44 research outputs found
Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB6
Resonant magnetic excitations are widely recognized as hallmarks of
unconventional superconductivity in copper oxides, iron pnictides, and
heavy-fermion compounds. Numerous model calculations have related these modes
to the microscopic properties of the pair wave function, but the mechanisms
underlying their formation are still debated. Here we report the discovery of a
similar resonant mode in the non-superconducting, antiferromagnetically ordered
heavy-fermion metal CeB6. Unlike conventional magnons, the mode is
non-dispersive, and its intensity is sharply concentrated around a wave vector
separate from those characterizing the antiferromagnetic order. The magnetic
intensity distribution rather suggests that the mode is associated with a
coexisting order parameter of the unusual antiferro-quadrupolar phase of CeB6,
which has long remained "hidden" to the neutron-scattering probes. The mode
energy increases continuously below the onset temperature for
antiferromagnetism, in parallel to the opening of a nearly isotropic spin gap
throughout the Brillouin zone. These attributes bear strong similarity to those
of the resonant modes observed in unconventional superconductors below their
critical temperatures. This unexpected commonality between the two disparate
ground states indicates the dominance of itinerant spin dynamics in the ordered
low-temperature phases of CeB6 and throws new light on the interplay between
antiferromagnetism, superconductivity, and "hidden" order parameters in
correlated-electron materials
Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at s = 13 TeV
A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses
Magnetic flux annihilation waves in inhomogeneous high-temperature superconductors
The process of magnetic field penetration into polycrystalline high-T-c superconductors of the YBa2Cu3O7 - x and Bi2Sr2Ca2Cu3O10 - x systems has been studied using traditional magnetooptical methods and scanning Hall probe microscopy. It is established that remagnetization of a sample is accompanied by the formation and propagation of a stationary magnetic flux annihilation (MFA) wave. Spatial inhomogeneity of the superconductors studied is manifested by a curvature of the MFA wave front. (C) 2004 MAIK "Nauka / Interperiodica"
Effect of Fermi Surface Nesting on Resonant Spin Excitations in Ba(1-x)K(x)Fe(2)As(2)
We report inelastic neutron scattering measurements of the resonant spin
excitations in Ba1-xKxFe2As2 over a broad range of electron band filling. The
fall in the superconducting transi- tion temperature with hole doping coincides
with the magnetic excitations splitting into two incom- mensurate peaks because
of the growing mismatch in the hole and electron Fermi surface volumes, as
confirmed by a tight-binding model with s+- symmetry pairing. The reduction in
Fermi surface nesting is accompanied by a collapse of the resonance binding
energy and its spectral weight caused by the weakening of electron-electron
correlations.Comment: 4 pages 4 figure