
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heterogeneous facility location with limited resources

Citation for published version:
Deligkas, A, Filos-Ratsikas, A & Voudouris, AA 2023, 'Heterogeneous facility location with limited
resources', Games and Economic Behavior, vol. 139, pp. 200-215.
https://doi.org/10.1016/j.geb.2023.03.001

Digital Object Identifier (DOI):
10.1016/j.geb.2023.03.001

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Games and Economic Behavior

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Mar. 2023

https://doi.org/10.1016/j.geb.2023.03.001
https://doi.org/10.1016/j.geb.2023.03.001
https://www.research.ed.ac.uk/en/publications/0f6bd934-bb05-41b4-898a-5062c78bbc1d


Games and Economic Behavior 139 (2023) 200–215
Contents lists available at ScienceDirect

Games and Economic Behavior

journal homepage: www.elsevier.com/locate/geb

Heterogeneous facility location with limited resources ✩

Argyrios Deligkas a, Aris Filos-Ratsikas b, Alexandros A. Voudouris c,∗
a Department of Computer Science, Royal Holloway University of London, UK
b School of Informatics, University of Edinburgh, UK
c School of Computer Science and Electronic Engineering, University of Essex, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 March 2022
Available online 8 March 2023

Keywords:
Facility location
Heterogeneous preferences
Voting

We initiate the study of the heterogeneous facility location problem with limited resources. 
We mainly focus on the fundamental case where a set of agents are positioned in the line 
segment [0, 1] and have approval preferences over two available facilities. A mechanism 
takes as input the positions and the preferences of the agents, and chooses to locate a 
single facility based on this information. We study mechanisms that aim to maximize the 
social welfare (the total utility the agents derive from facilities they approve), under the 
constraint of incentivizing the agents to truthfully report their positions and preferences. 
We consider three different settings depending on the level of agent-related information 
that is public or private. For each setting, we design deterministic and randomized 
strategyproof mechanisms that achieve a good approximation of the optimal social welfare, 
and complement these with nearly-tight impossibility results.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

The truthful facility location problem is one of the most prominent paradigms in environments with strategic partic-
ipants, and it was in fact the prototypical problem used by Procaccia and Tennenholtz (2013) to put forward their very 
successful research agenda of approximate mechanism design without money about a decade ago. Since then, the problem has 
been extensively studied in the literature of theoretical computer science and artificial intelligence, with a plethora of inter-
esting variants emerging over the years. Among those, one particularly meaningful variant, which captures several important 
scenarios, is that of heterogeneous facility location, introduced by Feigenbaum and Sethuraman (2015) and studied notably 
by Serafino and Ventre (2015, 2016), Anastasiadis and Deligkas (2018), Fong et al. (2018), Chen et al. (2020) and Li et al. 
(2020a). In this setting, there are multiple facilities, and each of them plays a different role – for example, a library and a 
basketball court. Consequently, the preferences of the agents for the possible outcomes do not only depend on the location
of the facility (as in the original model of Procaccia and Tennenholtz (2013)), but also on the type of the facility. As a result, 
the mechanism design problem now becomes far more challenging.1

While the literature on heterogeneous facility location is quite rich by this point, there is a fundamental setting that 
has surprisingly eluded previous investigations. In particular, all previous works have considered the case of multiple (pre-

✩ A preliminary version of this paper appears in Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI), 2022.

* Corresponding author.
E-mail address: alexandros.voudouris@essex.ac.uk (A.A. Voudouris).

1 In particular, the preference domain is no longer single-peaked, and therefore maximizing the happiness of the agents cannot be achieved by simple 
median mechanisms.
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0899-8256/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).
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Table 1
Overview of our results for deterministic and randomized strat-
egyproof mechanisms. The lower bound 4/3 (marked with �) 
in the known-preferences setting holds only for the class of 
Random-Median mechanisms defined in Section 4. For the gen-
eral and known-preference settings, the bound of 2 also holds 
for the more general case where we can choose k out of m ≥ 2
facilities, for appropriate values of k and m.

Deterministic Randomized

General 2 (1,2]
Known-preferences 2 [4/3�,4/3]
Known-positions [13/11,2] (1,3/2]

dominantly two) facilities which all have to be located, based on the positions and the preferences of the agents. However, 
in many real-world applications, resources are limited, and therefore a decision has to be made about which subset of the 
facilities should be build and where. For instance, the governing body might have sufficient funds to build only one of two 
options, either a library or a basketball court. The decision must be made based on the preferences of the agents over 
the two facilities, but also on their positions, in a way that incentivizes the agents to reveal all their private information 
truthfully; this is clearly a challenging mechanism design problem.

1.1. Our setting

We initiate the study of the heterogeneous facility location problem with limited resources. We focus on the most fun-
damental case where there are two facilities, and only one of them must be located somewhere in the line segment [0, 1]. 
In particular, there is a set of agents, each of whom is associated with a position in [0, 1] and an approval preference over 
the facilities. An agent may approve one of the two facilities or both, and obtains positive utility2 only if a facility that she 
approves is built; otherwise, she has zero utility irrespectively of her position.

Our goal is to design strategyproof mechanisms that choose and locate a single facility, so as to maximize the social 
welfare (the total utility of the agents) and incentivize the agents to truthfully report their private information. We study 
the following three settings depending on the level of information about the positions and the preferences of the agents 
that is assumed to be public or private.

• General setting: Both the positions and the preferences are private information of the agents.
• Known-preferences setting: The positions are private information of the agents, whereas the preferences are public infor-

mation.
• Known-positions setting: The preferences are private information of the agents, whereas the positions are public informa-

tion.

We measure the performance of a strategyproof mechanism by its approximation ratio, defined as the worst-case ratio 
over all instances of the problem between the maximum possible social welfare and the social welfare achieved by the 
mechanism. For each of the aforementioned settings, we derive upper and lower bounds on the achievable approximation 
ratio of strategyproof mechanisms. An overview of our results can be found in Table 1.

1.2. Discussion of our results

We start our investigation by studying deterministic mechanisms in the general setting, where we show that a simple 
group-strategyproof mechanism, which we call Middle, achieves an approximation ratio of 2 (Theorem 3.1); the same 
guarantee extends to the other two settings we consider. We complement this result by showing a lower bound of 2
on the approximation ratio of any deterministic strategyproof mechanism, even when the preferences of the agents are 
assumed to be known (Theorem 4.1). Combining these two results, we completely resolve the problem of identifying the best 
possible deterministic strategyproof mechanism for both the general and the known-preferences settings. For the known-
positions setting, we show that there is no deterministic strategyproof mechanism with approximation ratio better than 
13/11 (Theorem 5.1).

We also consider randomized mechanisms, and provide improved approximation guarantees for both the known-
preferences and the known-positions settings. More specifically, for the known-preferences setting we derive a novel 
universally group-strategyproof mechanism, termed Mirror, which achieves an approximation ratio of 4/3 (Theorem 4.4). 
This mechanism is in fact a member of a larger class of universally group-strategyproof mechanisms, and as we prove, it 

2 We remark that in several facility location settings (e.g., see (Procaccia and Tennenholtz, 2013; Lu et al., 2009, 2010)), the agents are associated with 
costs instead of utilities. In the literature of heterogeneous facility problems however, the setting is commonly defined in terms of utilities, as there is no 
meaningful way of assigning a cost to undesirable outcomes, such as a facility which the agent does not approve.
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is the best possible mechanism in this class (Theorem 4.5). For the known-positions setting, we prove that a variant of 
the well-known Random Dictatorship mechanism, equipped with a carefully chosen tie-breaking rule for the agents that 
approve both facilities, is a universally group-strategyproof mechanism (Theorem 5.2) and achieves an approximation ratio 
of 3/2 (Theorem 5.6).

