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Abstract

We consider a setting with agents that have preferences over alternatives and are partitioned

into disjoint districts. The goal is to choose one alternative as the winner using a mechanism

which first decides a representative alternative for each district based on a local election with the

agents therein as participants, and then chooses one of the district representatives as the winner.

Previous work showed bounds on the distortion of a specific class of deterministic plurality-based

mechanisms depending on the available information about the preferences of the agents in the

districts. In this paper, we first consider the whole class of deterministic mechanisms and show

asymptotically tight bounds on their distortion. We then initiate the study of the distortion of

randomized mechanisms in distributed voting and show bounds based on several informational

assumptions, which in many cases turn out to be tight. Finally, we also experimentally compare

the distortion of many different mechanisms of interest using synthetic and real-world data.

1 Introduction

Voting is a ubiquitous method for making decisions with a large number of applications, such as electing

political representatives, deciding how to split a public budget between projects, or choosing which

services (restaurants, hotels, etc) to recommend to new users based on past user experiences. As such, it

has been at the epicenter of research within multiple disciplines including political sciences, economics

and computer science [Brandt et al., 2016]. The most prominent question in this research agenda is to

identify the best voting rule to use to collectively aggregate the preferences of agents over alternative

options into a single winning alternative, with most of the earlier literature focusing on axiomatic

properties that good voting rules should have. An alternative way to tackle this question that has been

proposed in computer science is through the distortion framework [Anshelevich et al., 2021] which

allows to compare different voting rules based on how well they approximate the optimal choice as

measured in terms of a social objective function like the utilitarian social welfare.

Since its inception in 2006 by Procaccia and Rosenschein [2006], the distortion framework has been

applied to several utilitarian social choice settings (e.g., [Boutilier et al., 2015, Anshelevich et al., 2018,

Gkatzelis et al., 2020]). The lion’s share of previous work has focused on centralized models with a

single pool of agents whose preferences are directly given as input to a voting rule, which thus can

utilize all the given information at once to make a decision. However, there are many applications

with multiple pools of agents which make independent local decisions that can be thought of as rec-

ommendations for the final decision. To give a concrete example, in most political election systems,
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the citizens are partitioned into districts based on geographic or other criteria, and vote within their

districts to propose the candidate (party) they would like to be selected as the winner.

Inspired by situations like the one described above, Filos-Ratsikas et al. [2020] initiated the study

of the distortion of mechanisms in a distributed single-winner setting where a set of n agents with

cardinal preferences over a set of m alternatives are partitioned into k disjoint districts. The authors

focused on deterministic mechanisms of the form Plurality-of-f , which first choose a representative

alternative for each district according to some rule f , by holding a local election with the agents of

the district as the voters, and then picking the winner to be the alternative that is representative of

the most districts (i.e., using the Plurality rule). Filos-Ratsikas et al. considered mechanisms for

which the rule f can be cardinal or ordinal, i.e., it may use the actual numerical information about

the preferences of the agents within the districts or just consistent rankings. The authors showed

that, when the districts are symmetric (that is, each of them contains the same number of agents), the

distortion of a cardinal mechanism, namely Plurality-of-Range-Voting is O(km), and provided an

asymptotically matching lower bound of Ω(km) on the distortion of any Plurality-of-f mechanism.

For ordinal mechanisms, they showed that Plurality-of-Plurality achieves a distortion of O(km2),
and that this is asymptotically best among all ordinal Plurality-of-f mechanisms.

1.1 Revisiting the distortion of distributed voting

A first observation about the results of Filos-Ratsikas et al. [2020] is that there is a-priori no reason

to restrict our attention to only mechanisms in the class Plurality-of-f , as using other over-districts

rules could potentially lead to better distortion. Indeed, follow-up work considered distributed social

choice settings with metric preferences [Anshelevich et al., 2022, Filos-Ratsikas and Voudouris, 2021]

without such restrictions on the over-districts rule. In addition, all of the previous work on these

settings only considered deterministic mechanisms that use deterministic in-district and over-districts

rules. Randomization has proven out to be a very useful tool in achieving better (expected) distortion

bounds in the centralized setting (see Boutilier et al. [2015], Ebadian et al. [2022]), so it is only natural

to consider randomized mechanisms in the distributed setting as well. Finally, an important question

is how the distortion bounds are affected in case the participants act selfishly, and whether there are

strategyproof mechanisms with good distortion bounds. This question has been considered in the

centralized setting [Filos-Ratsikas and Miltersen, 2014, Bhaskar and Ghosh, 2018, Bhaskar et al., 2018,

Ebadian et al., 2022] and also in the distributed metric setting [Filos-Ratsikas and Voudouris, 2021]; we

consider it in the context of the normalized setting of Filos-Ratsikas et al. [2020] as well.

1.2 Our Contributions

We consider the class of all mechanisms for distributed voting in the setting of [Filos-Ratsikas et al.,

2020]. In particular, we consider the fover-of-fin class of mechanisms, where fin is an in-district rule that

takes as input the preferences of the agents within each district and outputs a representative alternative

for the district, while fover is a rule that takes as input the representative alternatives of all districts and

chooses one of them as the overall winner. We consider several different cases depending on the nature

of fover and fin (deterministic or randomized), and the type of information they can utilize (cardinal or

ordinal). We show the following results; see Table 1 for an overview.

Deterministic Mechanisms. When fover and fin are both deterministic and the districts are symmet-

ric, we show that the best possible distortion is Θ(km) when the valuation functions of the agents are

accessible (cardinal mechanisms), and is Θ(km2) when only ordinal information about the preferences

of the agents is available (ordinal mechanisms). The upper bounds were shown by Filos-Ratsikas et al.

[2020] and here we provide asymptotically tight lower bounds. These results show that for general,
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Deterministic Randomized-of-Deterministic Randomized-of-Randomized

Ordinal Θ(km2) Θ(km2) Ω(
√
m), O(

√
m logm)

Cardinal Θ(km) Θ(k) Θ(k)
Strategyproof Θ(nm) Θ(nm) Ω(

√
m), O(

√
m logm)

Table 1: An overview of our results. Specific details can be found in the appropriate sections.

unstructured (normalized) valuations, employing different over-district rules in fact does not result in

improvements on the distortion. We present these results in Section 3.

