has been prepared in this state by one
or multiple homeostatic mechanisms that act on a much longer timescale than
those captured in our simulations. To test whether homeostasis could indeed
achieve such parameter tuning, we ran a subset of simulations in which Bi(t) was
explicitly time-dependent30,40 (Supplementary Figs 6 and 7). Where homeostatic
regulation of LTD is mentioned explicitly in the text, we set

BiðtÞ ¼
ACiðtÞ for CiðtÞ � 1
A otherwise

	
ð17Þ

d
dt

CiðtÞ ¼ �
CiðtÞ
thom

þ zht
i ðtÞ

� �2 ð18Þ

with thom ¼ 20 min, in which zht
i ðtÞ is another synaptic trace as in equation (15)

with tht ¼ 100 ms. The ‘if’ condition in equation (17) ensures that LTD cannot
remove the rate fixed point associated with the elevated activity in a cell assembly.
The homeostatic control of LTD as implemented by equations (17) and (18)
ensures that in a situation where all excitatory cells in a network remain for a long
time at a rate of 1 Hz or below, the plasticity threshold (cf. equation (1)) is reduced
until some cells start to respond at elevated rates.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7922

10 NATURE COMMUNICATIONS | 6:6922 | DOI: 10.1038/ncomms7922 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Long-term plasticity of inhibitory synapses. While it is widely accepted that
synaptic inhibition in neural networks controls the overall network activity, it is less
clear how inhibitory connections are formed and how the strength of inhibition
adapts. In our model we use a hypothetical form of inhibitory synaptic plasticity,
which is modulated by a global secreted factor35. Roughly speaking, inhibitory
synapses tend to be potentiated whenever the global network activity is too high.

Specifically, inhibitory synapses on excitatory neurons in our model obey the
following STDP rule

d
dt

wijðtÞ ¼ ZGðtÞ ziðtÞþ 1ð ÞSjðtÞþ zjðtÞSiðtÞ

 �

ð19Þ

where Z is a constant, the zj/i denote pre/postsynaptic traces with common time
constant tiSTDP (cf. equation (15)), Sj/i(t) are the pre/postsynaptic spike trains and
G(t) is a quantity that linearly depends on the global secreted factor H(t). In
particular, we set GðtÞ ¼ HðtÞ� g, where H(t) is defined as the low-pass-filtered
version of all spikes in the excitatory population given by

d
dt

HðtÞ ¼ � HðtÞ
tH
þ
X
i2exc

SiðtÞ ð20Þ

with characteristic time constant tH ¼ 10 s. We interpret H(t) as a chemical signal
that neurons secrete when they are active and that diffuses in the extracellular space
where it can be sensed by other neurons or synapses as a measure of the global
network activity. When this activity drops below its target value g, G(t) is smaller
than zero and the STDP learning rule (equation (19)) becomes a unidirectional
‘depression only’ learning rule50,65. Conversely, if the network activity is higher
than g the learning rule becomes Hebbian. Similar to previous theoretical work62

this has a stabilizing effect on the overall network dynamics.

Simulation of postsynaptic tetanization protocols. To simulate the postsynaptic
tetanization protocol49 (cf. Fig. 5a), we connected a single postsynaptic neuron with
1,000 presynaptic connections endowed with heterosynaptic and transmitter-
induced plasticity as well as triplet STDP. We used two independent random
initial values for the synaptic weights wij and their reference values ~wij (equations
(11)–(16)). Both were drawn independently from a normal distribution with mean
0.3 and s.d. 0.3. To ensure positive values after the assignment, all weight values
below zero were then set to zero.

We simulated the ongoing measurement of the EPSP size from two different
pathways (Fig. 5ai,ii), which were stimulated alternatingly with one spike each
(50-ms time difference) every 7.5 s. This stimulation was maintained during the entire
protocol except during tetanization (10 minoto13 min) where the postsynaptic cell
was forced to spike through simulated current injection (three trains with 1-min
offset consisting of 10 burst at 1 Hz with five spikes at 100 Hz each49).

Stimulation paradigm. For simulations requiring external stimulation we used the
following paradigm. In the absence of a stimulus all input neurons were firing with
Poisson statistics at a fixed rate of 10 Hz. A designated set of stimuli was fixed at the
beginning of the simulation as a graded (Fig. 2e) or a binary activation pattern of
input neurons (for example, Fig. 3a). During stimulation, input cells that were
active in a given pattern fired with a by z� 35 Hz increased rate (unless mentioned
otherwise), in which z was one for binary patterns or from the interval [0,1] for
graded activity patterns.

Stimulus order was chosen randomly with equal probability for all stimuli unless
mentioned otherwise. The interstimulus intervals and stimulus durations were
drawn from exponential distributions with the mean values TOff and TOn,
respectively. During an initial burn-in period of at least 50 s no stimulation was
given. For all network simulations we initially set TOn¼ 1 s, while TOff was set to
TOff¼ 2 s. To test for delay activity, these values were switched to TOn¼ 0.2 s and
TOff¼ 20 s after 1 h of simulated time. In all cases, the same network simulation was
simulated continuously to first learn a set of stimuli (to1 h) to test for delay activity
(1 hoto2 h) and for associativity (2 hot). All forms of plasticity were permanently
active during the entire simulation, unless blockage is explicitly mentioned.