Finally, we make initial progress in more general settings with m ≥ 2 facilities, from which we can choose to locate k < m. 
We show that an adaptation of Middle still has an approximation ratio of 2 in the general setting, it is group-strategyproof 
for k = 1, but it is only strategyproof for k ≥ 2 (Theorem 6.1 and Lemma 6.2). We complement this result by showing that 
it is impossible to do better in some cases, even when the preferences of the agents are known (Theorem 6.3).

1.3. Related work

As we mentioned earlier, the literature on truthful facility location is long and extensive; here, we discuss only those 
works that are most closely related to our setting. The fundamental difference between our work and virtually all of the 
papers on heterogeneous facility location is that they consider settings with two facilities, where both facilities have to be 
built, and the utility/cost of an agent is calculated with respect to the closest or the farthest among the two.

In particular, Chen et al. (2020) consider a setting in which agents have approval preferences over the facilities, similarly 
to what we do here, and for which the positions of the agents are known. Li et al. (2020a) consider a more general metric 
setting along the lines of Chen et al. (2020), and design a deterministic mechanism which improves upon the result of 
Chen et al. (2020) when the metric is a line. Fong et al. (2018) consider a setting in which the agents have fractional 
preferences in (0, 1); similarly to us, besides studying the general setting, they also consider restricted settings with known 
preferences or known positions. Serafino and Ventre (2015, 2016); Kanellopoulos et al. (2021) consider a discrete setting, 
where the agents are positioned on the nodes of a graph, and the facilities must be located on different nodes. Feigenbaum 
and Sethuraman (2015) were the first to study heterogeneous facility location, by presenting a “hybrid” model combining 
the standard facility location problem with the obnoxious facility location problem (Cheng et al., 2011, 2013). This setting 
was extended by Anastasiadis and Deligkas (2018), who allowed agents to be indifferent between whether a facility would 
be built or not. Xu et al. (2021) study a setting where the goal is to locate two facilities under the constraint that the 
distance between the locations of the facilities is at least larger than a predefined bound.

Li et al. (2020b) study a conceptually similar but fundamentally different facility location problem under budget con-
straints. In their setting, the facilities are strategic and need to be compensated monetarily in order for them to be built; the 
goal is to maximize an aggregate objective given that the total payment is below a predefined budget. Besides these works, 
there is long literature of (homogeneous) facility location, studying different objectives (Alon et al., 2010; Cai et al., 2016; 
Feigenbaum et al., 2013; Feldman and Wilf, 2013), multiple facilities (Escoffier et al., 2011; Fotakis and Tzamos, 2013; Lu et 
al., 2009, 2010), different domains (Schummer and Vohra, 2002; Tang et al., 2020; Sui et al., 2013; Sui and Boutilier, 2015), 
different cost functions (Filos-Ratsikas et al., 2015; Fotakis and Tzamos, 2016), and several interesting variants (Golomb and 
Tzamos, 2017; Kyropoulou et al., 2019; Zhang and Li, 2014; Filos-Ratsikas and Voudouris, 2021; Anshelevich et al., 2021b). 
We refer the reader to the recent survey of Chan et al. (2021) for a detailed overview. We also refer the reader to the survey 
of Anshelevich et al. (2021a) for an overview of the literature on distortion, which has been applied for analyzing facility 
location settings.

Finally, it is instructive to explain how our setting fits within the framework of general social choice. The original facility 
location setting of Procaccia and Tennenholtz (2013) can be seen as a voting setting in which there is a continuum of alter-
natives on the real line, and the agents have single-peaked preferences over them, given by the distance functions defined 
by their most-preferred positions. In our heterogeneous facility location setting, there is also another “voting component” 
in which agents cast approval votes over a different set of alternatives. In that sense, one can view our setting as a social 
choice scenario over two dimensions, one for the type and one for the position of the facility. On the “type axis”, the 1-
out-of-m setting can be seen as a standard single-winner voting setting, whereas the k-out-of-m is a multiwinner election
setting, e,g., see (Caragiannis et al., 2017, 2022; Faliszewski et al., 2017). Very recently, Elkind et al. (2022) also considered 
such a social choice scenario, which is however quite different from what we do in this paper. Besides asking different types 
of questions, one crucial conceptual difference is that, in the model of Elkind et al. (2022), the approval preferences of the 
agents over the facilities depend on the locations of the facilities.

2. Preliminaries

We consider a facility location setting with a set N of n agents and two facilities; we will discuss extensions to settings 
with more than two facilities in Section 6. Every agent i ∈ N has a position xi ∈ [0, 1]; let x = (xi)i∈N be the position profile
consisting of the positions of all agents. Furthermore, every agent i ∈ N also has an approval preference (or, simply, preference) 
ti = {0, 1}2 over the two facilities, where ti j = 1 denotes that the agent approves facility j ∈ {1, 2} and ti j = 0 denotes that 
she does not approve facility j; let t = (ti)i∈N be the preference profile consisting of the preferences of all agents. Let I = (x, t)
denote an instance of this setting.

Given an instance I = (x, t), our goal is to choose and locate a single facility so as to optimize some objective function 
that depends on both the distances of the agents from the facility location and on whether they approve the chosen facility. 
In particular, if facility j ∈ {1, 2} is chosen to be located at y ∈ [0, 1], the utility of every agent i ∈ N is defined to be 
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ui( j, y|I) = ti j · (1 − d(xi, y)
)
, where d(xi, y) = |xi − y| is the distance between xi and y. Then, the social welfare is the sum 

of the utilities of all agents:

W ( j, y|I) :=
∑
i∈N

ui( j, y|I).

We denote the optimal social welfare for instance I as W ∗(I) := max( j,y) W ( j, y|I).
A mechanism M takes as input an instance I = (x, t) consisting of the position and preference profiles of the agents, and 

outputs an outcome M(I) = ( jM , yM) consisting of a facility jM ∈ {1, 2} that is to be placed at yM ∈ [0, 1]. The approximation 
ratio ρ(M) of M is defined as the worst-case ratio (over all possible instances) between the optimal social welfare and the 
social welfare of the outcome chosen by the mechanism, that is,

ρ(M) = sup
I

W ∗(I)

W (M(I)|I) .

A mechanism is strategyproof if it is in the best interest of every agent to report their true position and preferences, 
irrespectively of the reports of the other agents. Formally, a mechanism M is strategyproof if, for every pair of instances 
I = (x, t) and I ′ = ((x′

i, x−i), (t′i, t−i)) in which only a single agent i misreports a different position and preferences, it holds 
that

ui(M(I)|I) ≥ ui(M(I ′)|I).
Besides mechanisms that deterministically select a facility and its location, we will also study randomized mechanisms, 

which choose the outcome according to probability distributions. In particular, a randomized mechanism locates each fa-
cility j ∈ {1, 2} at y ∈ [0, 1] with some probability p j(y) such that 

∑
j∈{1,2}

∫ 1
0 p j(y)dy = 1. Denoting by p = (p1, p2) the 

probability distribution (for both facilities) used by the mechanism, the expected utility of every agent i ∈ N is computed as

ui(p|I) =
∑

j∈{1,2}
ti j ·

1∫
0

(1 − |xi − y|) · p j(y)dy.