Randomized Mechanisms. In Section 4, we consider for the first time the distortion of randomized

mechanisms in distributed voting. We first prove a simple composition theorem, which shows that

using an in-district rule with known distortion δ in the centralized setting and then selecting the winner

uniformly at random from the set of representatives, defines a distributed mechanism with distortion

O(kδ). Using this, complemented with new lower bounds, we show that the best possible distortion

for cardinal unanimous mechanisms is Θ(k); in fact, this is true even when the districts are asymmetric

and when fover is randomized but fin is deterministic.

For ordinal mechanisms, we consider two cases: (a) mechanisms that use deterministic in-district

rules fin, and (b) fully-randomized mechanisms, where both fover and fin are randomized rules. For

(a), we show that the best possible distortion is Θ(km2). The upper bound follows from the bound on

Plurality-of-Plurality proven in [Filos-Ratsikas et al., 2020]; here, we provide an asymptotically

matching lower bound assuming a natural universal tie-breaking rule. For (b), we prove a simple but

very interesting result: For a well-studied class of randomized centralized voting rules called point-
voting schemes (e.g., see Gibbard [1977], Barbera [1978]), there exists a distributed implementation so

that there is no effect on the induced probability distribution, even for asymmetric districts. Simply put,

using such rules it is possible to escape the ill effects of districts in terms of the distortion, even when

the districts are asymmetric. From this result, it follows that there exists a distributed implementation

of a well-known mechanism of Boutilier et al. [2015] that achieves distortion O(
√
m logm), almost

matching the best possible lower bound of Ω(
√
m).

Strategyproof Mechanisms. For strategyproof mechanisms, which are resilient to strategic manip-

ulation, we show that a best-possible distortion of Θ(nm) for deterministic mechanisms (and more

generally mechanisms with a deterministic in-district rule) is easy to achieve by a variation of a dic-

tatorship rule. For randomized mechanisms, since point-voting schemes are strategyproof, the bound

O(
√
m logm) carries over to this class as well. Results about deterministic strategyproof mechanisms

are presented in Section 3, and about randomized strategyproof mechanisms in Section 4.

Experiments. Finally, in Section 5, we perform experiments using real-world data and synthetic data

to evaluate the effect of distributed decision making to the distortion in settings closer to practice. The

main conclusions of our experimental results mirror that of our theoretical results in Sections 3 and 4.

1.3 Further Related Work

The distortion literature is by now rather extensive, including topics such as single-winner voting

[Boutilier et al., 2015, Anshelevich et al., 2018, Gkatzelis et al., 2020, Kizilkaya and Kempe, 2022],

multi-winner voting [Caragiannis et al., 2017, 2022], matching problems [Filos-Ratsikas et al., 2014,

Amanatidis et al., 2022a], and participatory budgeting [Benadè et al., 2017]. Generally speaking, most

works can be categorized as either studying a normalized utilitarian setting (e.g., [Procaccia and Rosen-

schein, 2006, Boutilier et al., 2015, Filos-Ratsikas et al., 2014, Benadè et al., 2017, Ebadian et al., 2022]) or

a metric preference setting (e.g., [Anshelevich and Sekar, 2016, Anshelevich et al., 2018, Gkatzelis et al.,
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2020, Caragiannis et al., 2022, Kizilkaya and Kempe, 2022]). Some more recent works have also studied

the interplay between information and distortion [Amanatidis et al., 2021, 2022a,b, Mandal et al., 2019,

2020, Abramowitz et al., 2019], and there have also been several works on strategyproofness in the con-

text of distortion [Filos-Ratsikas and Miltersen, 2014, Filos-Ratsikas et al., 2014, Bhaskar and Ghosh,

2018, Bhaskar et al., 2018, Ebadian et al., 2022]. We refer the reader to the survey of Anshelevich et al.

[2021] for a detailed overview of the related literature.

Besides the aforementioned works on distributed voting, Borodin et al. [2019] studied a related

two-stage setting in which the voters participate in a central election, but the candidates themselves

come from local elections within the political parties’ electorates. Beyond distortion, in the context of

district-based elections, there have also been other works that have considered the degree of deviation

from proportional representation (e.g., see [Bachrach et al., 2016] and references therein), and some

works that have studied the complexity of manipulation (e.g., see [Elkind et al., 2021, Lewenberg et al.,

2017, Lev and Lewenberg, 2019, Borodin et al., 2018]).

2 Preliminaries

An instance I of our problem is given by a tuple I = (N,A,v, D). There is a set N of n agents (or

voters) that have preferences over a set A of m alternatives (or candidates). The preferences of each

agent i ∈ N are captured by a valuation function vi : A → R≥0 that maps every alternative a ∈ A to a

real non-negative value vi(a) = via. Following previous work, we assume that the valuation functions

are normalized such that

∑
a∈A via = 1 for every i ∈ N (unit-sum assumption). Let v = (vi)i∈N be

the valuation profile consisting of the valuation functions of all agents. The agents are also partitioned

into a set D of k disjoint districts.

For every district d ∈ D, let Nd be the set of agents it contains, such that

⋃
d∈D Nd = N . In the

symmetric case, each district d contains exactly λ = n/k agents. In the asymmetric case, each district

d contains a number nd of agents. All our lower bounds follow by instances consisting of symmetric

districts, whereas our upper bounds in Section 4 hold for asymmetric districts.

2.1 Mechanisms

Our goal is to choose an alternative to satisfy several criteria of interest. This choice must be done

using a distributed mechanism that uses an in-district voting rule fin and an over-districts voting rule

fover to implement the following two independent steps:

• Step 1: For each district d, choose a representative alternative ad ∈ A by holding a local election
based on fin.

• Step 2: Choose a district representative as the winner based on fover by considering the districts

as voters and their representatives as the candidates they approve.

