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ABSTRACT

We introduce a general technique for proving membership of search
problems with exact rational solutions in PPAD, one of the most
well-known classes containing total search problems with polyno-
mial-time veri�able solutions. In particular, we construct a “pseu-
dogate”, coined the linear-OPT-gate, which can be used as a “plug-
and-play” component in a piecewise-linear (PL) arithmetic circuit,
as an integral component of the “Linear-FIXP” equivalent de�ni-
tion of the class. The linear-OPT-gate can solve several convex
optimization programs, including quadratic programs, which of-
ten appear organically in the simplest existence proofs for these
problems. This e�ectively transforms existence proofs to PPAD-
membership proofs, and consequently establishes the existence of
solutions described by rational numbers.

Using the linear-OPT-gate, we are able to signi�cantly simplify
and generalize almost all known PPAD-membership proofs for
�nding exact solutions in the application domains of game theory,
competitive markets, auto-bidding auctions, and fair division, as
well as to obtain new PPAD-membership results for problems in
these domains.
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1 INTRODUCTION

Total search problems, i.e., search problems for which a solution
is always guaranteed to exist, have been studied extensively over
the better part of the last century, in the intersection of mathemat-
ics, economics and computer science. Famous examples of such
problems are �nding Nash equilibria in games [55], competitive
equilibria in markets [1] and envy-free divisions of resources [69].
While the classic works in mathematics and economics have been
primarily concerned with establishing the existence as well as desir-
able properties of these solutions, the literature of computer science
over the past 35 years has been instrumental in formulating and
answering questions about the computational complexity of �nding
them.

More precisely, Megiddo and Papadimitriou [51] de�ned the
class TFNP to include all total search problems for which a solu-
tion is veri�able in polynomial time. To capture the computational
complexity of many problems including the aforementioned ones,
several subclasses of TFNP were subsequently de�ned. Among
those, one that has been extremely successful in this regard is the
class PPAD of Papadimitriou [58], which was proven to character-
ize the complexity of computing Nash equilibria in games [14, 23],
as well as competitive equilibria for several types of markets [16],
among many others.

In reality, when making statements like the above, i.e., general
statements of the form, “�nding a Nash equilibrium is in PPAD”,
or similarly for a solution to some other total search problem, it
is most often meant that what lies in the class is the problem of
�nding approximate solutions. For strategic games for example, that
would mean strategy pro�les which are almost Nash equilibria, up
to some additive parameter Y. This is actually quite often necessary,
as it has been shown that for many of these problems, there are
cases where all of their solutions can only be described by irrational
numbers, and hence we can not hope to compute them exactly on
a computer.

Still, there is a large number of important variants of these do-
mains for which exact rational solutions exist. For example, several
strategic games always have equilibria in rational numbers, and
so do certain markets for their competitive equilibria. There are
also examples from fair division where rational partitions of the
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resources can be achieved. In all of those cases, PPAD-membership
results for their approximate versions are unsatisfactory; we would
like to place the exact problems in PPAD instead.

Indeed, coming up with proofs of existence that also guarantee
rationality of solutions has been a topic of interest in the area since
the very early days, way before the introduction of the relevant
computational complexity classes, e.g., see [26, 40, 48, 49]. Driven by
those classic results, a signi�cant literature in computer science has
attempted, and quite often has succeeded in placing the correspond-
ing computational problems in PPAD, for several of the application
domains mentioned above, including games [39, 45, 46, 52, 66],
markets [31, 34, 35, 72], as well as the more recent domain of auto-
bidding auctions [15].

While these PPAD-membership proofs typically do follow one
of a few common approaches, in essence they are rather domain-
speci�c and require reconstructing a set of arguments again for
each application at hand (see Section 1.2.1 below for a detailed
discussion). Instead, we would like to have one general technique
for proving PPAD-membership of problems with exact solutions, and
ideally one that arises “organically” as the computational equivalent
of the standard proofs of existence. To do this, a very promising
avenue seems to be via a characterization of PPAD, coined Linear-

FIXP, due to Etessami and Yannakakis [27], which de�nes the class
in terms of �xed points of problems represented by piecewise-linear
arithmetic circuits. This is because a standard existence proof, e.g.,
via the Kakutani �xed point theorem [44] or via Brouwer’s �xed
point theorem [11], often obtains the solution as a �xed point of a
set of local optimization problems, in which each agent or player is
independently maximizing a piecewise utility/payo� function. If we
could “embed” these optimization problems into a piecewise-linear
circuit, that would essentially translate the existence proof into a
PPAD-membership proof. This is crisply captured in the following
quote from Vazirani and Yannakakis [72], in the context of proving
PPAD-membership for competitive equilibria in certain markets:

