124 research outputs found

    The Elongator Complex Interacts with PCNA and Modulates Transcriptional Silencing and Sensitivity to DNA Damage Agents

    Get PDF
    Histone chaperones CAF-1 and Asf1 function to deposit newly synthesized histones onto replicating DNA to promote nucleosome formation in a proliferating cell nuclear antigen (PCNA) dependent process. The DNA replication- or DNA repair-coupled nucleosome assembly pathways are important for maintenance of transcriptional gene silencing and genome stability. However, how these pathways are regulated is not well understood. Here we report an interaction between the Elongator histone acetyltransferase and the proliferating cell nuclear antigen. Cells lacking Elp3 (K-acetyltransferase Kat9), the catalytic subunit of the six-subunit Elongator complex, partially lose silencing of reporter genes at the chromosome VIIL telomere and at the HMR locus, and are sensitive to the DNA replication inhibitor hydroxyurea (HU) and the damaging agent methyl methanesulfonate (MMS). Like deletion of the ELP3, mutation of each of the four other subunits of the Elongator complex as well as mutations in Elp3 that compromise the formation of the Elongator complex also result in loss of silencing and increased HU sensitivity. Moreover, Elp3 is required for S-phase progression in the presence of HU. Epistasis analysis indicates that the elp3Δ mutant, which itself is sensitive to MMS, exacerbates the MMS sensitivity of cells lacking histone chaperones Asf1, CAF-1 and the H3 lysine 56 acetyltransferase Rtt109. The elp3Δ mutant has allele specific genetic interactions with mutations in POL30 that encodes PCNA and PCNA binds to the Elongator complex both in vivo and in vitro. Together, these results uncover a novel role for the intact Elongator complex in transcriptional silencing and maintenance of genome stability, and it does so in a pathway linked to the DNA replication and DNA repair protein PCNA

    Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging

    Get PDF
    Current guidelines and literature on screening for coronary artery calcium for cardiac risk assessment are reviewed for both general and special populations. It is shown that for both general and special populations a zero score excludes most clinically relevant coronary artery disease. The importance of standardization of coronary artery calcium measurements by multi-detector CT is discussed

    Cdc7p-Dbf4p Regulates Mitotic Exit by Inhibiting Polo Kinase

    Get PDF
    Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint

    Metabolic responses to high pCO2 conditions at a CO2 vent site in juveniles of a marine isopod species assemblage

    Get PDF
    We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process

    Lipid remodelling in the reef-building honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to temperature

    Get PDF
    Acclimation and adaptation, which are key to species survival in a changing climate, can be observed in terms of membrane lipid composition. Remodelling membrane lipids, via homeoviscous adaptation (HVA), counteracts membrane dysfunction due to temperature in poikilotherms. In order to assess the potential for acclimation and adaptation in the honeycomb worm, Sabellaria alveolata, a reefbuilding polychaete that supports high biodiversity, we carried out common-garden experiments using individuals from along its latitudinal range. Individuals were exposed to a stepwise temperature increase from 15 °C to 25 °C and membrane lipid composition assessed. Our results suggest that S. alveolata was able to acclimate to higher temperatures, as observed by a decrease in unsaturation index and 20:5n-3. However, over the long-term at 25 °C, lipid composition patterns are not consistent with HVA expectations and suggest a stress response. Furthermore, unsaturation index of individuals from the two coldest sites were higher than those from the two warmest sites, with individuals from the thermally intermediate site being in-between, likely reflecting local adaptation to temperature. Therefore, lipid remodelling appears limited at the highest temperatures in S. alveolata, suggesting that individuals inhabiting warm environments may be close to their upper thermal tolerance limits and at risk in a changing climate
    • 

    corecore