1,207 research outputs found

    Fuzzy Computing for Control of Aero Gas Turbine Engines .

    Get PDF
    Many methods, techniques and procedures available for designing the control system of plants and processes, are applied only after knowing accurately the plant or process to be controlled. However, in some complex situations where plants/processes cannot be accurately modelled, and especially where their control has human interaction, controller design may not be completely satisfactory. In such cases, it has been found that control decisions can be made on the basis of heuristic/linguistic measures or fuzzy algorithms. Fuzzy set principles have been used in controlling various plants/processes ranging from a laboratory steam engine to an autopilot, including an aero gas turbine engine engine for which the response of the engine speed for a fuzzy input of fuel flow has been studied. In this paper, certain stipulations and logic are suggested for the control of the total gas turbine engine. A case study of a single spool aero gas turbine engine with one of its state variables varied by heuristic logic is presented

    Social participation and connectivity

    Get PDF

    Review of harm-benefit analysis in the use of animals in research

    Get PDF
    This is the final version of the report. Available from the Home Office via the link in this recordReport of our review of the processes of harm-benefit analysis (HBA) carried out under the UK Animals (Scientific Procedures) Act 1986 (A(SP)A).Report of the Animals in Science Committee Harm-Benefit Analysis Sub-Group chaired by Professor Gail Davies. The Animals in Science Committee Harm-Benefit Analysis subgroup, chaired by Professor Gail Davies, has produced a review of the harm-benefit analysis (HBA). This review is an analysis of the underpinnings and implementation of the HBA which remains a crucial step in the justification of the use of animals in science. It is published in response to a ministerial commission.Animals in Science Committe

    Calculation of the Phase Behavior of Lipids

    Full text link
    The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.

    A system dynamics model of capital structure policy for firm value maximization

    Get PDF
    The complexity surrounding the maximization of firm value agenda demands a comprehensive causal model that effectively embeds the intertwining relationships of the variables and the policies involved. System dynamics provides an appropriate methodology to model and simulate such complex relationships to facilitate decision making in a complex business environment. The objective of the study is to analyze the impact of capital structure policy, being a key managerial decision, on the firm value. For this purpose, the study develops a system dynamics‐based corporate planning model for an oil firm, including the operational as well as financial processes. Various scenarios and capital structure policies have been designed and simulated to identify the policy that helps in increasing the firm value. The results demonstrate that increase in debt percentage in capital structure mix increase the firm value.publishedVersio

    UK research priority setting for childhood neurological conditions

    Get PDF
    \ua9 2024 The Author(s). Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press. Aim: To identify research priorities regarding the effectiveness of interventions for children and young people (CYP) with childhood neurological conditions (CNCs). These include common conditions such as epilepsies and cerebral palsy, as well as many rare conditions. Method: The National Institute for Health and Care Research (NIHR) and the James Lind Alliance (JLA) champion and facilitate priority setting partnerships (PSPs) between patients, caregivers, and clinicians (stakeholders) to identify the most important unanswered questions for research (uncertainties). A NIHR–JLA and British Paediatric Neurology Association collaboration used the JLA PSP methodology. This consisted of two surveys to stakeholders: survey 1 (to identify uncertainties) and survey 2 (a prioritization survey). The final top 10 priorities were agreed by consensus in a stakeholder workshop. Results: One hundred and thirty-two charities and partner organizations were invited to participate. In survey 1, 701 participants (70% non-clinicians, including CYP and parent and caregivers) submitted 1800 uncertainties from which 44 uncertainties were identified for prioritization in survey 2; from these, 1451 participants (83% non-clinicians) selected their top 10 priorities. An unweighted amalgamated score across participant roles was used to select 26. In the final workshop, 14 health care professionals, 11 parent and caregivers, and two CYP ranked the 26 questions to finalize the top 10 priorities. Ten top priority questions were identified regarding interventions to treat CYP with CNCs and their associated comorbidities, for example, sleep, emotional well-being, and distressing symptoms. Interpretation: The results of this study will inform research into the effectiveness of interventions for children with neurological conditions
    • 

    corecore