“There are very few ways for showing membership in

PPAD. A promising approach for our case is to use the

characterization of PPAD of Etessami and Yannakakis

[2010] as the class of exact �xed-point computation

problems for piecewise-linear, polynomial time com-

putable Brouwer functions. [. . .] Unfortunately, we do

not see how to do this [. . .] it is not clear how to trans-

fer the piecewise-linearity of the utility functions to the

Brouwer function.” [72].

Recently, Filos-Ratsikas et al. [29] in fact developed a general tech-
nique along those lines: they designed an optimization gate, which
can be used as part of a circuit to substitute the aforementioned
optimization problems and obtain membership results. Crucially
however, their membership results are not for the class PPAD, but
rather for the class FIXP [27], a superclass of Linear-FIXP in which
the main computational device is a (general) arithmetic circuit, not
a piecewise-linear one. These circuits are particularly powerful and
can capture solutions with irrationalities. Using their “OPT-gate for
FIXP”, Filos-Ratsikas et al. [29] showed the FIXP-membership of
several very general problems related to strategic games, markets
and fair division.

While FIXP is certainly a natural class, it has not enjoyed the
same success as PPAD, even in the context of classifying problems
with exact solutions. Besides, in the standard (Turing) model of com-
putation, a FIXP-membership result can be interpreted as �nding a
point that is close to a solution (e.g., in the max norm). This is often
a stronger guarantee than an approximate solution as described
earlier, but it it still very much only an approximation. Again, this
is unsatisfactory for those problems with exact rational solutions
that should be in PPAD.

Could we hope to use Filos-Ratsikas et al.’s optimization gate
to obtain PPAD-membership? This is actually practically impossi-
ble, for reasons which are deeply rooted in the de�nitions of the
classes; we highlight those in Section 1.3 below. In short, the power
of general arithmetic circuits over piecewise-linear ones lies in
their capability to multiply and divide input variables, and this is
of vital importance in the design of the OPT-gate for FIXP in [29].
What we really need is a new gate, one which avoids such multi-
plications/divisions and hence can be used in a piecewise-linear
arithmetic circuit. Designing such a gate poses signi�cant technical
challenges, which we highlight in Section 1.3 and present in more
detail in the full version of our paper. Additionally, clearly, the gate
cannot capture the generality of applications that the OPT-gate for
FIXP does, as, as we said earlier, problems with irrational solutions
cannot be in PPAD. It should however be general enough to capture
any problem for which exact rational solutions are possible.

This is the main technical contribution of our paper. We intro-
duce the linear-OPT-gate,1 which can be used as a general purpose
tool for proving PPAD-membership of problems with exact rational
solutions. We demonstrate its strength and generality on a host of
di�erent applications in game theory, markets, auctions and fair
division. Via its use, we are able to signi�cantly simplify or general-
ize virtually all of the PPAD-membership proofs for problems with
exact solutions in the literature, as well as to prove new membership
results for problems for which PPAD-membership was not known;
we o�er more details in the following subsection.

1.1 A Powerful Tool for PPAD-Membership:
The linear-OPT-gate

We introduce the linear-OPT-gate for proving membership of prob-
lems in PPAD. The linear-OPT-gate can be used as a “plug-and-play”
component in a PL arithmetic circuit, i.e., similarly to any of the
other gates {+,−,max,min,×Z } of the circuit (see the full version
of our paper for a formal de�nition). The gate is guaranteed to work
correctly at a �xed point of the function that the circuit encodes,
which, for the purposes of proving PPAD-membership of a problem,
is equivalent to a standard gate.

