72 research outputs found

    Truthful Mechanisms for Matching and Clustering in an Ordinal World

    Full text link
    We study truthful mechanisms for matching and related problems in a partial information setting, where the agents' true utilities are hidden, and the algorithm only has access to ordinal preference information. Our model is motivated by the fact that in many settings, agents cannot express the numerical values of their utility for different outcomes, but are still able to rank the outcomes in their order of preference. Specifically, we study problems where the ground truth exists in the form of a weighted graph of agent utilities, but the algorithm can only elicit the agents' private information in the form of a preference ordering for each agent induced by the underlying weights. Against this backdrop, we design truthful algorithms to approximate the true optimum solution with respect to the hidden weights. Our techniques yield universally truthful algorithms for a number of graph problems: a 1.76-approximation algorithm for Max-Weight Matching, 2-approximation algorithm for Max k-matching, a 6-approximation algorithm for Densest k-subgraph, and a 2-approximation algorithm for Max Traveling Salesman as long as the hidden weights constitute a metric. We also provide improved approximation algorithms for such problems when the agents are not able to lie about their preferences. Our results are the first non-trivial truthful approximation algorithms for these problems, and indicate that in many situations, we can design robust algorithms even when the agents may lie and only provide ordinal information instead of precise utilities.Comment: To appear in the Proceedings of WINE 201

    Social Welfare in One-Sided Matching Mechanisms

    Full text link
    We study the Price of Anarchy of mechanisms for the well-known problem of one-sided matching, or house allocation, with respect to the social welfare objective. We consider both ordinal mechanisms, where agents submit preference lists over the items, and cardinal mechanisms, where agents may submit numerical values for the items being allocated. We present a general lower bound of Ω(n)\Omega(\sqrt{n}) on the Price of Anarchy, which applies to all mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and Random Priority, achieve a matching upper bound. We extend our lower bound to the Price of Stability of a large class of mechanisms that satisfy a common proportionality property, and show stronger bounds on the Price of Anarchy of all deterministic mechanisms

    Truthful Interval Covering

    Full text link
    We initiate the study of a novel problem in mechanism design without money, which we term Truthful Interval Covering (TIC). An instance of TIC consists of a set of agents each associated with an individual interval on a line, and the objective is to decide where to place a covering interval to minimize the total social cost of the agents, which is determined by the intersection of this interval with their individual ones. This fundamental problem can model situations of provisioning a public good, such as the use of power generators to prevent or mitigate load shedding in developing countries. In the strategic version of the problem, the agents wish to minimize their individual costs, and might misreport the position and/or length of their intervals to achieve that. Our goal is to design truthful mechanisms to prevent such strategic misreports and achieve good approximations to the best possible social cost. We consider the fundamental setting of known intervals with equal lengths and provide tight bounds on the approximation ratios achieved by truthful deterministic mechanisms. We also design a randomized truthful mechanism that outperforms all possible deterministic ones. Finally, we highlight a plethora of natural extensions of our model for future work, as well as some natural limitations of those settings

    Truthful Interval Covering

    Get PDF
    We initiate the study of a novel problem in mechanism design without money, which we term Truthful Interval Covering (TIC). An instance of TIC consists of a set of agents each associated with an individual interval on a line, and the objective is to decide where to place a covering interval to minimize the total social or egalitarian cost of the agents, which is determined by the intersection of this interval with their individual ones. This fundamental problem can model situations of provisioning a public good, such as the use of power generators to prevent or mitigate load shedding in developing countries. In the strategic version of the problem, the agents wish to minimize their individual costs, and might misreport the position and/or length of their intervals to achieve that. Our goal is to design truthful mechanisms to prevent such strategic misreports and achieve good approximations to the best possible social or egalitarian cost. We consider the fundamental setting of known intervals with equal lengths and provide tight bounds on the approximation ratios achieved by truthful deterministic mechanisms. For the social cost, we also design a randomized truthful mechanism that outperforms all possible deterministic ones. Finally, we highlight a plethora of natural extensions of our model for future work, as well as some natural limitations of those settings

    Utilitarian distortion with predictions

    Get PDF
    We study the utilitarian distortion of social choice mechanisms under the recently proposed learning-augmented framework where some (possibly unreliable) predicted information about the preferences of the agents is given as input. In particular, we consider two fundamental social choice problems: single-winner voting and one-sided matching. In these settings, the ordinal preferences of the agents over the alternatives (either candidates or items) is known, and some prediction about their underlying cardinal values is also provided. The goal is to leverage the prediction to achieve improved distortion guarantees when it is accurate, while simultaneously still achieving reasonable worst-case bounds when it is not. This leads to the notions of consistency and robustness, and the quest to achieve the best possible tradeoffs between the two. We show tight tradeoffs between the consistency and robustness of ordinal mechanisms for single-winner voting and one-sided matching, for different levels of information provided as prediction

    PPAD-membership for problems with exact rational solutions: a general approach via convex optimization

    Get PDF
    We introduce a general technique for proving membership of search problems with exact rational solutions in PPAD, one of the most well-known classes containing total search problems with polynomial-time verifiable solutions. In particular, we construct a "pseudogate", coined the linear-OPT-gate, which can be used as a "plug-and-play" component in a piecewise-linear (PL) arithmetic circuit, as an integral component of the "Linear-FIXP" equivalent definition of the class. The linear-OPT-gate can solve several convex optimization programs, including quadratic programs, which often appear organically in the simplest existence proofs for these problems. This effectively transforms existence proofs to PPAD-membership proofs, and consequently establishes the existence of solutions described by rational numbers. Using the linear-OPT-gate, we are able to significantly simplify and generalize almost all known PPAD-membership proofs for finding exact solutions in the application domains of game theory, competitive markets, auto-bidding auctions, and fair division, as well as to obtain new PPAD-membership results for problems in these domains.Using the linear-OPT-gate, we are able to significantly simplify and generalize almost all known PPADmembership proofs for finding exact solutions in the application domains of game theory, competitive markets, auto-bidding auctions, and fair division, as well as to obtain new PPAD-membership results for problems in these domains

    Settling the Distortion of Distributed Facility Location

    Get PDF
    We study the distributed facility location problem, where a set of agents with positions on the line of real numbers are partitioned into disjoint districts, and the goal is to choose a point to satisfy certain criteria, such as optimize an objective function or avoid strategic behavior. A mechanism in our distributed setting works in two steps: For each district it chooses a point that is representative of the positions reported by the agents in the district, and then decides one of these representative points as the final output. We consider two classes of mechanisms: Unrestricted mechanisms which assume that the agents directly provide their true positions as input, and strategyproof mechanisms which deal with strategic agents and aim to incentivize them to truthfully report their positions. For both classes, we show tight bounds on the best possible approximation in terms of several minimization social objectives, including the well-known social cost (total distance of agents from chosen point) and max cost (maximum distance among all agents from chosen point), as well as other fairness-inspired objectives that are tailor-made for the distributed setting

    Approximate mechanism design for distributed facility location

    Get PDF
    We consider a single-facility location problem, where agents are positioned on the real line and are partitioned into multiple disjoint districts. The goal is to choose a location (where a public facility is to be built) so as to minimize the total distance of the agents from it. This process is distributed: the positions of the agents in each district are first aggregated into a representative location for the district, and then one of the district representatives is chosen as the facility location. This indirect access to the positions of the agents inevitably leads to inefficiency, which is captured by the notion of distortion. We study the discrete version of the problem, where the set of alternative locations is finite, as well as the continuous one, where every point of the line is an alternative, and paint an almost complete picture of the distortion landscape of both general and strategyproof distributed mechanisms
    corecore