71 research outputs found

    Employability of technology and livelihood education graduates

    Get PDF
    This paper examines the job-seeking experiences of the 2019 Bachelor of Technology and Livelihood Education (BTLE) graduates from a teacher education university. Identifying these graduates’ employability is vital to the field of educational research, particularly in determining the impact of a higher education institution’s BTLE program. Employing quantitative research design through a survey of 50 graduates, this research revealed that great majority of them have been employed, with majority securing education-related jobs within a year after graduation, while some having chosen careers unrelated to their pre-service education. Strategies for job search and reasons for job offer acceptance vary from traditional, economic concerns, to complexities of work opportunities and requirements. They have also reported that the pre-service courseworks they undertaken have, to a great extent, relevance to the improvement of their skills in problem-solving, communication, critical thinking, human relations, knowledge/technical, leadership, research, and information technology thus making it aligned with current employment and/or self-employment demands. Apart from presenting the reasons of their employment acceptance and post-college education undertakings, this paper also outlines the challenges in securing employment. Thus, such issues forwarded by the paper, arising from academic training vis-à-vis actual industry works, are strong points for pre-service BTLE program enhancements

    Mutagenesis of Murine Cytomegalovirus Using a Tn3-Based Transposon

    Get PDF
    AbstractA transposon derived from Escherichia coli Tn3 was introduced into the genome of murine cytomegalovirus (MCMV) to generate a pool of viral mutants. We analyzed three of the constructed recombinant viruses that contained the transposon within the M25, M27, and m155 open reading frames. Our studies provide the first direct evidence to suggest that M25 and M27 are not essential for viral replication in mouse NIH 3T3 cells. Studies in cultured cells and Balb/c mice indicated that the transposon insertion is stable during viral propagation both in vitro and in vivo. Moreover the virus that contained the insertion mutation in M25 exhibited a titer similar to that of the wild-type virus in the salivary glands, lungs, livers, spleens, and kidneys of the Balb/c mice that were intraperitoneally infected with these viruses. These results suggest that M25 is dispensable for viral growth in these organs and the presence of the transposon sequence in the viral genome does not significantly affect viral replication in vivo. The Tn3-based system can be used as a mutagenesis approach for studying the function of MCMV genes in both tissue culture and in animals

    The Cytomegalovirus m155 Gene Product Subverts Natural Killer Cell Antiviral Protection by Disruption of H60–NKG2D Interactions

    Get PDF
    Natural killer (NK) cells are an important early mediator of host immunity to murine cytomegalovirus (MCMV) infection. However, MCMV has evolved mechanisms to elude recognition and clearance by NK cells. We have identified an MCMV immune evasion protein that impairs NKG2D-mediated NK cell antiviral activity. Infection of BALB/c 3T3 cells with the Smith strain of MCMV resulted in strong down-regulation of H60, a high affinity ligand for NKG2D, from the surface of virus-infected cells. The MCMV m155 protein specifically down-regulated H60 without affecting expression of the other known NKG2D ligands, RAE-1 and MULT-1. Treatment with the proteasome inhibitors lactacystin or epoxomicin reversed m155 down-regulation of H60. An MCMV mutant virus lacking m155 was severely attenuated in BALB/c mice; however, treatment with neutralizing anti-NKG2D monoclonal antibody or with NK-depleting anti-asialo GM1 antisera restored virulence of the mutant virus. Thus, down-regulation of H60 by m155 is a powerful mechanism of inhibiting NKG2D-mediated antiviral function

    Study Habits of LORMA Senior High School Students Engaged in Online Learning

    Get PDF
    With the emerging paradigm shift as a result of the rise of the online learning framework during the COVID-19 pandemic, factors like study habits can change Herewith, this study aimed to determine the study habits the LORMA Senior High School students have developed in online learning, the significant changes in the study habits before and during the implementation of online learning, and the most effective study habits of students engaged in online learning. Twenty-five (25) students were selected using simple random sampling. Qualitative-Descriptive Research Design was used which allowed the respondents to explain their perceptions in their own terms and to understand how those behaviors developed. Thematization was used in the data analysis, in which the gathered responses were categorized into various themes. The research results revealed the different study habits developed using online learning. The findings also indicated substantial differences in practices before and after the introduction of online learning. Changes in schedule and learning materials, decreased enthusiasm, and other behaviors were discovered to have changed due to the transition to online classes. Furthermore, the researchers identified four (4) most effective study habits among various responses: time management, maintaining a healthy lifestyle, concentrating, and reviewing lectures

    RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice

    Get PDF
    Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is one of the most serious diseases of rice. The recessive gene xa-13 confers resistance to Philippine race 6 of Xoo. To tag xa-13 with molecular markers, RAPD analysis was conducted with the combined use of near-isogenic lines and bulked segregant analysis. From the survey of 260 arbitrary 10-nucleotide primers, one primer (OPAC05) was detected to amplify specifically a 0.9-kb band from the DNA of susceptible plants. The distance between the RAPD marker OPAC05-900 and xa-13 was estimated to be 5.3 cM. The RAPD marker was then mapped on chromosome 8 using a mapping population of doubled haploid lines derived from the cross of IR64/Azucena. The linkage between RFLP markers and the RAPD marker was analyzed using an F2 population of 135 plants derived from a cross between a near-isogenic line for xa-13, IR66699-5-5-4-2, and IR24. No recombinants were found between RZ28 and CDO116 and their distance from xa-13 was estimated to be 4.8 cM. RG136 was located at 3.7 cM on the other side of xa-13. The mapping of xa-13 with closely linked DNA markers provides the basis for marker-aided selection for rice improvement

    QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice

    Get PDF
    The QlicRice database is designed to host publicly accessible, abiotic stress responsive quantitative trait loci (QTLs) in rice (Oryza sativa) and their corresponding sequenced gene loci. It provides a platform for the data mining of abiotic stress responsive QTLs, as well as browsing and annotating associated traits, their location on a sequenced genome, mapped expressed sequence tags (ESTs) and tissue and growth stage-specific expressions on the whole genome. Information on QTLs related to abiotic stresses and their corresponding loci from a genomic perspective has not yet been integrated on an accessible, user-friendly platform. QlicRice offers client-responsive architecture to retrieve meaningful biological information—integrated and named ‘Qlic Search’—embedded in a query phrase autocomplete feature, coupled with multiple search options that include trait names, genes and QTL IDs. A comprehensive physical and genetic map and vital statistics have been provided in a graphical manner for deciphering the position of QTLs on different chromosomes. A convenient and intuitive user interface have been designed to help users retrieve associations to agronomically important QTLs on abiotic stress response in rice

    Identification of DNA-Damage DNA-Binding Protein 1 as a Conditional Essential Factor for Cytomegalovirus Replication in Interferon-γ-Stimulated Cells

    Get PDF
    The mouse cytomegaloviral (MCMV) protein pM27 represents an indispensable factor for viral fitness in vivo selectively, antagonizing signal transducer and activator of transcription 2 (STAT2)-mediated interferon signal transduction. We wished to explore by which molecular mechanism pM27 accomplishes this effect. We demonstrate that pM27 is essential and sufficient to curtail the protein half-life of STAT2 molecules. Pharmacologic inhibition of the proteasome restored STAT2 amounts, leading to poly-ubiquitin-conjugated STAT2 forms. PM27 was found in complexes with an essential host ubiquitin ligase complex adaptor protein, DNA-damage DNA-binding protein (DDB) 1. Truncation mutants of pM27 showed a strict correlation between DDB1 interaction and their ability to degrade STAT2. SiRNA-mediated knock-down of DDB1 restored STAT2 in the presence of pM27 and strongly impaired viral replication in interferon conditioned cells, thus phenocopying the growth attenuation of M27-deficient virus. In a constructive process, pM27 recruits DDB1 to exploit ubiquitin ligase complexes catalyzing the obstruction of the STAT2-dependent antiviral state of cells to permit viral replication

    Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes

    Get PDF
    The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection
    corecore