The linear-OPT-gate allows us to compute solutions to optimiza-
tion programs of a certain form, like those shown in the left-hand
side of Figure 1. In particular, these are optimization programs with
a non-empty and bounded feasible domain given by a set of linear
inequalities, and the subgradient of the convex objective function
(in the variables G) is given by a PL (piecewise-linear) arithmetic
circuit. In particular, the linear-OPT-gate can compute the solution
to any linear program, but also to more general convex programs,
e.g., those with quadratic objective functions. The inherent strength

1The term “linear” here refers to piecewise-linear functions, as in the class Linear-FIXP.
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Optimization Program C

min 5 (G ; 2)

s.t. �G ≤ 1

G ∈ [−', ']=

Feasibility Program Q

ℎ8 (~) > 0 =⇒ 0T8 G ≤ 18

G ∈ [−', ']=

Figure 1: The optimization programs and feasibility programs that can be solved by the linear-OPT-gate.

of the technique lies in the fact that these types of optimization
programs arise naturally in several of the applications in game the-
ory, competitive markets and fair division. Now, for the purpose of
showing membership in PPAD, they may e�ectively be substituted
by linear-OPT-gates.

From the ability of the linear-OPT-gate to solve optimization
programs of the form C of Figure 1, we can also derive feasibility
programs with conditional constraints, like the program Q on the
right-hand side of Figure 1. These feasibility programs also often
arise naturally in the context of existence proofs, and can be also
thought of as being solved in a black-box manner by a gate, which
is constructed using the linear-OPT-gate.

Our linear-OPT-gate has a wealth of applications, which we discuss
below.

1.2 Applications of the linear-OPT-gate

We apply our linear-OPT-gate to a plethora of di�erent domains,
and obtain PPAD-membership for �nding solutions in several strate-
gic games, competitive markets, auto-bidding auctions, as well as
problems in fair division. We detail those applications in the corre-
sponding sections below. Our results achieve the following three
desired objectives simultaneously:

- Proofs of existence of solutions.
- Proofs of rationality of solutions.
- PPAD-membership of the corresponding problems.

For some of these domains, PPAD-membership results for the corre-
sponding problems were known; still, the proofs to establish those
were often rather involved. With the employment of our linear-
OPT-gate, they become conceptually and technically signi�cantly

simpler. In essence, the linear-OPT-gate allows us to turn a simple
existence proof into a PPAD-membership result. For some of our
applications such simple existence proofs already existed, and are
transformed to PPAD-membership proofs via the linear-OPT-gate.
For others, developing these simpler existence proofs is also part
of our contribution; we provide more details in the sections below.
The linear-OPT-gate also allows us to straightforwardly obtain gen-
eralizations of some of the known PPAD-membership results, to
cases beyond what was known in the literature. Finally, we also
obtain the PPAD-membership of some problems whose complexity
had not been studied in the literature before.

We summarize our results in Table 1, where we indicate which
results were known in the literature before, which are generaliza-
tions, and which concern problems for which we did not know any
results about their computational complexity.

Before we proceed with the applications, we present the main
techniques that have been used in prior works for proving PPAD-
membership results, and highlight the main technical challenges of
using those techniques as opposed to the “plug-and-play” nature
of our linear-OPT-gate.

1.2.1 Main Previous Approaches.

Linear Complementarity Programs & Lemke’s Algorithm.

The �rst main approach for establishing rationality of solutions
and PPAD-membership is that of linear complementarity programs

(LCPs) [19, 20]. Given an = × = matrix M and a vector q, an LCP
seeks to �nd two vectors y and v satisfying:

M · y + v = q, y ≥ 0, v ≥ 0, and yT · v = 0

The term “complementarity” stems from the fact that in a solution,
we may have either y8 > 0 or v8 > 0, but not both. Lemke [48]
designed an algorithm (based on the previously designed Lemke-
Howson algorithm [49]) to solve LCPs via a series of complementary

pivoting steps, i.e., steps in which when a variable enters the basis,
a complementary variable exits. Interestingly, the algorithm was
designed in the context of computing Nash equilibria in bimatrix
games, long before the associated computational complexity classes
were de�ned. LCP-based formulations of equilibria and other �xed
point problems have in fact been a subject of study in classic works
(e.g, see [26, 40]) as a means to obtain existence proofs that guaran-
tee the rationality of solutions. PPAD membership can be obtained
by pairing the algorithm with an appropriate local orientation of
its complementarity paths [71].

Quite importantly, Lemke’s algorithm terminates with either
�nding a solution to the LCP, or without �nding a solution, in what
is referred to as a secondary ray. This feature of the algorithm is
well-documented (e.g., see [63] for an excellent exposition) and is
known as ray termination. In terms of proving PPAD-membership,
it seems almost inevitable that every PPAD-membership proof that
uses this approach has to argue against ray termination. As Garg
and Vazirani [35] pointedly remark, in the context of a succession
of papers on equilibrium computation in competitive markets:

“In the progression of these three works, the LCPs have

becomemore involved and proving the lack of secondary

rays has become increasingly harder.” [35].

