181 research outputs found

    Efectos del cloruro de cloro colina y el paclobutrazol sobre el crecimiento de plantas y la calidad de raíces tuberosas de mandioca (Manihot esculenta Crantz cv. Rocha)

    Get PDF
    The effects of chlorocholine chloride (CCC) and paclobutrazol (PBZ) foliar application on shoot and root parameters of cassava field-grown plants were studied (0, 45 and 90 mg active ingredient per plant). CCC and PBZ reduced total plant and first branch height, aerial fresh mass and tuberous root number. PBZ delayed branching and significantly decreased tuberous root fresh mass, while CCC caused no modifications in these parameters. In addition, CCC and PBZ treatments did not modify tuberous root diameter, while PBZ reduced tuberous root length significantly. Starch content was increased by both growth regulators at the lower dose, whereas dry matter content was increased only by CCC. In conclusion, CCC suppresses excessive vegetative growth, favours quality attributes and does not alter yield, hence improving harvest index. Although PBZ at a low dose increases the starch content and harvest index, its effects on other parameters are undesirable.Fil: Medina, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Burgos, A.. Universidad Nacional del Nordeste; ArgentinaFil: Difranco, V.. Universidad Nacional del Nordeste; ArgentinaFil: Mroginski, Luis Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Cenóz, P.. Universidad Nacional del Nordeste; Argentin

    A combination of cherry juice and cold water immersion does not enhance marathon recovery compared to either treatment in isolation: a randomized placebo-controlled trial

    Get PDF
    Purpose: Cherry juice (CJ) and cold water immersion (CWI) are both effective recovery strategies following strenuous endurance exercise. However, athletes routinely combine recovery interventions and less is known about the impact of a combined CJ and CWI protocol. Therefore, this study investigated the effects of combining CWI and CJ (a “cocktail” (CT)) on inflammation and muscle damage following a marathon. Methods: A total 39 endurance trained males were randomly assigned to a placebo (PL), CWI, CJ, or CT group before completing a trail marathon run. Muscle damage (creatine kinase (CK)), muscle function (maximal voluntary isometric contraction (MVIC)), and inflammation (interleukin-6 (IL-6); C-reactive protein (CRP)) were measured at baseline, immediately after marathon (only IL-6), 24 h, and 48 h after marathon. Results: There were no statistically significant differences between groups and no group × time interaction effects for any of the dependent variables. Confidence intervals (CI) illustrated that CT had unclear effects on inflammation (IL-6; CRP) and MVIC, but may have increased CK to a greater extent than PL and CJ conditions. Conclusion: There is no evidence of an additive effect of CJ and CWI when the treatments are used in conjunction with each other. On the contrary, combining CJ and CWI may result in slightly increased circulating CK

    Detecting massive gravitons using pulsar timing arrays

    Get PDF
    Massive gravitons are features of some alternatives to general relativity. This has motivated experiments and observations that, so far, have been consistent with the zero mass graviton of general relativity, but further tests will be valuable. A basis for new tests may be the high sensitivity gravitational wave experiments that are now being performed, and the higher sensitivity experiments that are being planned. In these experiments it should be feasible to detect low levels of dispersion due to nonzero graviton mass. One of the most promising techniques for such a detection may be the pulsar timing program that is sensitive to nano-Hertz gravitational waves. Here we present some details of such a detection scheme. The pulsar timing response to a gravitational wave background with the massive graviton is calculated, and the algorithm to detect the massive graviton is presented. We conclude that, with 90% probability, massles gravitons can be distinguished from gravitons heavier than 3×10223\times 10^{-22} eV (Compton wave length λg=4.1×1012\lambda_{\rm g}=4.1 \times 10^{12} km), if biweekly observation of 60 pulsars are performed for 5 years with pulsar RMS timing accuracy of 100 ns. If 60 pulsars are observed for 10 years with the same accuracy, the detectable graviton mass is reduced to 5×10235\times 10^{-23} eV (λg=2.5×1013\lambda_{\rm g}=2.5 \times 10^{13} km); for 5-year observations of 100 or 300 pulsars, the sensitivity is respectively 2.5×10222.5\times 10^{-22} (λg=5.0×1012\lambda_{\rm g}=5.0\times 10^{12} km) and 102210^{-22} eV (λg=1.2×1013\lambda_{\rm g}=1.2\times 10^{13} km). Finally, a 10-year observation of 300 pulsars with 100 ns timing accuracy would probe graviton masses down to 3×10233\times 10^{-23} eV (λg=4.1×1013\lambda_{\rm g}=4.1\times 10^{13} km).Comment: 13 pages, 5 figures, Accepted by Ap

    Creation and manipulation of entanglement in spin chains far from equilibrium

    Get PDF
    We investigate creation, manipulation, and steering of entanglement in spin chains from the viewpoint of quantum communication between distant parties. We demonstrate how global parametric driving of the spin-spin coupling and/or local time-dependent Zeeman fields produce a large amount of entanglement between the first and the last spin of the chain. This occurs whenever the driving frequency meets a resonance condition, identified as "entanglement resonance". Our approach marks a promising step towards an efficient quantum state transfer or teleportation in solid state system. Following the reasoning of Zueco et al. [1], we propose generation and routing of multipartite entangled states by use of symmetric tree-like structures of spin chains. Furthermore, we study the effect of decoherence on the resulting spin entanglement between the corresponding terminal spins.Comment: 10 pages, 8 figure

    Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle

    Get PDF
    Skeletal muscle fibers exhibit a high resting chloride conductance primarily determined by ClC-1 chloride channels that stabilize the resting membrane potential during repetitive stimulation. Although the importance of ClC-1 channel activity in maintaining normal muscle excitability is well appreciated, the subcellular location of this conductance remains highly controversial. Using a three-pronged multidisciplinary approach, we determined the location of functional ClC-1 channels in adult mouse skeletal muscle. First, formamide-induced detubulation of single flexor digitorum brevis (FDB) muscle fibers from 15–16-day-old mice did not significantly alter macroscopic ClC-1 current magnitude (at −140 mV; −39.0 ± 4.5 and −42.3 ± 5.0 nA, respectively), deactivation kinetics, or voltage dependence of channel activation (V1/2 was −61.0 ± 1.7 and −64.5 ± 2.8 mV; k was 20.5 ± 0.8 and 22.8 ± 1.2 mV, respectively), despite a 33% reduction in cell capacitance (from 465 ± 36 to 312 ± 23 pF). In paired whole cell voltage clamp experiments, where ClC-1 activity was measured before and after detubulation in the same fiber, no reduction in ClC-1 activity was observed, despite an ∼40 and 60% reduction in membrane capacitance in FDB fibers from 15–16-day-old and adult mice, respectively. Second, using immunofluorescence and confocal microscopy, native ClC-1 channels in adult mouse FDB fibers were localized within the sarcolemma, 90° out of phase with double rows of dihydropyridine receptor immunostaining of the T-tubule system. Third, adenoviral-mediated expression of green fluorescent protein–tagged ClC-1 channels in adult skeletal muscle of a mouse model of myotonic dystrophy type 1 resulted in a significant reduction in myotonia and localization of channels to the sarcolemma. Collectively, these results demonstrate that the majority of functional ClC-1 channels localize to the sarcolemma and provide essential insight into the basis of myofiber excitability in normal and diseased skeletal muscle

    Dysferlin Forms a Dimer Mediated by the C2 Domains and the Transmembrane Domain In Vitro and in Living Cells

    Get PDF
    Dysferlin was previously identified as a key player in muscle membrane repair and its deficiency leads to the development of muscular dystrophy and cardiomyopathy. However, little is known about the oligomerization of this protein in the plasma membrane. Here we report for the first time that dysferlin forms a dimer in vitro and in living adult skeletal muscle fibers isolated from mice. Endogenous dysferlin from rabbit skeletal muscle exists primarily as a ∼460 kDa species in detergent-solubilized muscle homogenate, as shown by sucrose gradient fractionation, gel filtration and cross-linking assays. Fluorescent protein (YFP) labeled human dysferlin forms a dimer in vitro, as demonstrated by fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analyses. Dysferlin also dimerizes in living cells, as probed by fluorescence resonance energy transfer (FRET). Domain mapping FRET experiments showed that dysferlin dimerization is mediated by its transmembrane domain and by multiple C2 domains. However, C2A did not significantly contribute to dimerization; notably, this is the only C2 domain in dysferlin known to engage in a Ca-dependent interaction with cell membranes. Taken together, the data suggest that Ca-insensitive C2 domains mediate high affinity self-association of dysferlin in a parallel homodimer, leaving the Ca-sensitive C2A domain free to interact with membranes

    CORE: A Phylogenetically-Curated 16S rDNA Database of the Core Oral Microbiome

    Get PDF
    Comparing bacterial 16S rDNA sequences to GenBank and other large public databases via BLAST often provides results of little use for identification and taxonomic assignment of the organisms of interest. The human microbiome, and in particular the oral microbiome, includes many taxa, and accurate identification of sequence data is essential for studies of these communities. For this purpose, a phylogenetically curated 16S rDNA database of the core oral microbiome, CORE, was developed. The goal was to include a comprehensive and minimally redundant representation of the bacteria that regularly reside in the human oral cavity with computationally robust classification at the level of species and genus. Clades of cultivated and uncultivated taxa were formed based on sequence analyses using multiple criteria, including maximum-likelihood-based topology and bootstrap support, genetic distance, and previous naming. A number of classification inconsistencies for previously named species, especially at the level of genus, were resolved. The performance of the CORE database for identifying clinical sequences was compared to that of three publicly available databases, GenBank nr/nt, RDP and HOMD, using a set of sequencing reads that had not been used in creation of the database. CORE offered improved performance compared to other public databases for identification of human oral bacterial 16S sequences by a number of criteria. In addition, the CORE database and phylogenetic tree provide a framework for measures of community divergence, and the focused size of the database offers advantages of efficiency for BLAST searching of large datasets. The CORE database is available as a searchable interface and for download at http://microbiome.osu.edu
    corecore