We study truthful mechanisms for matching and related problems in a partial
information setting, where the agents' true utilities are hidden, and the
algorithm only has access to ordinal preference information. Our model is
motivated by the fact that in many settings, agents cannot express the
numerical values of their utility for different outcomes, but are still able to
rank the outcomes in their order of preference. Specifically, we study problems
where the ground truth exists in the form of a weighted graph of agent
utilities, but the algorithm can only elicit the agents' private information in
the form of a preference ordering for each agent induced by the underlying
weights. Against this backdrop, we design truthful algorithms to approximate
the true optimum solution with respect to the hidden weights. Our techniques
yield universally truthful algorithms for a number of graph problems: a
1.76-approximation algorithm for Max-Weight Matching, 2-approximation algorithm
for Max k-matching, a 6-approximation algorithm for Densest k-subgraph, and a
2-approximation algorithm for Max Traveling Salesman as long as the hidden
weights constitute a metric. We also provide improved approximation algorithms
for such problems when the agents are not able to lie about their preferences.
Our results are the first non-trivial truthful approximation algorithms for
these problems, and indicate that in many situations, we can design robust
algorithms even when the agents may lie and only provide ordinal information
instead of precise utilities.Comment: To appear in the Proceedings of WINE 201