This is not particular to markets either. For example, in Hansen
and Lund’s generalization [39] of the results of Sørensen [66] from
bimatrix to polymatrix games, those concerning Y-proper equilibria,
a new LCP needs to be devised, together with a new argument
against ray termination. Additionally, there are often signi�cant
challenges in even appropriately formulating the problems in ques-
tion as LCPs. In some cases, the naive formulations may lead to
ine�cient representations, e.g., see [66]. In other cases, all known
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formulations lead to nonstandard LCPs, which cannot be handled
by the “vanilla” version of Lemke’s algorithm, and require variants
of the algorithm to be devised, e.g., see [34, 52]. Finally in some
cases, it is not known if the derived LCPs can be solved via any
variant of Lemke’s algorithm, thus leading to the development of
entirely new pivoting algorithms [46]. These characteristics of the
LCP approach make it somewhat insu�cient as a general purpose
PPAD-membership technique.

One advantage of LCP-based approaches is that they have been
shown to perform well in practice, e.g., see [34] and references
therein. However, for the purpose of proving PPAD-membership,
we do not see any general advantage of the LCP method over our
linear-OPT-gate.

Approximation andRounding. The second general technique
that has been used in several applications to prove the PPAD-
membership of exact solutions is that of approximation and rounding.
This generally consists of the two following main steps:

- consider an approximation or a relaxation of the solution (e.g.,
Y-approximate equilibria) and prove that the approximate
version is in PPAD, and

- devise a rounding procedure to transform approximate solu-
tions to exact solutions, while maintaining membership in
the class.

This rather indirect approach certainly su�ers in terms of elegance.
More importantly however, it is very much domain-speci�c. First,
showing the PPAD-membership for the approximate version typi-
cally still requires a non-trivial proof, often even a rather involved
one, e.g., via some reduction to one of the well-known problems in
PPAD, like End-of-Line or the computational version of Sperner’s
lemma [67]. Also, the rounding procedure itself may be rather com-
plicated, and of an ad hoc nature. For certain applications, there is
a general linear programming-based technique developed by Etes-
sami and Yannakakis [27] to transform Y-approximate solutions
to exact ones, for su�ciently small values of Y. Still, this does not
apply to all problems, and it may need to be used in conjunction
with other tailor-made rounding steps, e.g., see [15, 72].

The linear-OPT-gate as a “Plug-and-Play” Component. As
we will explain in the following, and as it will be evident via in-
spection of our proofs throughout the paper, the linear-OPT-gate
allows us to develop proofs which are very simple and streamlined,
essentially mimicking the easiest proofs of existence. Clearly, most
of the technical complications are “hidden” in the “inner workings”
of the linear-OPT-gate. This is the advantage of having a “plug-and-
play” component readily available for the proofs: one does not need
to even be concerned about how the linear-OPT-gate works, but
only to understand what kind of optimization programs it can solve.
We consider this to be a signi�cant advantage over the two afore-
mentioned techniques, which require to devise application-speci�c
arguments (be it arguments about ray termination or appropriate
approximation and rounding). These arguments may be of a stan-
dard general nature, but they have to be devised anew for each
application, as evidenced by all the di�erent PPAD-membership
results that employ these techniques.

1.2.2 Implicit Functions and Correspondences. As a �nal remark be-
fore we present our applications, we point out that, via machinery

that we develop in the full version of our paper, our linear-OPT-
gate can be used to show the PPAD-membership of problems for
which the inputs (e.g., utilities or latency functions) are given im-

plicitly in the input. In particular, we show how we can construct
PL arithmetic circuits computing these functions, when those are
inputted succinctly via Boolean circuits. In terms of the applications,
this allows us to e�ectively consider functions of exponential size
(in the size of the circuits), e.g., piecewise-linear utility functions
with exponentially-many pieces. We provide details on how this
capability of the linear-OPT-gate is used in each application in the
corresponding sections below. We present applications for which
the aforementioned techniques of Section 1.2.1 are inherently insuf-

�cient for obtaining PPAD-membership results for those implicit
functions, when these results are in fact enabled by the use of the
linear-OPT-gate.

