716 research outputs found

    Indoor characterization of a reflective type 3D LCPV system

    Get PDF
    This is the final version of the article. Available from AIP Publishing via the DOI in this record.Low concentrating photovoltaic (LCPV) systems produces higher electrical output per unit solar cell compared to typical PV systems. The high efficiency Si solar cells can be utilized with little design and manufacturing changes for these applications. However, a key barrier towards achieving economic viability and the widespread adoption of LCPV technologies is the losses related to high operating temperature. In the present study, we evaluate the performance 3D low concentration system designed for 3.6x, using a reflective Cross compound parabolic concentrator (CCPC) and a Laser Grooved Buried Contact solar cell having an area of 50∗50mm 2 . Results demonstrate the losses occurring due to the temperature rise of the solar cell under concentration and we analyze the potential which could be utilized for low grade heating applications.The authors gratefully acknowledge financial support received from the EPSRC through Solar Challenge project SUNTRAP (EP/K022156/1). We would also like to thank the Super Solar Hub for providing us with the travel grant for this conference

    Considering the role of cognitive control in expert performance

    Get PDF
    © 2014, Springer Science+Business Media Dordrecht. Dreyfus and Dreyfus’ (1986) influential phenomenological analysis of skill acquisition proposes that expert performance is guided by non-cognitive responses which are fast, effortless and apparently intuitive in nature. Although this model has been criticised (e.g., by Breivik Journal of Philosophy of Sport, 34, 116–134 2007, Journal of the Philosophy of Sport, 40, 85–106 2013; Eriksen 2010; Montero Inquiry:An interdisciplinary Journal of Philosophy, 53, 105–122 2010; Montero and Evans 2011) for over-emphasising the role that intuition plays in facilitating skilled performance, it does recognise that on occasions (e.g., when performance goes awry for some reason) a form of ‘detached deliberative rationality’ may be used by experts to improve their performance. However, Dreyfus and Dreyfus (1986) see no role for calculative problem solving or deliberation (i.e., drawing on rules or mental representations) when performance is going well. In the current paper, we draw on empirical evidence, insights from athletes, and phenomenological description to argue that ‘continuous improvement’ (i.e., the phenomenon whereby certain skilled performers appear to be capable of increasing their proficiency even though they are already experts; Toner and Moran 2014) among experts is mediated by cognitive (or executive) control in three distinct sporting situations (i.e., in training, during pre-performance routines, and while engaged in on-line skill execution). We conclude by arguing that Sutton et al. Journal of the British Society for Phenomenology, 42, 78–103 (2011) ‘applying intelligence to the reflexes’ (AIR) approach may help to elucidate the process by which expert performers achieve continuous improvement through analytical/mindful behaviour during training and competition

    Positive Interspecific Relationship between Temporal Occurrence and Abundance in Insects

    Get PDF
    One of the most studied macroecological patterns is the interspecific abundance–occupancy relationship, which relates species distribution and abundance across space. Interspecific relationships between temporal distribution and abundance, however, remain largely unexplored. Using data for a natural assemblage of tabanid flies measured daily during spring and summer in Nova Scotia, we found that temporal occurrence (proportion of sampling dates in which a species occurred in an experimental trap) was positively related to temporal mean abundance (number of individuals collected for a species during the study period divided by the total number of sampling dates). Moreover, two models that often describe spatial abundance–occupancy relationships well, the He–Gaston and negative binomial models, explained a high amount of the variation in our temporal data. As for the spatial abundance–occupancy relationship, the (temporal) aggregation parameter, k, emerged as an important component of the hereby named interspecific temporal abundance–occurrence relationship. This may be another case in which a macroecological pattern shows similarities across space and time, and it deserves further research because it may improve our ability to forecast colonization dynamics and biological impacts

    Experiences and insights from the collection of a novel multimedia EEG dataset

    Get PDF
    There is a growing interest in utilising novel signal sources such as EEG (Electroencephalography) in multimedia research. When using such signals, subtle limitations are often not readily apparent without significant domain expertise. Multimedia research outputs incorporating EEG signals can fail to be replicated when only minor modifications have been made to an experiment or seemingly unimportant (or unstated) details are changed. This can lead to overoptimistic or overpessimistic viewpoints on the potential real-world utility of these signals in multimedia research activities. This paper describes an EEG/MM dataset and presents a summary of distilled experiences and knowledge gained during the preparation (and utilisiation) of the dataset that supported a collaborative neural-image labelling benchmarking task. The goal of this task was to collaboratively identify machine learning approaches that would support the use of EEG signals in areas such as image labelling and multimedia modeling or retrieval. The contributions of this paper can be listed thus; a template experimental paradigm is proposed (along with datasets and a baseline system) upon which researchers can explore multimedia image labelling using a brain-computer interface, learnings regarding commonly encountered issues (and useful signals) when conducting research that utilises EEG in multimedia contexts are provided, and finally insights are shared on how an EEG dataset was used to support a collaborative neural-image labelling benchmarking task and the valuable experiences gained

    Priority setting for the implementation of artemisinin-based combination therapy policy in Tanzania: evaluation against the accountability for reasonableness framework

    Get PDF
    \ud Priority setting for artemisinin-based antimalarial drugs has become an integral part of malaria treatment policy change in malaria-endemic countries. Although these drugs are more efficacious, they are also more costly than the failing drugs. When Tanzania changed its National Malaria Treatment Policy in 2006, priority setting was an inevitable challenge. Artemether-lumefantrine was prioritised as the first-line drug for the management of uncomplicated malaria to be available at a subsidized price at public and faith-based healthcare facilities. This paper describes the priority-setting process, which involved the selection of a new first-line antimalarial drug in the implementation of artemisinin-based combination therapy policy. These descriptions were further evaluated against the four conditions of the accountability for easonableness framework. According to this framework, fair decisions must satisfy a set of publicity, relevance, appeals, and revision and enforcement conditions.In-depth interviews were held with key informants using pretested interview guides, supplemented with a review of the treatment guideline. Purposeful sampling was used in order to explore the perceptions of people with different backgrounds and perspectives. The analysis followed an editing organising style. Publicity: The selection decision of artemether-lumefantrine but not the rationale behind it was publicised through radio, television, and newspaper channels in the national language, Swahili. Relevance: The decision was grounded on evidences of clinical efficacy, safety, affordability, and formulation profile. Stakeholders were not adequately involved. There was neither an appeals mechanism to challenge the decision nor enforcement mechanisms to guarantee fairness of the decision outcomes. The priority-setting decision to use artemether-lumefantrine as the first-line antimalarial drug failed to satisfy the four conditions of the accountability for reasonableness framework. In our understanding, this is the first study to evaluate priority-setting decisions for new drugs in Tanzania against the accountability for reasonableness framework. In addition to the demand for enhanced stakeholder involvement, publicity, and transparency, the study also calls for the institution of formal appeals, revision, and regulatory mechanisms in the future change of malaria treatment policies.\u

    Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways

    Get PDF
    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Gene therapy for carcinoma of the breast: Genetic toxins

    Get PDF
    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

    A mammalianized synthetic nitroreductase gene for high-level expression

    Get PDF
    Background The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. Methods We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. Results In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Conclusion Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans
    corecore