35 research outputs found

    Hydraulic characteristics of sedimentary deposits at the j-parc proton-accelerator, japan

    Get PDF
    Hydraulic characteristics of sediments were investigated at J-PARC for the purpose of site characterization in relation with the construction of Japan's largest proton-accelerator. A total of 340 samples extracted from 9 exploratory wells were examined by standard laboratory tests and complemented with statistical analyses to quantitatively determine the main terrain attributes. Two main hydro-geological units were recognized, although a number of embedded layers defined amultilevel aquifer. Grain-size distribution derived from sieve analysis and the coefficient of uniformity showed that soils are poorly sorted. On the other hand, hydraulic conductivity was measured by anumber of parameters such as a log-normal distribution. Conductivity was also predicted by empirical formulas, yielding values up to three orders of magnitude higher. Discrepancies were explained interms of soil anisotropy and intrinsic differences in the calculation methods. Based on the Shepherd's approach, a power relationship between permeability and grain size was found at 2 wells. Hydraulicconductivity was also correlated to porosity. However, this  nterdependence was not systematic and therefore, properties at many parts of the profile were considered to be randomly distributed. Finally,logs of electrical conductivity suggested that variations of soil hydraulic properties can be associated to changes in water quality. In spite of the remaining uncertainties, results yielded from the study are useful to better understand the numerical modelling of the subsurface system in the site

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    Autoantibodies against type I IFNs in patients with critical influenza pneumonia

    Full text link
    In an international cohort of 279 patients with hypoxemic influenza pneumonia, we identified 13 patients (4.6%) with autoantibodies neutralizing IFN-alpha and/or -omega, which were previously reported to underlie 15% cases of life-threatening COVID-19 pneumonia and one third of severe adverse reactions to live-attenuated yellow fever vaccine. Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-alpha 2 alone (five patients) or with IFN-omega (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-alpha 2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-omega. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-alpha 2 and IFN-omega (OR = 11.7, P = 1.3 x 10(-5)), especially those <70 yr old (OR = 139.9, P = 3.1 x 10(-10)). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for similar to 5% of cases of life-threatening influenza pneumonia in patients <70 yr old

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Get PDF
    Abstract: CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Groundwater Exploration for Rural Water Supply in an Arid Region of Southern Argentina

    No full text
    Climate change has led to an increase in extreme weather events and desertification of vast areas of southern Argentina. Water shortages are a major concern, and this problem is expected to be exacerbated in the future. An exploration program was undertaken to investigate the groundwater occurrence in areas of the Chubut River basin in order to provide new supply options for pastoral farming. The investigation involved the drilling of exploration holes and construction of bores for long-term monitoring. Water quality and hydraulic test data were also collected. Findings from the study indicate that alluvial sediments extend to a maximum of 45 m below the surface, and are underlain by a sequence of clays and subordinated sands that exceed 100 m in thickness. The bulk of groundwater lies within the shallow sediments, which act as an unconfined aquifer. Hydraulic conductivities up to 10 m/day were estimated from pumping tests, although granulometric analyses indicate that higher values may occur. Chemical characterization indicates that waters are typically fresh, low in sodium, and largely suitable for stock-grazing or horticulture. Anomalous salinities at one of the sites are likely due to the effects of a nearby waste dump. Even though further work is required, the study contributes to a better understanding of the dynamics of the hydrogeological system in the basin under a warming climate, and provides useful information for the expansion of economic activities in remote communities of Argentina

    Hydraulic characteristics of sedimentary deposits at the J-PARC proton-accelerator, Japan

    Get PDF
    Hydraulic characteristics of sediments were investigated at J-PARC for the purpose of site characterization in relation with the construction of Japan's largest proton-accelerator. A total of 340 samples extracted from 9 exploratory wells were examined by standard laboratory tests and complemented with statistical analyses to quantitatively determine the main terrain attributes. Two main hydro-geological units were recognized, although a number of embedded layers defined a&lt;br /&gt;multilevel aquifer. Grain-size distribution derived from sieve analysis and the coefficient of uniformity showed that soils are poorly sorted. On the other hand, hydraulic conductivity was measured by a&lt;br /&gt;number of parameters such as a log-normal distribution. Conductivity was also predicted by empirical formulas, yielding values up to three orders of magnitude higher. Discrepancies were explained in&lt;br /&gt;terms of soil anisotropy and intrinsic differences in the calculation methods. Based on the Shepherd's approach, a power relationship between permeability and grain size was found at 2 wells. Hydraulic&lt;br /&gt;conductivity was also correlated to porosity. However, this  nterdependence was not systematic and therefore, properties at many parts of the profile were considered to be randomly distributed. Finally,&lt;br /&gt;logs of electrical conductivity suggested that variations of soil hydraulic properties can be associated to changes in water quality. In spite of the remaining uncertainties, results yielded from the study are useful to better understand the numerical modelling of the subsurface system in the site

    Optimization of a Groundwater Monitoring Network for a Sustainable Development of the Maheshwaram Catchment, India

    No full text
    Groundwater is one of the most valuable resources for drinking water and irrigation in the Maheshwaram Catchment, Central India, where most of the local population depends on it for agricultural activities. An increasing demand for irrigation and the growing concern about potential water contamination makes imperative the implementation of a systematic groundwater-quality monitoring program in the region. Nonetheless, limited funding and resources emphasize the need to achieve a representative but cost-effective sampling strategy. In this context, field observations were combined with a geostatistical analysis to define an optimized monitoring network able to provide sufficient and non-redundant information on key hydrochemical parameters. A factor analysis was used to evaluate the interrelationship among variables, and permitted to reduce the original dataset into a new configuration of monitoring points still able to capture the spatial variability in the groundwater quality of the basin. The approach is useful to maximize data collection and contributes to better manage the allocation of resources under budget constrains.groundwater; geostatistics; monitoring network; optimization; India
    corecore