1.2.3 PPAD-membership for Strategic Games. We start our discus-
sion from the applications of the linear-OPT-gate to the problem of
computing (exact) equilibria in strategic games. To provide some ini-
tial intuition, before the technical sections of the paper, we provide
an informal example of the use of the linear-OPT-gate to compute
mixed Nash equilibria in bimatrix games; this is exposed in more
detail in the corresponding section in the full version of our paper.

AnExample: Bimatrix Games. A bimatrix game is a game played
between two players, in which the payo�s are given by twomatrices
A1 and A2, one for each player, denoting the payo� of the players
when they each choose certain actions. Each player chooses amixed

strategy, i.e., a probability distribution over actions in the game,
aiming to maximize their expected payo�, against the choice of the
opponent. A mixed Nash equilibrium is a pair of mixed strategies
for which every player is best responding, i.e., she is maximizing her
payo�, given the strategy of the other player. The existence of mixed
Nash equilibria for bimatrix games follows from Nash’s general
existence theorem [55]. The proof of the theorem that employs
the Kakutani �xed point theorem [44] constructs a �xed point
of a function � from the domain of mixed strategies to itself, for
which each coordinate �8 is a best response for player 8 in the game.
These best responses can be captured by optimization programs
of the form C in Figure 1 and in particular for the case of bimatrix
games, these are linear programs in which the subgradients of the
objective functions are linear functions. The existence proof then
immediately yields a PPAD-membership proof if one substitutes
those programs with linear-OPT-gates that compute them.

We remark that for bimatrix games, the original PPAD-membership
proof of Papadimitriou [58] adopts the “LCP approach” that we
mentioned earlier, i.e., it appeals to an alternative proof of Nash
equilibrium existence due to Cottle and Dantzig [19] (see also [49])
that formulates the problem as an LCP. This is a good example
of what we mentioned earlier; the linear-OPT-gate allows us to
organically retrieve PPAD-membership from the standard, textbook
existence proof of Nash [55].

Best Response Oracles, PL Concave Games and Generalized

Equilibria.

PL Best Response Oracles. The approach that we highlighted
above is not restricted to bimatrix games, but it actually captures a
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Table 1: A summary of our PPAD-membership results - for other complementary results please see the respective sec-

tions/paragraphs in the introduction. Classes of domains that are within the same frame in the table (i.e., not separated

by borders) are of increasing generality from top to bottom. Domains that appear in the same row of a frame are incomparable

in terms of their generality. For the applications to game theory, all of the domains are special cases of PL concave games which

in turn are a special case of PLBRO games. For those applications, the PPAD-membership extends to generalized equilibria. For

all of the results in the table, regardless of whether we obtain entirely new results, generalizations, or simply results which

were known in the literature, we obtain signi�cant simpli�cations in the proofs.

Applications to Game Theory

Games with PL Best Response Oracles (PLBRO) [Our Work]

PL Concave Games [Our Work]

Bilinear Games [47], implicitly

General Threshold Games [Our Work]

Bimatrix Games
[58]

[19], implicitly

Polymatrix Games [40], implicitly

PL Succinct Games [Our Work]

Multi-class Congestion games with piecewise-linear latency functions

Non-atomic Network Congestion Games
[Our Work]

linear latencies [52]

Atomic Splittable Network Congestion Games
[Our Work]

linear latencies [46]

Congestion Games with Malicious Players [Our Work]

Other equilibrium notions

Y-proper Equilibria in Bimatrix Games [66]

Y-proper Equilibria in Polymatrix Games [39]

Y-proper Equilibria in PL Succinct Games [Our Work]

Personalized Equilibria [45]

Applications to Competitive Markets

Exchange Markets with Linear Utilities [26], implicitly

Arrow-Debreu Markets with SPLC Utilities [33]

Arrow-Debreu Markets with SPLC Utilities/Productions
[72]

[35]

Arrow Debreu Markets with Leontief-free

Utilities/Productions [34]

Arrow-Debreu Markets with Succinct SPLC

Utilities/SPLC Productions [Our Work]

Applications to Auto-Bidding Auctions

Pacing Equilibria in Second-Price Auctions with Budgets [15]

Applications to Fair Division

Envy-free Cake Cutting [38], implicitly

Rental Harmony [Our Work]
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large class of strategic games. In the full version of our paper we
provide a technical de�nition for a very general class of games, in
which the best response of each agent is given by an oracle that can
be computed by a PL arithmetic circuit. We refer to these games
as games with PL best response oracles (PLBRO games). An equilib-
rium of any PLBRO game can straightforwardly be formulated as
a �xed point of a function like the function � above, where each
coordinate �8 computes the best response of player 8 via the ora-
cle. By using linear-OPT-gates as oracles, we immediately obtain
PPAD-membership results for a wealth of di�erent games.