For simplicity we refer to such mechanisms as fover-of-fin. Different choices of fin and fover lead to

different distributed mechanisms. Note that the in-district rule can in general use various types of

information about the preferences of the agents. For instance, it may be able to use exact cardinal
information about the valuation functions, or only ordinal information that is induced by the values

(i.e., rankings of alternatives that are consistent to the values of the agents for them). In the latter case,

we will use σi to denote the preference ranking of agent i ∈ N so that σi(a) is the rank of alternative

a ∈ A in the ranking of i, and σi(a) < σi(b) if vi(a) ≥ vi(b); let σ = (σi)i∈N be the ordinal
profile consisting of the preference rankings of all agents. To be concise in the definitions below, let
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δ(I) be the information about the preferences of the agents in instance I = (N,A,v, D) that is used

by a mechanism; that is, δ(I) = v in case of cardinal information, or δ(I) = σ in case of ordinal

information.

We will focus on different classes of distributed mechanisms depending on the available informa-

tion about the preferences of the agents at the district level (cardinal or ordinal), and also on whether

their decision is deterministic or randomized (that is, they choose the district representatives or final

winner based on probability distributions).

2.2 Social Welfare and Distortion

Given an instance I , the social welfare of an alternative a ∈ A is the total value that the agents have for

a, that is, SW(a|I) =
∑

i∈N via. So, the expected social welfare achieved by a randomized distributed

mechanism M that chooses alternative a ∈ A as the winner w with probability PrM [w = a] is

E[SW(M(I))] =
∑
a∈A

Pr
M
[w = a] · SW(a|I).

The efficiency of a distributed mechanism is measured by the notion of distortion. The distortion of a

distributed mechanism M is the worst-case ratio (over all possible instances with n agents, m alterna-

tives, and k districts) of the maximum social welfare achieved by any alternative over the (expected)

social welfare of the alternative chosen by the mechanism as the winner w, that is,

dist(M) = sup
I

maxa∈A SW(a|I)
E[SW(M(δ(I))]

.

Clearly, dist(M) ≥ 1. When the denominator in the definition of the distortion tends to 0, we will

say that the distortion is infinite or unbounded. Our goal is to identify the best possible distributed

mechanisms in terms of distortion.

2.3 Strategyproofness

Another important property that we would like our mechanisms to satisfy is that of strategyproof-

ness. A strategyproof mechanism makes decisions such that providing false information never leads to

the selection of an alternative that an agent prefers over the alternative chosen when the agent pro-

vides truthful information. In particular, for any instance I , it must be the case that vi(M(δ(I))) ≥
vi(M(δ(I ′))) for any agent i ∈ N , where I ′ is the instance obtained when only agent i reports infor-

mation different than that in I .

2.4 Some useful observations and properties

Before we present our technical results, let us briefly discuss some useful properties.

Locality of distributed mechanisms: First, observe that any distributed mechanism fover-of-fin

satisfies a locality property in the following sense. A district d (that is, the preferences of a number

of agents) appears in different instances if in each of these instances there is a district with the same

number of agents and the same information about theirs preferences as in d (depending on what is

required by the mechanism). Since the information is the same, the in-district rule fin must decide the

same alternative as the representative of the district in all these instances. Similarly, in all instances

where the mechanism has decided the same set of district representatives, the over-districts rule fover

must decide the same final winner.

5



Distortion of distributed vs centralized: Another useful observation is that the distortion of a

distributed mechanism fover-of-fin is at least as much as the distortion of the in-district centralized

voting rule fin. Indeed, when k = 1, there is only one representative alternative chosen by fin, and

thus this alternative must be chosen as the winner by fover; this is also true for instances with k ≥ 2
districts which are all copies of one district. Consequently, the distortion of fin is a lower bound on

the distortion of fover-of-fin.

Strategyproofness: Observe that for a distributed mechanism fover-of-fin to be strategyproof it is

necessary that the in-district rule fin is strategyproof. This again follows by how the mechanism would

work in instances with a single district, in which case the over-districts rule fover does not play any

role in the selection of the final winner.

Unanimity: A few of our results will require the in-district rules fin to be unanimous. Unanimity

stipulates that if all of the agents have the same alternative as the top preference, that alternative

must be selected (with probability 1). Unanimity is a very natural property of “reasonable” voting

rules, especially deterministic ones. For randomized rules, there might be reasons to consider non-

unanimous choices, e.g., see Gibbard [1977], Filos-Ratsikas and Miltersen [2014].

3 Deterministic mechanisms

We start with deterministic distributed mechanisms and focus explicitly on the case of symmetric

districts in this section (that is, the size of each district is λ). When full information about the valuations

of the agents is known at the district level, Filos-Ratsikas et al. [2020] showed that the mechanism

Plurality-of-Range-Voting, which chooses the representative of each district to be the alternative

with maximum social welfare for the agents in the district, has distortion O(km). We show that this

mechanism is asymptotically best possible over all possible deterministic distributed mechanisms that

use unanimous in-district rules (but may not use Plurality as the over-districts rule).

Theorem 3.1. The distortion of any deterministic distributed mechanism with a unanimous in-district
rule is Ω(km).

Proof. Let M be some deterministic distributed mechanism with a unanimous in-district rule. Without

loss of generality, whenever there are k distinct district representatives {a1, . . . , ak}, we assume that

M chooses a1 as the overall winner. Let ε > 0 be some positive infinitesimal and consider the following

instance with k districts {d1, . . . , dk} and m > k alternatives:

• In district d1, all agents have value 1/m+ ε for alternative a1, and value 1/m− ε/(m− 1) for

any other alternative.

• For any ℓ ∈ {2, . . . , k}, in district dℓ, all agents have value 1/2 + ε for alternative aℓ, value

1/2− ε for alternative x, and value 0 for any other alternative.

Since the in-district rule is unanimous, the district representatives are alternatives {a1, . . . , ak}, and

the overall winner is thus a1. The social welfare of alternative a1 is approximately λ/m, whereas the

social welfare of alternative x is approximately k · λ/2, leading to distortion Ω(km).