A randomized mechanism is strategyproof in expectation if no agent can increase her expected utility by misreporting. Also, 
we say that a randomized mechanism is universally strategyproof if it is a probability distribution over deterministic strate-
gyproof mechanisms. Clearly, a universally strategyproof mechanism is strategyproof in expectation, but the converse is not
necessarily true.

We will also discuss about mechanisms that are resilient to misreports by coalitions of agents. In particular, a mechanism 
is group-strategyproof if no coalition of agents can simultaneously misreport such that the utility of every agent in the 
coalition strictly increases. A mechanism is strongly group-strategyproof if no coalition of agents can simultaneously misreport 
such that the utility of at least one agent in the coalition strictly increases and the utility of the other agents does not 
decrease.

We are interested in mechanisms that satisfy strategyproofness properties (like the ones discussed above) and at the 
same time achieve an as low as possible approximation ratio (that is, an approximation ratio as close as possible to 1). In 
our technical analysis in the upcoming sections, we will distinguish between the following settings:

• In the general setting, the agents can misreport both their positions and preferences.
• In the known-preferences setting, the preferences of the agents are assumed to be known and the agents can misreport 

only their positions.
• In the known-positions setting, the positions of the agents are assumed to be known and the agents can misreport only 

their preferences.

Observe that positive results (i.e., (group-)strategyproof mechanisms with proven approximation guarantees) for the general 
setting are also positive results for the known-preferences and known-positions settings. Moreover, negative results (i.e., 
lower bounds on the approximation of (group-)strategyproof mechanisms) for the restricted settings are also negative results 
for the general setting. Finally, results (positive or negative) for one of the two restricted settings do not imply anything for 
the other restricted setting.

3. General setting

We start the presentation of our technical results by focusing on the general setting; recall that in this setting the agents 
can misreport both their positions and their preferences. Due to the structure of the problem, which combines voting 
(based on the preferences of the agents) and facility location (based on the positions of the agents), it is natural to wonder 
whether simple adaptations of the median mechanism (which is known to be strategyproof and optimal for the original 
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Mechanism 1: Middle.
for each facility j ∈ {1, 2} do

Count the number n j of agents that approve each facility j

Locate the most-preferred facility at 1/2

(1,0)

(0,1)

ε

(1,0)

(0,1)

1

(a) Instance I

(0,1)

ε

(1,0)

(1,0)

(0,1)

1

(b) Instance I ′

Fig. 1. The two instances used in the proof of Theorem 4.1, which differ only on the position of an agent with preferences (1,0) marked in blue.

single-facility location problem) lead to good solutions. For example, we could define mechanisms that locate the majority-
winner facility (breaking ties in a consistent way) at the median among the agents that approve it, or at the overall median 
agent. Unfortunately, it is not hard to observe that the first mechanism is not strategyproof, while the second one has an 
approximation ratio that is linear in the number of agents.

Luckily, there is an even simpler deterministic mechanism that is group-strategyproof and achieves an approximation of 
at most 2 in the general setting. We call this mechanism Middle; see Mechanism 1. In the next section, we will further 
show that this mechanism is best possible among all deterministic strategyproof mechanisms in terms of approximation, 
even when the preferences of the agents are known.

Theorem 3.1. Middle is group-strategyproof and has an approximation ratio of at most 2.

Proof. Consider any instance I = (x, t). To show that the mechanism is group-strategyproof, first observe that the positions 
of the agents are not taken into account when deciding which facility to locate and where. Hence, no agent has a reason 
to misreport her position. It remains to argue that there exists no group of agents who can all strictly increase their utility 
by misreporting their preferences. To this end, assume that facility j ∈ {1, 2} is chosen to be placed at 1/2. Observe that the 
utility of any agent that approves j is maximized subject to the constraint that the chosen facility is always placed at 1/2. 
Hence, such agents would not have incentive to participate in a misreporting coalition. Moreover, the count n j of facility 
j would only increase if any group of agents that truly disapprove facility j, misreport that they approve it. Hence, the 
outcome would not change in such a case, thus proving that is indeed group-strategyproof.

We now focus on the approximation ratio of the mechanism. Let w be the facility chosen by the mechanism, and let o
be the optimal facility. We make the following simple observations:

• Since the facility is placed at 1/2, every agent i that approves w has utility at least 1/2.
• By the definition of the mechanism, since w is the majority winner, we have that nw ≥ no .
• Since the maximum utility of any agent is 1, we have that W ∗(I) ≤ no .

Putting all of these together, we have:

W (Middle(I)|I) ≥ 1

2
nw ≥ 1

2
no ≥ 1

2
W ∗(I),

and the bound on the approximation ratio follows. �
4. Known-preferences setting

Here, we focus on the known-preferences setting, where we assume that the agents can only strategize over their 
positions. Our first result is a lower bound of 2 on the approximation ratio of any strategyproof deterministic mechanism, 
thus proving that Middle (the mechanism presented in the previous section) is best possible for the general and the known-
preferences settings.

Theorem 4.1. In the known-preferences setting, there is no deterministic strategyproof mechanism with approximation ratio better 
than 2 − δ, for any δ > 0.

Proof. Consider an arbitrary deterministic strategyproof mechanism and the following instance I depicted in Fig. 1. There 
are four agents, two with preferences (0, 1) and two with preferences (1, 0). One agent of each type is positioned at some 
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Mechanism 2: Proportional.
for each facility j ∈ {1, 2} do

Count the number n j of agents that approve each facility j

for each facility j ∈ {1, 2} do
Choose facility j with probability n j

n1+n2

Locate the chosen facility at the median among the agents that approve it

ε ∈ (0, 1/2) and the other is positioned at 1. Without loss of generality, we can assume that the mechanism chooses to 
locate facility 2.

Now consider a second instance I ′ that is obtained from I when only the agent i with preference (1, 0) that is positioned 
at ε is moved to 1. Since the mechanism is strategyproof, it must choose to locate facility 2 in instance I ′ as well; otherwise, 
agent i would prefer to misreport her position in instance I as 1, thus leading to instance I ′ and the selection of facility 1, 
which would increase her utility from 0 to positive. However, the welfare from locating facility 2 in instance I ′ is at most 
1 + ε (no matter where it is located), whereas the optimal welfare is equal to 2, achieved when facility 1 is located at 1. 
The bound on the approximation ratio follows by selecting ε to be arbitrarily small. �

Next, we turn our attention to randomization and consider the class of Random-Median mechanisms.

Random-median mechanisms Every Random-Median mechanism operates by first randomly choosing one of the facilities 
based on the preferences of the agents (the mechanism chooses one of the facilities with probability α ∈ [0, 1] and the 
other with probability 1 − α), which is then located at the median among the agents that approve it. So, different choices 
of the probability distribution according to which the facility is chosen lead to different Random-Median mechanisms. It is 
not hard to observe that all such mechanisms are universally group-strategyproof.

Lemma 4.2. Every Random-Median mechanism M is universally group-strategyproof.

Proof. The lemma follows directly by the following two facts: (1) The choice of the facility to be located is made only based 
on the preferences of the agents, which are assumed to be known, and thus cannot be manipulated. (2) Given the facility, 
the location is chosen to be the position of the median agent among the ones that approve it, which is known to be a 
strongly group-strategyproof mechanism. �

Probably the simplest Random-Median mechanism one may come up with to select every facility with probability pro-
portional to the number of agents that approve it. As such, we call this mechanism Proportional; see Mechanism 2. By 
exploiting the definition of this probability, we can show that Proportional has an approximation of (1 + √

3)/2 ≈ 1.366, 
thus significantly improving upon the bound of 2 achieved by deterministic mechanisms.