PL Concave Games. The class of concave games is a very large
class of games, studied notably by Rosen [62] and Debreu [24].
These are games with continuous strategy spaces, for which the
existence of an equilibrium is guaranteed under certain continuity
and concavity assumptions on the utility functions. This was proven
by Rosen [62] but also earlier independently by Debreu [24], [28],
and Glicksberg [36], and for that reason the existence result is often
referred to as the Debreu-Fan-Glicksberg theorem for continuous
games.

In the corresponding section of the full paper we prove that as
long as the supergradient of the (concave) utility function can be
computed by a PL arithmetic circuit, concave games are PLBRO
games, and hence �nding an equilibrium is in PPAD. We refer to
those games as PL concave games, and emphasize again that the
utility function does not have to be piecewise linear, but only its
(super)gradient; in particular, it could for example be a quadratic
function. Bimatrix games are PL concave games, and so are polyma-

trix games [40, 42], bilinear games [32], as well as generalizations
of (digraph) threshold games [56], and thus we obtain membership
of �nding equilibria in all of these games in PPAD. The latter two
games have continuous strategy spaces, and thus the equilibria that
we compute are pure, whereas for polymatrix games (and as a result,
for bimatrix games) we compute equilibria in mixed strategies.

PL Succinct Games. In fact, we de�ne a large class of games,
which generalize polymatrix games, one which we coin PL succinct

games. In these games, the expected utility of a player, given a pure
strategy 9 and a mixed strategy x−8 of the other players, can be
computed by a PL arithmetic circuit. These are PL concave games,
and the PPAD-membership of �nding their mixed Nash equilibria
is a corollary of the results mentioned above.

We draw parallels between PL succinct games and those de�ned
in Daskalakis et al. [22] and Papadimitriou and Roughgarden [59].
Those works de�ne classes of succinct games for which there is
an oracle for computing the expected utility of the player. In [59],
this oracle is referred to as the polynomial expectation property

and is used to show that correlated equilibria [2] of games with
this property can be computed in polynomial time. In [22], it is
shown that if the oracle is given by a bounded division free straight-

line program of polynomial length, then these games are in PPAD.
Crucially, this latter result concerns approximate equilibria. One
could view our result as a complement to those two results, one
which concerns exact equilibria in rational numbers.

Our PPAD-membership result for PL concave games captures the
limits of the class of concave games for which rational equilibria
exist, and thus membership in PPAD is possible. The only other

known complexity results for the general class of concave games
are a FIXP-completeness result due to Filos-Ratsikas et al. [29], and
a very recent PPAD-membership result for approximate equilibria
due to [57].

Generalized Equilibrium. Debreu [24] did not only consider
concave games, but in fact a more general equilibrium notion, one
in which the strategy space of each player is dependent on the
set of strategies chosen by the other players. This was coined a
“social equilibrium” by Debreu [24] (see also Dasgupta and Maskin
[21]) but over the years has been better known by the term gen-

eralized equilibrium. For our purposes, the dependence on other
strategies can be embedded in the constraints of the optimization
programs that we use as oracles in PLBRO games, in a way that
can be handled by the linear-OPT-gate. As a corollary, we obtain all
of the aforementioned PPAD-membership results for generalized
equilibria (rather than standard equilibria) as well. To the best of
our knowledge, these are the �rst PPAD-membership results for
generalized equilibria in the literature.

Personalized Equilibria. The notion of personalized equilibrium
was introduced by Kintali et al. [45] in the context of games played
on hypergraphs, with an equivalent strategic form. Intuitively
speaking, these equilibria allow players to “match” their strate-
gies with those of their opponents, without obeying a product
distribution. Kintali et al. [45] showed the PPAD-membership (and
as a result, rationality of equilibria) of personalized equilibria via
the “relaxation and rounding approach” (see Section 1.2.1). In par-
ticular, they �rst de�ne an approximate version of the problem
(the Y-personalized equilibrium), and reduce that problem to End-

Of-Line, via a relatively involved construction. To obtain PPAD-
membership for the exact problem (i.e., when Y = 0) Kintali et al.
[45] construct an elaborate argument that appeals to linear pro-
gramming compactness, by �rst showing that for su�ciently small
Y, Y-personalized equilibria “almost satisfy” the constraints of the
linear programs, and then carefully rounding the solution to obtain
an exact equilibrium.