When only ordinal information about the preferences of the agents is available, Filos-Ratsikas

et al. [2020] showed that Plurality-of-Plurality, which chooses the favorite alternative of most of

the agents in a district as its representative and then the alternative that represents the most districts

as the winner, has distortion O(km2). We show that this mechanism is asymptotically best possible

among all ordinal distributed mechanisms (without any restrictions), thus improving upon the result
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of Filos-Ratsikas et al. [2020] who showed that Plurality-of-Plurality is best possible only within

the class of mechanisms they studied.

We first prove an easy but important lemma showing that when only ordinal information is avail-

able, to achieve finite distortion, it is necessary the representative of each district to be some alternative

that is the favorite of at least one agent in the district.

Lemma 3.2. The representative of any district must be some top-ranked alternative, otherwise the distor-
tion is infinite.

Proof. Let d be a district and let T be the set of top-ranked alternatives. Suppose that the representative

of d is chosen to be some alternative x ̸∈ T . Then, in any instance consisting of copies of d, the winner

must be x. However, the valuation profile might be such that all agents have value 1 for their favorite

alternative and 0 for any other alternative. Consequently, the social welfare of x might be 0, whereas

the social welfare of any top-ranked alternative is positive, leading to infinite distortion.

We say that a district is divided if its λ agents are partitioned into m/2 equal-sized sets such that all

the 2λ/m agents in each set rank the same alternative first and different sets of agents have different

top-ranked alternatives. By Lemma 3.2, the representative of such a district must be one of the top-

ranked alternatives. The following lemma shows that choosing the representative of a divided district

as the winner is, under some circumstances, a bad choice.

Lemma 3.3. Suppose that some alternative y1 is chosen as the winner by a deterministic ordinal dis-
tributed mechanism when the set of representatives is {y1, . . . , yk}. If there exists a divided district that
is represented by y1, then there are k − 1 districts with representatives y2, . . . , yk, and altogether these k
districts define an instance such that the distortion of the mechanism is Ω(km2).

Proof. Let M be a deterministic ordinal distributed mechanism that selects y1 as the winner when

the set of representatives is {y1, . . . , yk}, and let d be the divided district that is represented by y1.

Consider the following k districts:

• The first district is a copy of d.

• For every ℓ ∈ {2, . . . , k}, the ℓ-th district is such that all agents therein rank yℓ first, x ̸∈
{y1, . . . , yk} second, and then all other alternatives. By Lemma 3.2, M must choose yℓ as the

representative of the ℓ-th district, as this is the only top-ranked alternative.

So, indeed the set of representatives is {y1, . . . , yk} and M chooses y1 as the winner by assumption.

One possible valuation profile is the following:

• In the first, divided district, the 2λ/m agents that rank y1 first have value 1/m for all alternatives,

and the remaining agents all have value 1 for their favorite alternative.

• For every ℓ ∈ {2, . . . , k}, all agents in the ℓ-th district have value 1/2 for their two favorite

alternatives (yℓ and x).

Consequently, the social welfare of y1 is λ/m2
whereas the social welfare of x is approximately k ·λ/2,

and thus the distortion is Ω(km2).

Lemma 3.3 shows that deterministic ordinal distributed mechanisms with distortion o(km2) must

not output the representative of a divided district as the winner when it is given a set of districts with

different representatives. However, as we show in the proof of the next theorem, there are instances

where such a choice is inevitable, and thus the distortion is Ω(km2).
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Theorem 3.4. The distortion of any deterministic ordinal distributed mechanism is Ω(km2).

Proof. Let M be a deterministic ordinal distributed mechanism. We focus on instances with k districts

and sets of alternatives A ∪ B ∪ C ∪ {x}, where A = {a1, . . . , ak}, B = {b1, . . . , bm/2+k−1}, and

C = {c1, . . . , cm−2k}. Without loss of generality, suppose that when the district representatives are

{a1, . . . , ak}, M chooses a1 as the overall winner.

Let d1 be a divided district with set of top-ranked alternatives {a1, b1, . . . , bm/2−1}. By Lemma 3.3,

if a1 is the representative of d1, then there exists an instance such that the distortion of M is Ω(km2).
So, suppose that the representative of d1 is some other top-ranked alternative, say b1. Again by

Lemma 3.3, if b1 is chosen as the winner whenever she is part of a representative set consisting of

k distinct alternatives, then the distortion of M would be Ω(km2). So, let us assume that when the

district representatives are {b1, a2, . . . , ak}, the winner is an alternative different than b1, say a2.

We can now repeat this argument step by step for each alternative aℓ, ℓ ∈ {2, . . . , k}. In particular,

let dℓ be a divided district with top-ranked alternatives {aℓ, bℓ, . . . , bm/2+ℓ−2} (note that alternatives

b1, . . . , bℓ−1 do not appear as top-ranked alternatives in dℓ). By Lemma 3.3, if aℓ is the representative

of dℓ then the distortion of M is Ω(km2), so the representative is some other alternative from the set

{bℓ, . . . , bm/2+ℓ−2}, say bℓ. Again by Lemma 3.3, if bℓ is chosen as the winner whenever she is part of

a representative set consisting of k distinct alternatives, then the distortion of M would be Ω(km2).
So, when the district representatives are {b1, . . . , bℓ, aℓ+1, . . . , ak}, the winner is an alternative not in

{b1, . . . , bℓ}, say aℓ.

The last step of this repeated argument leads to the lower bound of Ω(km2): We have reached an

instance with set of representatives {b1, . . . , bk} all of whom are representative of some divided district,

and thus no matter who of them is chosen as the winner, by Lemma 3.3 there exists an instance that

includes the corresponding divided district and k − 1 unanimous districts (like in the proof of the

lemma) such that the distortion is Ω(km2).

Finally, let us discuss the case of deterministic strategyproof distributed mechanisms. Bhaskar and

Ghosh [2018] showed that the distortion of any deterministic centralized strategyproof voting rule

(including those that have access to the valuation functions) isΘ(nm). From the discussion Section 2.4,

we directly obtain a lower bound of Ω(nm) for the distributed setting as well. A tight upper bound is

also not hard to derive by considering the straightforward First-of-First mechanism which works as

follows:

• For each district d, choose the favorite alternative of the first agent therein as the representative.