Theorem 4.3. In the known-preferences setting, Proportional is universally group-strategyproof and has an approximation ratio 
(1 + √

3)/2 ≈ 1.366.

Proof. Since the mechanism is Random-Median, it is universally group-strategyproof due to Lemma 4.2. To bound the 
approximation ratio, let W j be the welfare of the agents that approve facility j when it is chosen (and located at the 
median of those agents). Without loss of generality, assume that W1 ≥ W2. We also have that W1 ≤ n1 since the maximum 
possible utility of any agent is 1. Furthermore, we have that W2 ≥ n2/2. To see why this is the case, consider the agents 
that approve facility 2 in pairs, where one is on the left of the median (among those that approve facility 2) and the other 
is on the right of the median, and observe that the total utility of this pair of agents is at least 1. Since there are n2/2 such 
pairs, the claim follows. The approximation ratio is

ρ(Proportional) = W1
n1

n1+n2
W1 + n2

n1+n2
W2

= 1
n1

n1+n2
+ n2

n1+n2
· W2

W1

≤ 1
n1

n1+n2
+ n2

n1+n2
· n2/2

n1

= 2n2
1 + 2n1n2

2n2
1 + n2

2

.

Now, let y = n1/n2 and observe that, since n1 ≥ W1 ≥ W2 ≥ n2/2, it must be that y ≥ 1/2. By dividing the last expression 
above by n2

2, we obtain:

ρ(Proportional) ≤ 2(n1/n2)
2 + 2(n1/n2)

2(n1/n2)2 + 1
= 2y2 + 2y

2y2 + 1
.

205



A. Deligkas, A. Filos-Ratsikas and A.A. Voudouris Games and Economic Behavior 139 (2023) 200–215
Mechanism 3: Mirror.
for each facility j ∈ {1, 2} do

Count the number n j of agents that approve each facility j

for each facility j ∈ {1, 2} do
if n j ≥ n3− j then

α := 3n j−2n3− j
4n j−2n3− j

Choose facility j with probability α and facility 3 − j with probability 1 − α

Locate the chosen facility at the median among the agents that approve it

Hence, in order to bound the approximation ratio of the mechanism it suffices to maximize the function 2y2+2y
2y2+1

subject to 

the constraint y ≥ 1/2. It is not hard to observe that the maximum value is (1 + √
3)/2 ≈ 1.366 for y∗ = 1/(

√
3 − 1), thus 

proving the upper bound on the approximation ratio. �
We can further improve upon the bound of Proportional, by optimizing over the probability that Random-Median 

mechanisms choose each facility. In particular, we define the slightly more involved Mirror mechanism, which uses a prob-
ability distribution that is a piecewise function of the numbers of agents that approve the two facilities; see Mechanism 3. 
Following along the lines of the proof of Theorem 4.3, we can show that Mirror has an approximation ratio of 4/3.

Theorem 4.4. In the known-preferences setting, Mirror is universally group-strategyproof and has an approximation ratio of 4/3.

Proof. Since the mechanism is Random-Median, it is universally group-strategyproof due to Lemma 4.2. To bound the 
approximation ratio, let W j be the welfare of the agents that approve facility j when it is chosen (and located at the 
median of those agents). Observe that for any facility j ∈ {1, 2} it holds that W j ≤ n j since the maximum possible utility 
of any agent is 1, and W j ≥ n j/2 following the same reasoning as in the proof of Theorem 4.3. Due to symmetry, we can 
assume without loss of generality that n1 ≥ n2, in which case facility 1 is chosen with probability α := 3n1−2n2

4n1−2n2
and facility 

2 is chosen with probability 1 − α. We distinguish between the following two cases:

• W1 ≥ W2. Then, the approximation ratio is:

ρ(Mirror) = W1

α · W1 + (1 − α) · W2
= 1

3n1−2n2
4n1−2n2

+ n1
4n1−2n2

· W2
W1

≤ 1
3n1−2n2
4n1−2n2

+ n1
4n1−2n2

· n2/2
n1

= 4

3
.

• W2 > W1. We have:

ρ(Mirror) = W2

α · W1 + (1 − α) · W2
= 1

3n1−2n2
4n1−2n2

· W1
W2

+ n1
4n1−2n2

≤ 1
3n1−2n2
4n1−2n2

· n1/2
n2

+ n1
4n1−2n2

= 2n2(4n1 − 2n2)

3n2
1

.

It is not hard to observe that this last expression is maximized to 4/3 when n1 = n2.

Hence, in any case the approximation ratio of the mechanism is at most 4/3. �
We conclude this section by showing that Mirror is best possible among all Random-Median mechanisms in terms of 

approximation.

Theorem 4.5. In the known-preferences setting, the approximation ratio of any Random-Median mechanism is at least 4/3 − δ, for 
any δ > 0.

Proof. Consider an arbitrary Random-Median mechanism and the following instance I (which was also used in the proof of 
Theorem 4.1. There are four agents, two with preferences (0, 1) and two with preferences (1, 0). One agent of each type is 
positioned at ε ∈ (0, 1/2) while the other is positioned at 1 −ε. Due to symmetry, we can assume that the agents located at 
ε are the medians for the two facilities. The mechanism randomly chooses one of the facilities. Without loss of generality, 
we can assume that it chooses facility 1 with some probability p ≤ 1/2 and facility 2 with probability 1 − p. Hence, facility 
1 is located at ε with probability p.
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(0,1)

0

(1,1)

1/6

(1,1)

5/6

(1,0)

1

(a) Instance I

(0,1)

0

(0,1)

1/6

(1,1)

5/6

(1,0)

1

(b) Instance I ′

Fig. 2. The two instances used in the proof of Theorem 5.1, which differ only on the preference of the agent positioned at 1/6 marked in blue.

Now consider the instance I ′ that is obtained from I by moving the agent i at 1 − ε with preference (1, 0) to ε. We 
claim that the mechanism must choose facility 1 with probability p′ ≤ p ≤ 1/2 in this new instance. Suppose that this is 
not the case and the mechanism chooses facility 1 with probability p′ > p in I ′ . Since the expected utility of agent i is 
p · 2ε in I , she would have incentive to misreport her position as ε so that facility 1 is chosen with probability p′ and her 
expected utility is increased to p′ · 2ε. This contradicts the fact that the mechanism is strategyproof in expectation (since it 
is universally strongly group-strategyproof).

In instance I ′ , the maximum welfare we can achieve by placing facility 1 is 2 (when it is placed at ε), and by placing 
facility 2 is 1 + ε (no matter where it is located). Hence, since the maximum possible expected social welfare achieved by 
the mechanism is 2p′ + (1 + ε)(1 − p′) ≤ 3+ε

2 , the approximation ratio of the mechanism is at least 4
3+ε ≥ 4/3 − δ, for any 

δ > 4ε
9+3ε . �

5. Known-positions setting

We now turn our attention to the known-positions setting, in which the positions of the agents are fixed, and thus the 
agents can misreport only their preferences. Our first result is a lower bound of 13/11 on the approximation ratio of any 
deterministic strategyproof mechanism.

Theorem 5.1. In the known-positions setting, there is no deterministic strategyproof mechanism with approximation ratio smaller 
than 13/11.

Proof. Suppose towards a contradiction that there exists a deterministic strategyproof mechanism that has an approxima-
tion ratio strictly smaller than 13/11, and consider the following instance I depicted in Fig. 2. There is an agent with 
preferences (0, 1) positioned at 0, an agent with preferences (1, 1) positioned at 1/6, an agent with preferences (1, 1) po-
sitioned at 5/6, and an agent with preferences (1, 0) positioned at 1. Due to the symmetry of the instance, without loss of 
generality, we can assume that the mechanism chooses to place facility 1 at some location y ∈ [0, 1].