Details of feed-forward network simulations. To characterize the effect of our
excitatory plasticity rule on a single postsynaptic neuron, we simulated two simple
feed-forward networks without inhibition (Fig. 2b,c; Supplementary Fig. 3). More
precisely, we simulated a single postsynaptic neuron that received 80 plastic
excitatory input from each of two populations of Poisson neurons. The neurons in
one population fired at 10 Hz and the initial weight w0 took different values in the
interval (0.2,0.35) as stated in Fig. 2b. Neurons in the second Poisson population
fired at 1 Hz and the initial weight was initialized at a value of wctl(t¼ 0)¼ 0.1.

In Fig. 2e we used a similar set-up with 1,000 presynaptic Poisson inputs (initial
weight w0¼ 0.05 and ~wðt ¼ 0Þ ¼ 0) all firing at a constant background rate of
10 Hz. The stimulus set consisted of 10 Gaussian firing rate profiles in the
presynaptic index with fixed s.d. s¼ 50, but different centres. Stimulation onset
was at t¼ 100 s mean stimulation interval TOn¼ 20 s (TOff¼ 100 ms).

Balanced network model. We used a balanced network model consisting of 4,096
excitatory and 1,024 inhibitory integrate and fire neurons. The connectivity within

the network was random sparse with an overall connection probability of 10%.
Neurons in the excitatory population received additional input from an external
population of equal size that provided noisy background input. For Figs 3 and 4
these input connections were pre-structured so that cells from within a circular
area (radius R¼ 8) in the 64� 64 input space projected to individual network
neurons (Fig. 3a). The centre of the circle was chosen randomly within the input
space for each postsynaptic neuron. For Supplementary Figs 6 and 7 input con-
nections were initialized with random sparse connectivity with 5% connection
probability. All excitatory afferent connections relayed stimuli from the external
Poisson input population to the network (see ‘Stimulation paradigm’ above).

In simulations involving plasticity, all afferent connections to excitatory cells in
the network were plastic. Moreover, plasticity was always active, also during
periods when the network was cued with partial stimuli (for example, Fig. 4).

Directed stimulation of two neural subpopulations. To directly stimulate two
subsets of neurons (Fig. 6) we proceeded as follows. To assign the subsets, all cells
from the reserve pool (cf. black bar in Fig. 3h) plus 200 neurons coding for other
patterns were split into two approximately equal populations (R1/R2). At t¼ 2 h
(cf. Fig. 6a) input from existing input synapses was turned off and synaptic input
from a different input modality was simulated by driving neurons in each population
(R1/R2) through static synapses (w¼ 0.2, no STP) from two independent external
populations of Poisson neurons (firing at 10 Hz) of equal size as R1 and R2,
respectively. Individual neurons within R1 and R2 received connections from the
corresponding external pools with a fixed connection probability of 5%. To stimulate
R1 and R2, we used the same stimulation paradigm as before with TOn¼ 1 s and
TOff¼ 5 s during the first hour (2 hoto3 h) and TOn¼ 0.2 s and TOff¼ 20 s during
the second hour (3 hoto4 h) to illustrate the stability of working memory states. At
t¼ 4 h the input protocol was reverted to the original input synapses.

Continuous recall of only one assembly over hours. To make one assembly
constantly active (Fig. 7), we switched off stimulation with external cues. To avoid
any spontaneous activation of other assemblies during multiple hours of simulated
time, we reduced the firing rate of neurons in inactive assemblies to B0.5 Hz by
reducing the value of the parameter d of transmitter-induced plasticity (d¼ 1
� 10� 5). This manipulation did not have a notable effect on recall dynamics
(Fig. 3a,b; first two hours), but completely abandoned spontaneous state transitions
within the time frame of our simulation.

Simulation details and code. All simulation codes were written in Cþ þ and are
based on the network simulation framework Auryn66. The code is freely available
on the author’s GitHub page67. Neuronal state variables were updated using the
forward Euler method with 0.1-ms temporal resolution. The only exception from
that was the slow evolution of the reference weights ~wij, which were updated with a
time step of 1.2 s for efficiency reasons.

Determining readout populations and overlap. To determine which cells
respond to a given stimulus m, we compute the stimulus-evoked firing rate �nmi of
neuron i from spiking data in the interval 3,000 soto3,500 s. We count neuron i
as coding for stimulus m if �nmi 410 Hz. To characterize differences in evoked net-
work responses to different stimuli, we plot the covariance matrix (for example,
Fig. 3f,g)

Cmo ¼
1
N

X
i

�nmi �~nmð Þ �noi �~no
� �

where ~nm ¼ 1
N

PN
i �nmi is the mean evoked population response of all neurons for

stimulus m.
From the set Mm of neurons responding to stimulus m (that is, all neurons i with

�nmi 410 Hz) we compute the ‘activity’, that is, the population firing rate in the set as

AmðtÞ ¼
1

Mm
�� ��

X
i2Mm

fiðtÞ

where Mm
�� �� is the number of neurons in the set Mm and fi is the firing rate of

neuron i with a temporal resolution of 50 ms. These data are either plotted directly
as activity along with spike raster plots (for example, Fig. 3d,j) or used to compute
peristimulus time histograms (for example, Fig. 4b).

References
1. Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley

& Sons New York, 1949).
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