• Choose the representative of the first district as the winner.

Theorem 3.5. First-of-First is strategyproof and achieves an asymptotically best possible distortion of
Θ(nm) within the class of deterministic strategyproof distributed mechanisms.

Proof. The mechanism is clearly strategyproof since the winner is the favorite alternative of the first

agent of the first district who acts as a dictator. Since the winner is ranked first by an agent, the social

welfare of the mechanism is at least 1/m. The maximum possible social welfare is n, and thus the

distortion is O(nm).

4 Randomized mechanisms

We start our discussion on randomized distributed mechanisms by analyzing a general class of mech-

anisms that we call Uniform-of-δ-Approximate. A mechanism M in this class works as follows:
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• For each district d, M chooses the representative ad according to some centralized voting rule

fin that has distortion at most δ.

• M chooses the winner uniformly at random from the set of representatives.

Picking the winner uniformly at random from the representatives that have been selected seems to be

the most natural choice as there is not much information about the preferences of the agents in the

districts, and essentially all we can do is assign higher proportional probability to an alternative that

is representative of more districts. We have the following result.

Theorem 4.1. The distortion of any Uniform-of-δ-Approximate mechanism is O(kδ).

Proof. Consider an arbitrary instance. Let o be the optimal alternative, ad the representative of district

d, and w the final winner. Denote by SWd(x) the social welfare of alternative x only from the agents

in d; clearly, SW(x) =
∑

d∈D SWd(x). The expected social welfare of the mechanism is

E[SW(M)] =
∑
a∈A

Pr[w = a] · SW(a)

=
1

k

∑
a∈A

(∑
d∈D

Pr[ad = a]

)
SW(a)

=
1

k

∑
d∈D

∑
a∈A

Pr[ad = a] · SW(a)

=
1

k

∑
d∈D

E[SW(ad)]

≥ 1

k

∑
d∈D

E[SWd(ad)]

Since ad is chosen based on a voting rule with distortion at most δ, we have that E[SW(ad)] ≥ 1
δ ·

SWd(o). Combining this together with the fact that SW(o) =
∑

d∈D SWd(o), and using the linearity

of expectation, we obtain

E[SW(M)] ≥ 1

k

∑
d∈D

E[SWd(ad)]

≥ 1

k

∑
d∈D

1

δ
· SWd(o)

=
1

kδ
· SW(o).

Hence, the distortion of the mechanism is at most kδ.

Theorem 4.1 is a simple composition theorem, analogous to the one presented by Anshelevich

et al. [2022] for the metric setting. Based on it, we can define randomized distributed mechanisms

with proven distortion guarantees by appropriately choosing the in-district rule. Before we continue,

observe that the sizes of the districts do not appear in the proof of Theorem 4.1, and thus the distortion

of any Uniform-of-δ-Approximate mechanism is O(kδ) even if the districts are asymmetric. So, the

distortion of the mechanism depends on the number of agents only if the distortion δ of the in-district

rule depends on the number of agents.

If cardinal information is available at the district level, by using Range-Voting with δ = 1 as the

in-district rule, we obtain the following.

9



Corollary 4.2. The distortion of Uniform-of-Range-Voting is O(k).

If only ordinal information about the preferences of the agents is given at the district level, then we

can use Plurality with δ = O(m2) and the randomized rule Stable-Lottery mechanism of Ebadian

et al. [2022] with δ = O(
√
m) as the in-district rule to obtain the following results.

Corollary 4.3. The distortion of Uniform-of-Plurality is O(km2).

Corollary 4.4. The distortion of Uniform-of-Stable-Lottery is O(k
√
m).

An important question to ask next is under what circumstances the aforementioned upper bounds

of Corollaries 4.2, 4.3 and 4.4 are tight. First, we show that Uniform-of-Range-Voting is the best

among mechanisms with unanimous in-district rules which may even use cardinal information.

Theorem 4.5. The distortion of any randomized distributed mechanism with a unanimous in-district rule
is Ω(k).

Proof. Let ε > 0 be a positive infinitesimal. Consider an instance with the following k symmetric

districts: For any ℓ ∈ [k], in district dℓ, all λ agents therein have value 1/2 + ε for alternative aℓ,
1/2− ε for alternative x, and 0 for any other alternative. Since, the in-district rule is unanimous, the

representative of district dℓ must be aℓ with probability 1. Hence, no matter what the probability of

choosing a district representative as the winner is, the expected social welfare of the mechanism is

λ · (1/2 + ε). However, the social welfare of alternative x is k · λ · (1/2− ε), and thus the distortion

is Ω(k).

If we consider non-unanimous in-district rules, but require the in-district rule to be deterministic,

then we can show a weaker lower bound of Ω(
√
k); notice that the theorem also implies the same

bound for fully deterministic distributed mechanisms without unanimous in-district rules.

Theorem 4.6. The distortion of any randomized distributed mechanism with a deterministic in-district
rule is Ω(

√
k).

Proof. Consider a district dℓ in which all agents have value 1/2 for alternative aℓ, value 1/(2
√
k) for

each alternative in {b1, . . . , b√k}, and 0 for any other alternative. If the representative of this district is

not aℓ, then in instances consisting of copies of this district, the distortion is at least

√
k; in particular, it

is at least that much if some alternative in {b1, . . . , b√k} is chosen and infinite if any other alternative

is chosen. So, suppose that the representative of dℓ is aℓ.

Next, consider an instance with k symmetric districts d1, . . . , dk. By the above discussion, for any

ℓ ∈ [k], the representative of dℓ is alternative aℓ with social welfare λ/2 (note that only the agents

of dℓ have positive value, equal to 1/2, for aℓ). Hence, no matter which district representative is

chosen as the winner (or the probability distribution over the representatives), the (expected) social

welfare of the mechanism is λ/2. In contrast, the social welfare of any alternative in {b1, . . . , b√k} is

k · λ/(2
√
k) =

√
k · λ/2, and thus the distortion is

√
k.