If y ≤ 1/2, the social welfare achieved by the mechanism is(
1 −

∣∣∣∣y − 1

6

∣∣∣∣
)

+
(

1 −
(

5

6
− y

))
+

(
1 − (1 − y)

)
= 7

6
+ 2y −

∣∣∣∣y − 1

6

∣∣∣∣ ≤ 11

6
.

Since the optimal social welfare is 13/6 (achieved by placing either facility 1 at 5/6 or facility 2 at 1/6), the approximation 
ratio of the mechanism is then 13/11, contradicting the assumption that it is strictly smaller than 13/11. Consequently, it 
must be y > 1/2.

Now consider the instance I ′ that is obtained from I by changing the preference of the agent at 1/6 to (0, 1). In I ′ , the 
maximum possible social welfare one can hope to achieve by placing facility 1 is 11/6 (when it is located anywhere in the 
interval [5/6, 1] is 11/6) and by placing facility 2 is 13/6 (when it is located at 1/6). Hence, to have an approximation ratio 
strictly smaller than 13/11, the mechanism must choose to locate facility 2 in I ′ at some position z ∈ [0, 1]. Similarly to 
instance I , we can show that it must be z < 1/2 as otherwise the approximation ratio of the mechanism would be at least 
13/11. Hence, the agent positioned at 1/6 with preferences (1, 1) in instance I has incentive to misreport her preferences 
as (0, 1) so that the facility is located closer to her, and thus increase her utility. However, this contradicts the assumption 
that the mechanism is strategyproof, and the theorem thus follows. �

Unfortunately, we have been unable to design any deterministic mechanism with approximation ratio strictly smaller 
than the bound of 2 achieved by Middle (see Section 3), and leave it as a challenging open question. Instead, we continue by 
considering randomized mechanisms. Observe that the instances from Fig. 2 show that there is no randomized strategyproof 
mechanism with approximation ratio 1 for the known-positions setting. This is because no matter how the mechanism 
locates the facilities on instance I , it has to locate facility 2 on Instance I ′ , thus the agent positioned at 1/6 has incentives 
to misreport her preferences.

Next, we analyze a particular version of the well-known Random Dictatorship (RD) mechanism. Our version picks each 
agent uniformly at random and locates her favorite facility at her position, breaking ties in favor of the optimal facility; see 
Mechanism 4. We will show that, in the known-positions setting, this mechanism is universally group-strategyproof and has 
an approximation ratio of 3/2.

Theorem 5.2. In the known-positions setting, RD is universally group-strategyproof.
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Mechanism 4: Randomized Dictatorship (RD).

for each agent i ∈ N do
Pick agent i with probability 1/n

if the chosen agent i∗ approves a single facility j then
Locate facility j at xi∗

else
Locate the optimal facility at xi∗

Proof. Clearly, RD is a uniform probability distribution over the set of all possible deterministic mechanisms each of which 
treats a different agent as dictator, and locates one of the facilities that the dictator approves at her position. The lemma 
follows since the agents cannot misreport their positions and no agent has any incentive to lie about which facilities she 
approves when she is chosen as a dictator; also note that any coalition of agents that does not include the dictator cannot 
change the outcome of the mechanism. �

To show that the approximation ratio of RD is 3/2, we will exploit a series of structural properties of worst-case in-
stances, in which the approximation ratio of the mechanism is maximized. In particular, we will show that there exists a 
worst-case instance that is characterized by the following three properties:

• There are no agents that approve both facilities (Lemma 5.3).
• Every agent that approves the non-optimal facility is positioned at 0 or 1 (Lemma 5.4).
• Every agent that approves the optimal facility is positioned at 0 or some median position x ∈ [0, 1] or 1 (Lemma 5.5).

To show these properties, we will start with an arbitrary instance and gradually change the preferences and the positions 
of the agents in a specific order so that the aforementioned properties are satisfied. Every change we make leads to a 
transformed instance in which the approximation ratio of RD does not decrease. It then suffices to define a worst-case 
instance satisfying these properties and bound the approximation ratio of the mechanism for this instance. This will be a 
function of a handful of variables representing the number of agents that are positioned at {0, x, 1} and approve one of the 
two facilities.

The first property is quite easy to observe, given the definition of the mechanism.

Lemma 5.3. In a worst-case instance, all agents approve one facility.

Proof. Consider an arbitrary instance in which there is a set of agents that approve both facilities. If the mechanism chooses 
any such agent, then the optimal facility is placed at the position of this agent. By transforming the preference of the agent 
so that she only approves the optimal facility, the optimal welfare remains unaffected, whereas the welfare achieved by the 
mechanism can only decrease. This is because the agent does not contribute to the welfare gained when the dictator is an 
agent who approves only the non-optimal facility. �

Next, we show the second property.

Lemma 5.4. In a worst-case instance, every agent that approves a non-optimal facility is positioned at 0 or 1.

Proof. Consider an arbitrary instance in which each agent approves a single facility (from Lemma 5.3). Without loss of 
generality, assume that the optimal facility is 1, and let S be the set of agents that approve the non-optimal facility 2. We 
order the agents in S in terms of their positions, such that x1 ≤ x2 ≤ ... ≤ x|S| . We partition S into two sets L and R , such 
that L consists of the first 	|S|/2
 agents in S and R = S \ L. Observe that if the number of agents in S is odd, the unique 
median agent in S is included in L, whereas if the number of agents in S is even, one of the two medians in S is included 
in L, while the other is included in R . To prove the lemma, we claim that moving the agents in L to 0 from left to right, 
and the agents in R to 1 from right to left, leads to a sequence of instances such that the approximation ratio of RD does 
not decrease between consecutive instances. See Fig. 3 for an example with |S| = 3. Due to symmetry, it suffices to prove 
this claim only for instances obtained by moving the agents in L.

Let mL denote the median agent that is included in L and observe that facility 1 will remain optimal after moving any 
agent � ∈ L \ {mL}. In particular, since the agents in L \ {�} are not moved, their contribution to the maximum welfare 
achieved from facility 2, i.e. when it is placed at the position of mL , remains the same. On the other hand, the contribution 
of agent � (who is moved) cannot increase as her distance from the median agent(s) in S either remains the same (if x� = 0) 
or increases (if x� > 0). Once all the agents in L \ {mL} have been moved to 0, we can also show that moving agent mL to 
0 cannot increase the maximum possible welfare from facility 2. This follows directly by the discussion below, where we 
show that the expected welfare of RD does not increase each time we move an agent in L, and thus the approximation ratio 
does not decrease.
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0 x1

(0,1)

x2

(0,1)

x3

(0,1)

1

(a) The agent at x1 that is part of L is moved to 0.

0

(0,1)

x2

(0,1)

x3

(0,1)

1

(b) The agent at x2 that is part of L is moved to 0.

0

(0,1)

(0,1)

x3

(0,1)

1

(c) The agent at x3 that is part of R is moved to 1.

0

(0,1)

(0,1)

(0,1)

1

(d) All agents of L have been moved to 0 and all agents of R
have been moved to 1.

Fig. 3. An example of the transformations made in the proof of Lemma 5.4 with |S| = 3; agents with preferences different than (0, 1) are not depicted. The 
first two agents (located at x1 and x2) are part of L and are moved to 0, while the last agent (located at x3) is part of R and is moved to 1.

