61 research outputs found

    IMSA: Integrated metagenomic sequence analysis for identification of exogenous reads in a host genomic background

    Get PDF
    Metagenomics, the study of microbial genomes within diverse environments, is a rapidly developing field. The identification of microbial sequences within a host organism enables the study of human intestinal, respiratory, and skin microbiota, and has allowed the identification of novel viruses in diseases such as Merkel cell carcinoma. There are few publicly available tools for metagenomic high throughput sequence analysis. We present Integrated Metagenomic Sequence Analysis (IMSA), a flexible, fast, and robust computational analysis pipeline that is available for public use. IMSA takes input sequence from high throughput datasets and uses a user-defined host database to filter out host sequence. IMSA then aligns the filtered reads to a user-defined universal database to characterize exogenous reads within the host background. IMSA assigns a score to each node of the taxonomy based on read frequency, and can output this as a taxonomy report suitable for cluster analysis or as a taxonomy map (TaxMap). IMSA also outputs the specific sequence reads assigned to a taxon of interest for downstream analysis. We demonstrate the use of IMSA to detect pathogens and normal flora within sequence data from a primary human cervical cancer carrying HPV16, a primary human cutaneous squamous cell carcinoma carrying HPV 16, the CaSki cell line carrying HPV16, and the HeLa cell line carrying HPV18

    Genetic Pathway in Acquisition and Loss of Vancomycin Resistance in a Methicillin Resistant Staphylococcus aureus (MRSA) Strain of Clonal Type USA300

    Get PDF
    An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system

    Should all adjunctive corticosteroid therapy be avoided in the management of hemodynamically stabile Staphylococcus aureus bacteremia?

    Get PDF
    The purpose of this study was to examine the prognostic impact of corticosteroids in hemodynamically stabile Staphylococcus aureus bacteremia (SAB). There were 361 hemodynamically stabile methicillin-sensitive SAB patients with prospective follow-up and grouping according to time-point, dose and indication for corticosteroid therapy. To enable analyses without external interfering corticosteroid therapy all patients with corticosteroid therapy equivalent to prednisone > 10 mg/day for >= 1 month prior to positive blood culture results were excluded. Twenty-five percent (92) of patients received corticosteroid therapy of which 11 % (40) had therapy initiated within 1 week (early initiation) and 9 % (31) had therapy initiated 2-4 weeks after (delayed initiation) positive blood culture. Twenty-one patients (6 %) had corticosteroid initiated after 4 weeks and were not included in the analyses. A total of 55 % (51/92) received a weekly prednisone dose > 100 mg. Patients with early initiated corticosteroid therapy had higher mortality compared to patients treated without corticosteroid therapy at 28 days (20 % vs. 7 %) (OR, 3.11; 95% CI, 1.27-7.65; p = 100 mg/week the negative prognostic impact on 28-day mortality was accentuated (HR 4.8, p = 0.001). Corticosteroid therapy initiation after 1 week of positive blood cultures had no independent prognostic impact. Early initiation of corticosteroid therapy may be associate to increased mortality in hemodynamically stabile SAB.Peer reviewe

    The relationship between oral health and COPD exacerbations

    No full text
    Arianne K Baldomero,1,2 Mariam Siddiqui,3 Chia-Yin Lo,3,4 Ashley Petersen,5 Alexa A Pragman,6,7 John E Connett,5 Ken M Kunisaki,1,2 Chris H Wendt1,21Pulmonary Section, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA; 2Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; 3TMD, Orofacial Pain, and Dental Sleep Medicine, University of Minnesota, Minneapolis, MN, USA; 4Dental Section, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA; 5Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA; 6Infectious Disease Section, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA; 7Division of Infectious Disease, Department of Medicine, University of Minnesota, Minneapolis, MN, USAIntroduction: Poor oral health has been implicated as an independent risk factor for the development of COPD, but few studies have evaluated the association between oral health and COPD exacerbations. We aimed to determine if poor oral health is associated with COPD exacerbations and/or worse respiratory health.Methods: We performed a case-control study of oral health among COPD exacerbators and non-exacerbators. Cases (exacerbators) had experienced ≥1 exacerbation in the previous 12 months, while controls (non-exacerbators) had no exacerbations in the previous 24 months. We excluded those with <4 teeth. We evaluated the global oral health assessment, Oral Health Impact Profile (OHIP-5), dental symptoms/habits, and St. George’s Respiratory Questionnaire (SGRQ). In a subset, we performed blinded dental exams to measure bleeding on probing, probing depth, clinical attachment loss, periodontitis severity, plaque index, gingival index, and carries risk. We evaluated associations between oral health and COPD exacerbations using logistic regression. Linear regression was used to assess relationships between oral health and SGRQ scores.Results: Screened non-exacerbators (n=118) were significantly more likely to have <4 teeth, compared to screened exacerbators (n=100) (44% vs 30%, respectively; p=0.046). After excluding those with <4 teeth, there were 70 cases and 66 controls. Self-reported oral health and objective dental exam measures did not vary significantly between cases vs controls. However, the odds of severe COPD exacerbations requiring hospitalizations and/or emergency department visits trended higher in those with worse dental exam compared to those with better dental exam. Worse OHIP-5 was strongly associated with worse SGRQ scores.Conclusions: Oral health status was not related to COPD exacerbations, but was associated with self-reported respiratory health. Non-exacerbators were more likely to be edentate or have ≤4 teeth compared to exacerbators. Larger studies are needed to address oral health as a potential method to improve respiratory health in patients with COPD.Keywords: pulmonary disease, chronic obstructive, oral health, periodontiti

    Therapeutic Targeting of the Respiratory Microbiome.

    No full text
    The last decade of research has revolutionized our understanding of respiratory microbiology, revealing that the lungs and airways contain diverse and dynamic microbial communities in health and disease. This "respiratory ecosystem"-a densely interconnected environment of microbial and host interactions-represents a tremendous and under-appreciated source of biological and clinical heterogeneity across patients with acute and chronic lung disease. Unlike other major sources of heterogeneity, such as comorbidities and host genetics, the respiratory microbiome is readily modifiable by clinical interventions, and therefore represents an untapped opportunity for therapeutic manipulation. As a potential "treatable trait" in efforts to subphenotype patients and deliver precision medicine, the respiratory microbiome is a promising therapeutic target. In this Pulmonary Perspective, we identify and discuss multiple challenges, both conceptual and practical, that must be overcome before the respiratory microbiome can be effectively modulated as a therapeutic target. Barriers include: 1) the need to identify specific microbiologic and ecologic "targets" for therapeutic modulation; 2) the need for an improved understanding of the efficacy and persistence of response to respiratory microbiome-modulating interventions; 3) the need for clinicians to be able to access, understand and utilize microbiome data for sub-phenotyping patients, and 4) specific concerns in special populations (including children, patients with chronic lung disease, and critically ill patients). By delineating these barriers, we identify opportunities for prospective research to advance our understanding of the respiratory microbiome, its role in human respiratory disease, and its genuine potential as a therapeutic target
    corecore