Next, we show that Uniform-of-Plurality is the best possible among ordinal randomized dis-

tributed mechanisms with deterministic in-district rules, assuming an arbitrary but fixed ordering of

the alternatives. This is quite surprising, as it shows that randomization over the districts is not better

than just choosing an arbitrary alternative that is representative of the most districts (i.e., not better

than Plurality-of-Plurality).

Theorem 4.7. The distortion of any ordinal distributed mechanism with a deterministic in-district rule is
Ω(km2), when there exists an arbitrary but fixed tie-breaking ordering of the alternatives.

10



Proof. Without loss of generality, suppose that the tie-breaking ordering of the alternatives is a1 ≻
. . . ≻ ak ≻ b1 ≻ . . . ≻ bm/2−1 ≻ x ≻ c1 ≻ . . . ≻ cm/2−k; the naming of the alternatives is arbitrary

but is assumed to be known and can be exploited. For simplicity, for any set of alternatives X , denote

by [X] an arbitrary ordering of the alternatives in X .

Consider an instance with k symmetric districts such that in district dℓ there is a set of 2λ/m
agents with preference ordering aℓ ≻ x ≻ [A\{aℓ, x}], a set of 2λ/m agents with preference ordering

b1 ≻ x ≻ [A \ {b1, x}], . . ., and a set of 2λ/m agents with preference ordering bm/2−1 ≻ x ≻
[A \ {bm/2−1, x}]. By Lemma 3.2, the representative of dℓ must be one of the top-ranked alternatives

(otherwise the distortion of the mechanism would be infinite). Since aℓ is ranked above the other

alternatives in the tie-breaking ordering, she chosen as the representative of dℓ. Hence, the set of

representatives is {a1, . . . , ak}, and the winner is chosen according to some probability distribution

over this set.

The valuation profile may be such that the 2λ/m agents in district dℓ that rank aℓ first have value

1/m for all alternatives, while all other agents in dℓ have value 1/2 for their two favorite alterna-

tives. Consequently, the social welfare of alternative aℓ is 2λ/m2
, and thus the social welfare of the

mechanism is also this much, no matter the probability distribution over the district representatives.

In contrast, the social welfare of x is approximately kλ/2, leading to a distortion of Ω(km2).

When randomization at the district level can be leveraged by ordinal distributed mechanisms, then

we achieve distortion much better than what is implied by Corollary 4.4, while also achieving strat-

egyproofness. In particular, there are several centralized voting rules that can be implemented as

distributed mechanisms, in the sense that they define the same probability distribution over the alter-

natives. One such important class of voting rules is that of point-voting schemes, which is part of a

larger class of strategyproof mechanisms [Barbera, 1978, Hylland, 1980, Gibbard, 1977] and includes

rules with almost best possible distortion guarantees [Boutilier et al., 2015, Ebadian et al., 2022].

4.1 Point-voting schemes

A point-voting scheme chooses an agent uniformly at random and then outputs her t-th favorite al-

ternative with probability pt, where p1 ≥ . . . ≥ pm ≥ 0 and

∑m
t=1 pt = 1. Hence, the probability

according to which the point-voting scheme using the probability vector p = (p1, . . . , pm) chooses

alternative a ∈ A as the winner w is Pr[w = a] = 1
n

∑
i∈N pσi(a), where σi(a) is the position that i

ranks a in her preference ranking σ.

There are many point-voting schemes of interest. For every positional scoring rule using the scor-

ing vector s = (s1, . . . , sm), we can define a point-voting scheme f(s) by normalizing the scoring

vector, that is, define pt = st/
(∑

j∈[m] sj

)
for every t ∈ [m] so that the winning probability of

alternative a is

Pr[w = a] =
1

n

∑
i∈N

sσi(a)∑
j∈[m] sj

=

∑
i∈N sσi(a)

n ·
∑

j∈[m] sj
.

Another important point-voting scheme is the rule that chooses each alternative uniformly at random;

in this case, we have pt = 1/m for every t ∈ [m] so that Pr[w = a] = 1
n

∑
i∈N

1
m = 1

m .

For any point-voting scheme f that uses a probability vector p, we consider the distributed mech-

anism Proportional-of-f -Point-Voting, which works as follows:

11



• For every district d, choose the representative ad to be alternative a ∈ A with probability

1
λ

∑
i∈Nd

pσi(a).

• Choose the winner to be the representative of district d with probability nd/n.

Theorem4.8. Proportional-of-f -Point-Voting defines the same probability distribution as the point-
voting scheme f .

Proof. The probability that alternative a is chosen as the winner by Proportional-of-f -Point-Voting
is

Pr[w = a] =
∑
d∈D

Pr[w = ad] · Pr[ad = a]

=
∑
d∈D

nd

n
· 1

nd

∑
i∈Nd

pσi(a)

=
1

n

∑
i∈N

pσi(a),

that is, Proportional-of-f -Point-Voting chooses a with the same probability as f .

Theorem 4.8 shows that Proportional-of-f -Point-Voting achieves the same distortion bound

as the point-voting scheme f it uses as the in-district rule, and also that it inherits its strategyproofness

property. This is extremely useful, as there are centralized voting rules that are based on point-voting

schemes and achieve almost the best possible distortion.

Boutilier et al. [2015] considered a voting rule that is a convex combination of two point-voting

schemes: With probability 1/2 choose an alternative uniformly at random, and with probability 1/2
run the point-voting scheme defined by normalizing the harmonic scoring ruleH = (1, 1/2, . . . , 1/m).
We will refer to this mechanism as BCHLPS. Boutilier et al. [2015] showed that this voting rule has

distortion O(
√
m logm). An important property of point-voting schemes is that any rule that is a

convex combination of point-voting schemes is also a point-voting scheme. The following lemma is

similar to lemmas proved before in the literature (e.g., see Filos-Ratsikas and Miltersen [2014], Barbera

[1978]); we provide a proof for completeness.