Suppose it is time to move agent � ≤ |L| to 0, that is, it holds that xi = 0 for every i < �. The expected welfare of RD 
can be partitioned into the contribution W S of agents in S (that approve only facility 2) and the contribution W S of the 
remaining agents (that approve only facility 1). Clearly, changing the position of any agent in S does not affect W S . We can 
write W S as

W S = 1

n

∑
i∈S

∑
j∈S

(
1 − d(xi, x j)

)

= 1

n

( ∑
i∈S\{�}

∑
j∈S\{�}

(
1 − d(xi, x j)

) + 2
∑

i∈S\{�}

(
1 − d(xi, x�)

) + 1

)
.

After moving agent � to x′
� = 0, the first double sum in the above expression and the constant 1 will remain unaffected. So, 

we will focus on the second sum, and show that it cannot increase. We define the set S<� of agents in S before � and the 
set S>� of agents in S after �. By the definition of the set L, it holds that |S<�| ≤ |S>�|, with the equality holding only in 
the case where the number of agents in S is odd and � = mL . Moreover, by the definition of agent �, it holds that xi = 0 for 
every i ∈ S<� . We now have that∑

i∈S\{�}

(
1 − d(xi, x�)

) =
∑

i∈S<�

(
1 − d(xi, x�)

) +
∑

i∈S>�

(
1 − d(xi, x�)

)

=
∑

i∈S<�

(
1 − (x� − xi)

) +
∑

i∈S>�

(
1 − (xi − x�)

)

=
∑

i∈S<�

(
1 − (0 − xi)

) +
∑

i∈S>�

(
1 − (xi − 0)

) + |S>�| − |S<�|

≥
∑

i∈S<�

(
1 − (x′

� − xi)
) +

∑
i∈S>�

(
1 − (xi − x′

�)
)

=
∑

i∈S\{�}

(
1 − d(xi, x′

�)
)
,

as desired. This last sequence of equalities and inequalities also shows that moving mL to 0 cannot increase the maximum 
possible social welfare from facility 2, as claimed above. �

The third and last property follows by a proof similar to the one of the lemma above.

Lemma 5.5. Let x ∈ [0, 1] be the position of the median agent among those that approve the optimal facility in a worst-case instance. 
Then, every agent that approves the optimal facility is positioned at 0 or x or 1.

Proof. Consider an arbitrary instance in which each agent approves a single facility (from Lemma 5.3), and all agents 
approving the non-optimal facility are positioned at 0 or 1 (from Lemma 5.4). Without loss of generality, assume that the 
optimal facility is 1, and let S be the set of agents that approve it. We will gradually transform this instance into one 
that satisfies the conditions of the lemma by appropriately moving the agents, such that each time we move an agent the 
approximation ratio of RD does not decrease. Let L and R be the sets of the non-median agents in S who are at the left 
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0 x1

(1,0)

x2

(1,0)

x3

(1,0)

x

(1,0)

1

(a) The agent at x1 is moved to 0 (the ratio is assumed to be 
decreasing).

0

(1,0)

x2

(1,0)

x3

(1,0)

x

(1,0)

1

(b) The agent at x2 is moved to x3 (the ratio is assumed to be 
increasing).

0

(1,0) (1,0)

x3

(1,0)

x

(1,0)

1

(c) One by one, the agents at x3 are moved to x (the ratio is 
assumed to be increasing).

0

(1,0) (1,0)

(1,0)

(1,0)

x 1

(d) The agents of L are now either at 0 or at x.

Fig. 4. An example of the transformations made in the proof of Lemma 5.5 with |L| = 3; agents of R or with preferences different than (1, 0) are not 
depicted. When an agent is considered, she is either moved to 0 if the ratio is decreasing (a) or to the location on her right if the ratio is increasing (b, c).

and at the right of the median agent(s) in S , respectively. Due to symmetry, it suffices to focus only on L and show that the 
agents therein can be moved either to 0 or x. We will also assume that facility 1 remains optimal throughout the whole 
process; observe that this is without loss of generality since if facility 2 becomes the optimal one at some point of the 
process, then by replicating the procedure used in the proof of Lemma 5.4, we can move all agents in S to 0 or 1, thus 
obtaining the desired structure.

Suppose the agents in S are ordered in terms of their positions, such that x1 ≤ x2 ≤ ... ≤ x|S| . Let � be the left-most agent 
in L who is not positioned at 0 or x, that is, x� < x and xi = 0 for every i < �. We can write the optimal social welfare as

W ∗ =
∑
i∈S

(
1 − d(xi, x)

) =
∑

i∈S\{�}

(
1 − d(xi, x)

) + 1 − (x − x�) = A + x�.

Let W S be the contribution of the agents in S to the expected welfare achieved by RD, and let W S denote the contribution 
of the remaining agents who approve facility 2. We have

W S = 1

n

∑
i∈S

∑
j∈S

(
1 − d(xi, x j)

)

= 1

n

( ∑
i∈S\{�}

∑
j∈S\{�}

(
1 − d(xi, x j)

) + 2
∑

i∈S\{�}

(
1 − d(xi, x�)

) + 1

)
.

Let S≤� be the set of agents in S different than � with position at most x� , and let S>� be the set of agents in S with 
position strictly larger than �. By the definition of � (who belongs to L and is the left-most agent that is not positioned at 
0 or x), it holds that |S≤�| < |S>�|. Therefore,

W S = 1

n

( ∑
i∈S\{�}

∑
j∈S\{�}

(
1 − d(xi, x j)

) + 2
∑

i∈S≤�

(
1 − d(xi, x�)

) + 2
∑

i∈S>�

(
1 − d(xi, x�)

) + 1

)

= 1

n

( ∑
i∈S\{�}

∑
j∈S\{�}l

(
1 − d(xi, x j)

) + 2
∑

i∈S≤�

(
1 + xi

) + 2
∑

i∈S>�

(
1 − xi

) + 1 + 2x�

(|S>�| − |S≤�|
))

= B + 2

n
x�

(|S>�| − |S≤�|
)
.

Hence, the approximation ratio of RD is

ρ(R D) = A + x�

W S + B + 2
n x�

(|S>�| − |S≤�|
) .

Now observe that, since |S>�| − |S≤�| > 0, the ratio is a monotonic function of x� . If it is decreasing, we can move agent �
to 0, and if it is increasing, we can move agent � to the position y ∈ (x�, x] of the first agent that lies strictly to the right 
of �. Therefore, we can always move the left-most agent in L who is not positioned at 0 or x, to either 0 or strictly to the 
right. At some point, this procedure will lead all agents in L to be positioned either at 0 or x, and symmetrically, all agents 
in R to be positioned either at x or 1. See Fig. 4 for an example with |L| = 3. �

We are now ready to prove the bound on the approximation ratio of RD.
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Theorem 5.6. The approximation ratio of RD is 3/2.

Proof. Consider a worst-case instance I in which the optimal facility is 1. From Lemmas 5.3, 5.4 and 5.5, we can assume 
that there are n = α0 + αx + α1 + β0 + β1 agents in total, such that:

• α0 agents approve only facility 1 and are positioned at 0;
• αx agents approve only facility 1 and are positioned at some x ∈ [0, 1];
• α1 agents approve only facility 1 and are positioned at 1;
• β0 agents approve only facility 2 and are positioned at 0;
• β1 agents approve only facility 2 and are positioned at 1.

Since x is the position of the median agent among those that approve facility 1, we have that α0 +αx ≥ α1 and αx +α1 ≥ α0. 
We also have that β0 ≥ β1. The optimal social welfare is achieved by placing facility 1 at position x, and is equal to

W ∗(I) = α0 · (1 − x) + αx + α1 · x = α0 + αx + (α1 − α0)x.

Since facility 2 is not optimal, we have that W ∗ ≥ β0 ≥ β1. The expected welfare of RD is

W (RD(I)) = 1

n

(
α0

(
α0 + αx(1 − x)

) + αx
(
α0(1 − x) + αx + α1x

) + α1
(
αxx + α1

) + β2
0 + β2

1

)

= 1

n

(
(α0 + αx)

2 + α2
1 + 2αx(α1 − α0)x + β2

0 + β2
1

)
.

Hence, by replacing n = α0 + αx + α1 + β0 + β1, the approximation ratio of RD can be written as the following function of 
x:

ρ(RD) = (α0 + αx + α1 + β0 + β1) · α0 + αx + (α1 − α0)x

(α0 + αx)2 + α2
1 + β2

0 + β2
1 + 2αx(α1 − α0)x

.

It is now not hard to see that, since the factors of x in the enumerator and the denominator are either both positive or 
negative, the ratio is a monotonic function in terms of x, and it thus attains its maximum value for x = 0 or x = 1.

Therefore, we can further simplify the worst-case instance I and assume that there are n = α0 + α1 + β0 + β1 agents in 
total, such that:

• α0 agents approve only facility 1 and are positioned at 0;
• α1 agents approve only facility 1 and are positioned at 1;
• β0 agents approve only facility 2 and are positioned at 0;
• β1 agents approve only facility 2 and are positioned at 1;

Without loss of generality, we assume that α0 ≥ max{α1, β0, β1}, hence the optimal welfare is W ∗ = α0, achieved by placing 
facility 1 at 0. The expected social welfare of RD is

W (RD(I)) = α2
0 + α2

1 + β2
0 + β2

1

α0 + α1 + β0 + β1
,

and thus the approximation ratio is

ρ(RD) = α0(α0 + α1 + β0 + β1)

α2
0 + α2

1 + β2
0 + β2

1

.

By nullifying the partial derivatives of this function in terms of α0, α1, β0 and β1 we obtain a system of four equations, 
whose solution shows that the ratio is maximized to 3/2 when α0 = 3α1 and α1 = β0 = β1. �
6. Extension to choosing k out of m facilities

So far we have exclusively focused on the fundamental case where there are two facilities and one of them must be 
located. In this section, we define and make initial progress for the natural generalization when there are m ≥ 2 different 
facilities from which we can choose to locate k < m. There are of course several different ways in which one can define the 
utility of an agent; here we will consider the case where the utility of an agent is the sum of utilities that she derives from 
the facilities that are located among the ones she approves. Formally, let I = (x, t, m, k) be an instance with position profile 
x, preference profile t, and m ≥ 2 facilities out of which we must choose and locate k ≥ 1. Let S a subset of k facilities that 
are chosen to be located, and denote by y j ∈ [0, 1] the location of facility j ∈ S; let y = (y j) j∈S . The utility of an agent is 
then defined as:
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Mechanism 5: (k, m)-Middle.
for each facility j ∈ {1, . . . , m} do

Count the number n j of agents that approve each facility j

Locate the k most-preferred facilities at 1/2, breaking ties arbitrarily

ui(S,y|I) =
∑
j∈S

ti j · (1 − d(xi, y j)
)

For this case, a straightforward adaptation of Middle satisfies strategyproofness constraints and has an approximation ratio 
of at most 2. In addition, by extending the proof of Theorem 4.1, we can show that for particular values of m and k this is 
the best-possible approximation among deterministic mechanisms, even when the preferences of the agents are assumed to 
be known. We provide the corresponding theorems below.

Theorem 6.1. The (k, m)-Middle mechanism is group-strategyproof when k = 1 and strategyproof when k ≥ 2, and has an approxi-
mation ratio of at most 2 for any k ≥ 1.

Proof. For k = 1, the proof that the mechanism is group-strategyproof and has approximation ratio of at most 2 follows 
directly by Theorem 3.1, since the utility of every agent is defined by a single facility which is located at 1/2. Now consider 
any instance I = (x, t, m, k) with m > k ≥ 2. To show that the mechanism is strategyproof, first observe that since it does not 
take into account the positions of the agents when deciding which subset of facilities to locate and where, the agents have 
no incentive to misreport their positions. In addition, no agent has any incentive to unilaterally misreport her preferences 
since any such misreport can only increase the count of facilities she does not approve, and thus her utility cannot increase.

To show that the mechanism has approximation ratio at most 2, let S be the subset of k facilities chosen by the mecha-
nism, and also let O be the optimal subset of k facilities. We make the following simple observations.

• For every j ∈ S , it holds that n j = ∑
i∈N ti j .

• Since every j ∈ S is placed at 1/2, it holds that 1 − d(xi, y j) ≥ 1/2 for every agent i that approves j.
• By the definition of the mechanism, we have that n j ≥ no for every j ∈ S \ O and o ∈ O  \ S . So, we can match each 

j ∈ S \ O to a different facility j(o) ∈ O  \ S such that n j ≥ n j(o) .
• We have that W ∗(I) ≤ ∑

o∈O no .

Putting everything together, we have that

W ((k,m)-Middle(I)|I) =
∑
i∈N

∑
j∈S

ti j ·
(

1 − d

(
xi,

1

2

))

≥ 1

2

∑
j∈S

∑
i∈N

ti j

= 1

2

∑
j∈S

n j

= 1

2

∑
j∈S∩O

n j + 1

2

∑
j∈S\O

n j

≥ 1

2

∑
j∈S∩O

n j + 1

2

∑
j∈S\O

n j(o)

= 1

2

∑
o∈O

no ≥ 1

2
W ∗(I),

and the bound on the approximation ratio follows. �
For completeness, we present a simple instance showing that (k, m)-Middle is not group-strategyproof when k ≥ 2.

Lemma 6.2. (k, m)-Middle is not group-strategyproof when k ≥ 2.

Proof. Consider an instance with m ≥ 4 facilities, from which we must choose and locate k ∈ {2, . . . , m − 2}. There are 
n = m agents such that every agent approves a different facility; specifically, agent i ∈ {1, . . . , m} approves only facility 
i. Since ni = 1 for every facility i, the (k, m)-Middle mechanism can choose any set S of k facilities. Then, every agent 
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(1,0)

0

(1,1), . . . , (1,1)

1/2

(0,1)

1

(a) Instance I

(1,0)

0

(1,1), . . . , (1,1)

(0,1)

1/2 1

(b) Instance I ′

Fig. 5. The two instances used in the proof of Lemma 7.1 to show that RD is not strategyproof in the general setting. In instance I , RD chooses facility 1
whenever an agent with preferences (1, 1) is chosen as the dictator. This gives the agent with preferences (1, 0) marked in blue incentive to misreport her 
position, thus leading to instance I ′ , where the tie is broken in favor of facility 2.

approving a facility j /∈ S obtains zero utility. Since k ≤ m − 2, every pair of agents (i, j) approving facilities i, j /∈ S have 
incentive to form a coalition and change their preferences so that they both approve i and j. Such a group misreport would 
lead to ni = n j = 2, and result in both i and j being part of any set of k facilities chosen by the mechanism, thus showing 
that the agents have successfully manipulated the mechanism. �

By appropriately extending the proof of Theorem 4.1, we can show that, there are values of m and k (in particular, 
m ≥ k(k + 1)), such that the approximation ratio of any deterministic mechanism is at least 2, even when the preferences 
of the agents are known. As a result, (k, m)-Middle is the best possible strategyproof deterministic mechanism in terms of 
approximation in the general and in the known-preferences settings.