Lemma 4.9. Let f1, . . . , fκ be point-voting schemes defined by the probability vectors p1, . . . ,pκ. For
any non-negative numbers q1, . . . , qκ such that

∑
j∈[κ] qj = 1, the voting rule f that chooses the outcome

of fj with probability qj is a point-voting scheme.

Proof. Let σ be an arbitrary preference profile. For any j ∈ [κ], denote the t-th coordinate of pj as pj,t,
and let Pj(a) = Pr[a = fj(σ)] be the probability of choosing a as the winner according to point-voting

scheme fj . Then, the voting rule f chooses alternative a as the winner w with probability

Pr[w = a] =
∑
j∈[κ]

qj · Pj(a)

=
∑
j∈[κ]

qj ·

(
1

n

∑
i∈N

pj,σi(a)

)

=
1

n

∑
i∈N

∑
j∈[κ]

qj · pj,σi(a).

Hence, f is a point-voting scheme defined by the probability vector p with pt =
∑

j∈[κ] qj · pj,t.
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Consequently, by Theorem 4.8 and Lemma 4.9, we can construct a randomized ordinal distributed

mechanism based on the point-voting scheme of Boutilier et al. [2015] that achieves the same distortion

bound and is strategyproof.

Corollary 4.10. There exists a randomized ordinal strategyproof distributed mechanism with distortion
O(

√
m logm).

This distortion bound is almost best possible as the lower bound of Ω(
√
m) for randomized cen-

tralized rules holds trivially for distributed mechanisms by considering single-district instances.

5 Experiments

In this section, we perform experiments with real and synthetic datasets, aiming to identify patterns in

the distortion of several well-known voting rules and examine whether these support our theoretical

findings. It is well-documented in the literature (e.g., see [Boutilier et al., 2015, Filos-Ratsikas et al.,

2020]) that when working with real or realistic preferences, it often is the case that the distortions

bounds are small numbers quite close to 1. In this sense, our goal is not primarily to demonstrate the

distortion bounds themselves, but rather the dependence of these bounds on the distributed decision-

making process, in particular the number of districts, as well as the use of randomization. We perform

two main experiments, one with real-world preferences and valuation data, and one with synthetic

data. All our experiments are with symmetric districts.

5.1 Experiments with the Jester Dataset

For our first experiment, we use the Jester Joke Dataset [Goldberg et al., 2001]. The dataset contains

ratings for 100 different jokes in the range [−10, 10], provided by 70000 users. We chose to work

with this dataset as it has also been employed by Boutilier et al. [2015] in the context of centralized

distortion bounds, and also by Filos-Ratsikas et al. [2020] for the distortion of deterministic distributed

mechanisms that use plurality as the over-district rule.

Following the methodology developed in these works, we construct inputs consisting of ratings

for the 8 most-rated jokes. In particular, we perform 1000 random runs in which we sample 100 users

from the set of all users that have provided rankings for all eight jokes, and then partition them into

k equal-sized districts uniformly at random, for k ∈ {1, 2, 5, 10, 20, 25}. Clearly, the case of k = 1
corresponds to the centralized setting and will be used as a reference point. We interpret the ratings

of the jokes as cardinal valuations: to be consistent with our setting (and with the experiments of

[Boutilier et al., 2015, Filos-Ratsikas et al., 2020]), we add 10 to each user’s rating vector, to ensure that

the values are positive and then apply the unit-sum normalization. For these inputs, we compute the

average distortion of a set of 20 voting rules over the 1000 runs of the experiment. In particular, we

consider distributed mechanisms fover-of-fin, where for fover we use Plurality or Uniform, whereas

for fin we have:

Deterministic Rules: We use simple voting scoring rules, namely Plurality (PL), Veto, Borda and

Harmonic, as well as Range-Voting (RV), which in the case of k = 1 finds the optimal alternative.

Randomized Rules: Here we use several natural point-voting schemes with probability vectors that

are proportional to the aforementioned scoring rules (recall the definition from Section 4), namely

• Proportional to Plurality Score (PropPL);

• Proportional to Borda Score (PropBorda);
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k RV PL Veto Borda Harmonic PropPL PropVeto PropBorda PropHarmonic BCHLPS

1 1 1.049 1.035 1.007 1.017 1.135 1.166 1.155 1.156 1.166

2 1.017 1.070 1.059 1.018 1.020 1.137 1.166 1.155 1.156 1.165

5 1.018 1.064 1.070 1.020 1.036 1.133 1.162 1.155 1.156 1.165

10 1.019 1.066 1.082 1.021 1.044 1.133 1.162 1.153 1.154 1.163

20 1.024 1.066 1.107 1.030 1.050 1.134 1.165 1.154 1.155 1.164

25 1.022 1.067 1.142 1.031 1.107 1.133 1.165 1.153 1.154 1.164

Table 2: Distortion bounds of various voting rules based on valuations defined by the provided scores of the Jester dataset and random district partitions.

RV PL Veto Borda Harmonic PropPL PropVeto PropBorda PropHarmonic BCHLPS

k = 1
Uniform 1 1.038 1.045 1.006 1.019 1.079 1.087 1.085 1.085 1.087

Beta 1 1.086 1.105 1.029 1.050 1.140 1.152 1.147 1.147 1.150

Exponential 1 1.032 1.096 1.018 1.013 1.118 1.137 1.132 1.131 1.134

k = 2
Uniform 1.026 1.052 1.056 1.030 1.039 1.079 1.087 1.084 1.084 1.086

Beta 1.044 1.111 1.118 1.064 1.080 1.140 1.152 1.147 1.147 1.150

Exponential 1.039 1.062 1.115 1.055 1.051 1.118 1.136 1.132 1.130 1.135

k = 5
Uniform 1.031 1.050 1.057 1.029 1.038 1.076 1.084 1.081 1.081 1.084

Beta 1.052 1.113 1.125 1.074 1.094 1.143 1.155 1.151 1.150 1.154

Exponential 1.039 1.069 1.110 1.055 1.056 1.119 1.137 1.133 1.131 1.134

k = 20
Uniform 1.031 1.055 1.077 1.039 1.042 1.077 1.085 1.082 1.082 1.084

Beta 1.055 1.105 1.145 1.073 1.084 1.141 1.154 1.149 1.149 1.152

Exponential 1.047 1.069 1.123 1.060 1.058 1.115 1.133 1.128 1.127 1.129

k = 25
Uniform 1.031 1.056 1.071 1.036 1.044 1.077 1.085 1.082 1.0824 1.084

Beta 1.054 1.124 1.149 1.084 1.094 1.148 1.155 1.150 1.150 1.151

Exponential 1.042 1.069 1.129 1.060 1.054 1.116 1.134 1.129 1.128 1.131

Table 3: Distortion bounds of various voting rules based on valuations defined according to several probability distributions and random district

partitions. Results for deterministic mechanisms are presented at the left of the bold vertical line, and results for randomized mechanisms are at the

right of the bold vertical line.