Theorem 6.3. The approximation ratio of every deterministic strategyproof mechanism that locates k out of m facilities, when m ≥
k(k + 1), is at least 2 − δ for any δ > 0, even when the preferences of the agents are known.

Proof. Let I be an instance with m = k(k + 1) facilities from which we want to choose and locate k, and λ > 1 some 
parameter. We partition the facilities into k + 1 sets S1, . . . , Sk+1 of size k each. For each � ∈ {1, . . . , k + 1}, there are 2λ

agents that approve the facilities of set S� and nothing else, such that λ of them are positioned at ε > 0 while the remaining 
λ are positioned at 1.

Consider an arbitrary deterministic strategyproof mechanism. Since the mechanism can only choose k facilities when 
given I as input and the facilities are partitioned into k + 1 sets of size k, there exists an �∗ ∈ {1, . . . , k + 1} such that all 
of the k facilities of S�∗ are not chosen by the mechanism. For each facility chosen by the mechanism, there are λ pairs of 
agents (one at ε and one at 1) each of which contributes total utility at most 1 + ε to the social welfare of the mechanism. 
Hence, the social welfare of the mechanism is at most λk(1 + ε).

One by one, we move the λ agents that approve the facilities of S�∗ and are positioned at ε to 1. In the instance we 
obtain after moving one such agent, the mechanism must still not choose any of the facilities of S�∗ as otherwise the agent 
that moved would have increased her utility from zero to positive, contradicting the strategyproofness of the mechanism. 
In the last instance, all the 2λ agents that approve the k facilities of S�∗ are positioned at 1, whereas all other agents are as 
in I . Choosing the facilities of S�∗ leads to a social welfare of 2λk, and thus the optimal social welfare is at least this much. 
Since the social welfare of the mechanism is still at most λk(1 + ε), by choosing ε to be arbitrarily small, we obtain a lower 
bound of at least 2 − δ for any δ > 0 on the approximation ratio of the mechanism. �
7. Conclusion and open problems

There are several interesting problems that either remain open or arise from our work. The first natural direction is 
to tighten our results for deterministic and randomized mechanisms for the different settings we have considered. For 
deterministic mechanisms, while the general and the known-preferences settings are resolved by our work, it would still be 
quite interesting to close the gap between 13/11 and 2 for the known-positions setting. For randomized mechanisms, the 
most intriguing open question is whether there exists such a mechanism with approximation ratio significantly smaller than 
2 in the general setting. An obvious candidate is the RD mechanism that we presented in the context of the known-positions 
setting. Unfortunately, the particular variant of RD is no longer strategyproof when both the positions and the preferences 
of the agents are private, as shown by the following lemma.

Lemma 7.1. RD is not strategyproof in the general setting.

Proof. Let n ≥ 4, and consider the following instance I depicted in the left part of Fig. 5. There is an agent with preferences 
(1, 0) positioned at 0, n − 2 agents with preferences (1, 1) positioned at 1/2, and one agent with preferences (0, 1) posi-
tioned at 1. Since the maximum possible social welfare by placing facility 1 is the same as the maximum possible social 
welfare by placing facility 2, we can without loss of generality assume that the optimal facility is 1, and thus when an agent 
with preferences (1, 1) is randomly chosen, facility 1 is placed at her position; to avoid ties altogether, we could move the 
n − 2 agents that are now positioned at 1/2 to 1/2 − ε, for some arbitrarily small ε > 0. Observe that the expected utility 
of the agent i that has preferences (0, 1) positioned at 1 is 1 , as she only gets some utility when she is chosen.
n
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Now consider the instance I ′ that is obtained from I by moving agent i from 1 to 1/2; this instance is depicted in the 
right part of Fig. 5. Since the optimal facility in I ′ is 2, when an agent with preferences (1, 1) is randomly chosen as the 
dictator, facility 2 is placed at her position. Therefore, agent i has incentive to deviate to 1/2 and change instance I to I ′ in 
order for her expected utility to become (1 − 1

n ) · 1
2 = n−1

2n > 1
n , thus proving that RD is not strategyproof when the agents 

can misreport their positions. �
Intuitively, the reason that makes RD manipulable in the general setting is the tie-breaking rule that we use for the 

agents who approve both facilities; recall that such ties are broken in favor of the optimal facility. Breaking ties in this way 
is crucial for our characterization of the worst-case instances in Section 5, but can be exploited by agents who are allowed 
to misreport their positions. Designing a variant of RD that is strategyproof in the general setting is straightforward, for 
example, by breaking ties between the two facilities equiprobably. Importantly however, the aforementioned characterization 
no longer holds in that case, which makes the analysis much more challenging. As a matter of fact, we can show that for any 
variant that uses a fixed probabilistic tie-breaking rule, the approximation ratio is strictly larger than 3/2! In the following 
theorem, we show this for the version of RD that breaks ties by locating facility 1 with probability p and facility 2 with 
probability 1 − p; we refer to this mechanism as p-RD.

Lemma 7.2. p-RD has approximation ratio at least 1.518, for every fixed p ∈ [0, 1].

Proof. Without loss of generality assume that p ∈ [0, 1/2], and consider the following instance. There are 30 agents posi-
tioned at 0: 15 of them have preferences (1, 1) and the remaining 15 have preferences (1, 0). Furthermore, there are 20
agents positioned at 1: 10 of them have preferences (1, 0) and the remaining 10 have preferences (0, 1). Observe that the 
optimal solution locates facility 1 at 0 and achieves social welfare 30. The expected social welfare of p-RD is (3+p)·152+2·102

50 . 
Hence, the approximation ratio of p-RD is 1500

(3+p)·152+200
, which is larger than 120

79 > 1.518 for every p ∈ [0, 1/2]. �
Finding the exact approximation ratio of p-RD is an intriguing open question. Perhaps more interestingly, one can define 

yet another strategyproof variant of RD, whose approximation ratio is not ruled out by Lemma 7.2. For example, we can 
count how many agents approve each facility and break ties proportionally to those numbers. It is quite easy to observe 
that the RD mechanism using the proportional tie-breaking rule is strategyproof for the general setting, and is a promising 
candidate for achieving a better approximation ratio. To this end, we state the following conjecture.

Conjecture 7.3. For the general setting, the RD mechanism with the proportional tie-breaking rule has approximation ratio 3/2.

Besides strengthening our results, there are several meaningful extensions of our model that could be the subject of 
future work. For the k out of m facilities setting, while we have made an important first step, there is still significant 
work to be done, particularly in the known-positions setting. One could also consider several different variants of our basis 
model. For example, the agents may have fractional preferences rather than approval preferences (that is, each agent may 
assign weights in [0, 1] to the facilities, instead of weights in {0, 1}). Other possible variants include settings in which some 
facilities are obnoxious (Mei et al., 2018; Feigenbaum and Sethuraman, 2015), meaning that agents would like to be far from 
them if they are built, and discrete settings in which the facilities can only be built at predefined locations on the line (e.g., 
see (Dokow et al., 2012; Feldman et al., 2016; Serafino and Ventre, 2015, 2016)). Finally, an interesting generalization of our 
problem is when every facility comes at a different cost, and the objective is to maximize the social welfare by choosing 
and locating k facilities under the constraint that their accumulated costs is below a predefined budget. This latter setting 
is directly motivated by participatory budgeting, which has recently drawn the attention of the computational social choice 
community (Benade et al., 2021; Aziz and Shah, 2020).
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