• Proportional to Veto Score (PropVeto);

• Proportional to Harmonic Score (PropHarmonic).

We also use the rule of Boutilier et al. [2015] (we refer to it as BCHLPS in the following); recall that this

is a point-voting scheme that with probability 1/2 selects an alternative at random and with probability

1/2 runs the PropHarmonic rule defined above. As established in Corollary 4.10 (and the discussion

before the statement of the corollary), this is best possible in terms of the worst-case distortion.

The results of our experiments can be seen in Table 2. In the table we only present the results

where as fover, we used Plurality for deterministic rules and Uniform for randomized rules. This

is in accordance to our approach in the theoretical results in previous sections. The bounds for the

cases not shown are quite similar, and slightly larger in general. For each of the randomized rules,

we perform 300 runs and calculate their expected social welfare, which we then use to calculate the

distortion.

From the results of Table 2 we observe that, as expected, the existence of multiple districts has an

adverse effect on the distortion of deterministic mechanisms, which becomes worse compared to the

centralized case k = 1. For these rules, we can also observe that the distortion generally increases as k
increases. In contrast, the distortion of randomized rules remains virtually unchanged for any value of

k. This is in complete accordance with our theoretical findings, where we established that these rules

induce the same probability distribution. The experiments showcase that this does not only hold in

expectation, but also in practice (given sufficiently many runs).

Another crucial observation is that, in terms of the absolute distortion numbers, randomization

does not seem to help; if anything, it makes the distortion bounds worse! This can be justified by the fact

that real-world instances like those from the Jester dataset display a large degree of homogeneity, which

results in the simple deterministic rules performing quite well. On the other hand, randomization often

leads to suboptimal choices even on such “well-behaved” instances, demeaning the distortion bounds

on average. Surprisingly, among ordinal voting rules, Borda seems to perform best across the board

even though the theoretical distortion of Borda is in fact unbounded.

5.2 Experiments with Synthetic Datasets

We also perform experiments with datasets that are generated from probability distributions. In par-

ticular, and to be consistent with the Jester experiment presented above, we create instances with

100 agents and 8 alternatives, by first drawing the values of the agents from a certain distribution,

and then constructing the induced ordinal preference profile from those values. We use the following

distributions:

• Uniform distribution in [1, 100]. This is the simplest case, where all possible values are equally

likely.

• Beta distribution with α = 1/10 and β = 1/10. This distribution has a symmetric convex pdf

function centered around a mean of 1/2, assigning higher probabilities to values very close to 1
or 0.

• Exponential distribution with exponent 4, i.e., the pdf is f(x) = 4e4 for x ≥ 0 and f(x) = 0
otherwise. This distribution generates values close to 0 with high probability, and as the values

increase, the probability of them being generated decreases exponentially.

For the rest of the experiment, we perform similar steps as in the case of the Jester dataset: We nor-

malize the values to sum up to 1, and run the set of mechanisms described above. For each ran-

domized mechanism we now perform 150 individual runs and calculate its expected welfare. We
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calculate the average distortions over 500 runs of the experiment for k symmetric districts, where

k ∈ {1, 2, 5, 20, 25}. Note that the number of runs and the number of district sizes is slightly smaller

in this experiment, because it is more computationally intensive (as we need to calculate bounds for 3
different distributions). Again, we use Plurality as fover for deterministic and Uniform for random-

ized mechanisms; the results for the other cases were similar and are not reported.

The results can be found in Table 3. Similarly to the Jester experiment, it is evident that the distor-

tion of the deterministic mechanisms becomes worse for k ≥ 2, whereas it remains pretty much the

same for randomized mechanisms. Again, we observe that randomization results in worse distortion

bounds overall, and that Borda performs best among deterministic mechanisms. Interestingly, con-

trary to the Jester dataset, here we do not see a clear pattern of the distortion increasing as k increases

for deterministic mechanisms (other than the jump from k = 1 to k = 2). This is probably due to the

fact that the synthetic instances are highly homogeneous, and with uniform random district partitions,

the districts end up being quite uniform, regardless of their number and size.

The role of unit-sum. We remark here that normalizing the values to sum up to 1 effectively makes the

Uniform and Exponential distributions pretty similar, and this is reflected in the results. To get a sense

of the effect of normalization, we also ran the experiments without it. We observe that the distortions

for the exponential distribution are now larger than those of the uniform distribution. In general, the

distortion bounds still lie in the range [1.03, 1.15] for all distributions, but their average values (over

all documented distortion bounds) are larger for all distributions except Uniform. It is also the case

that for the Beta distribution, the bounds of deterministic mechanisms are much closer to those of

randomized ones. The distortion of randomized mechanisms is still almost the same for any number

of districts.

6 Open Problems

From our results, an interesting technical challenge is to remove the requirement for a consistent tie-

breaking ordering from the statement of Theorem 4.7. Similarly, we could attempt to remove unanimity

from the lower bound of Theorem 3.1; although unanimity is usually pretty natural, removing it would

make the theorem stronger. More interestingly, our result about point-voting schemes in Theorem 4.8

crucially does not depend on the normalization of the valuations, and hence also could be applied

verbatim to the metric distributed social choice setting studied by Anshelevich et al. [2022], where

randomized mechanisms have never been considered; this seems like a natural starting point for such

an investigation.
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