The use of the linear-OPT-gate allows us to obtain the PPAD-
membership of the problem via an extremely simple argument.
Essentially, each player computes their best response via a linear
program which is computed by the linear-OPT-gate, which reduces
the problem to �nding an equilibrium of an PLBRO game.

Y-Proper Equilibria. We also consider an alternative equilibrium
notion, that of Y-proper equilibria. This notion was introduced by
Myerson [54] to re�ne the notion of Y-perfect equilibrium of Selten
[65], and captures situations in which the players can make small
mistakes (“trembles”) in the choice of their mixed strategies. The
PPAD-membership of computing Y-proper equilibria was known
for bimatrix games due to Sørensen [66] and for polymatrix games
due to Hansen and Lund [39]. Both of these works adopt the LCP
approach, which means that they need to go through the hassle
of establishing the properties of Lemke’s algorithm, as discussed
in Section 1.2.1 above. Additionally, formulating the problem as
an LCP in this case is far from trivial, and requires an extended
formulation of the generalized permutahedron due to Goemans
[37], to make sure that the LCP has polynomially-many constraints.
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The use of our linear-OPT-gate distinctly avoids all this labor.
We formulate the problem of computing a best response for each
player (where the best response is de�ned with respect to the Y-
proper equilibrium notion) as a feasibility program of the form Q

in Figure 1, which can be solved by the linear-OPT-gate. This essen-
tially renders the game a PLBRO game, and the PPAD-membership
follows simply as a corollary of our main theorem for PLBRO games.

Network Congestion Games. Our last application in the area of
game theory is to multi-class congestion games. In particular, we
will consider two models, non-atomic congestion games and atomic

splittable congestion games. In the former case, there is a continuum
of players who collectively form a class controlling a certain load
allocation to di�erent resources. In the latter case, each class is
represented by a single (atomic) player, who controls the load and
distributes it to the resources. For both of those settings, we will
also consider the subclass of network congestion games, where the
strategies can be represented more succinctly using �ows over a
directed network.

The existence of equilibria in those games was established in
classic works, e.g., see [64] or [53], originally via the employment
of the Debreu-Fan-Glicksberg theorem [24, 28, 36] for continuous
games, assuming that the latencies on the resources are concave
functions. Relevant to us are the works on their computational com-
plexity, namely [52] (for non-atomic network congestion games)
and [46] (for atomic splittable network congestion games). Both
papers showed the PPAD-membership of �nding pure equilibria in
their respective settings, when the latency functions are linear. We
remark that these games are di�erent from atomic (non-splittable)
congestion games, for which �nding pure Nash equilibria is known
to be in the class PLS de�ned by Johnson et al. [43].

Meunier and Pradeau obtain their PPAD-membership result via
the “LCP approach” mentioned in Section 1.2.1. Interestingly, their
LCP formulation turns out to not be amenable to the use of Lemke’s
algorithm, so they have to devise a “Lemke-like” complementary
pivoting algorithm, tailored to their problem. As in the case of
Lemke’s algorithm, they argue explicitly against ray termination.
Klimm and Warode note that in their case, the problem of �nding
an equilibrium can be formulated as an LCP, however, it is not
known or clear whether this LCP can be solved using any known
variant of Lemke’s algorithm. For that, they devise a rather involved
proof, based on a new homotopy method, essentially a new pivoting
algorithm. Their algorithm solves the problem of �nding a Nash
equilibrium as a system of linear equations involving notions such
as excess �ows, vertex potentials and block Laplacians. At a very
high level, the authors use the excess and potentials to de�ne an
undirected version of the End-of-Line graph, and the determinant
of the block Laplacians to de�ne a unique orientiation of the edges,
e�ectively reducing the problem to End-of-Line.

The linear-OPT-gate allows us to avoid all of the technical com-
plications of the proofs ofMeunier and Pradeau [52] and [46] (which
are rather involved, especially the latter), and essentially obtain the
PPAD-membership for both of these problems as simple corollaries
of our main results for PLBRO games or concave games. In fact, we
obtain generalizations of those PPAD-membership results to games
with more general latency functions, notably piecewise-linear la-
tency functions (implicitly or explicitly represented). In exactly the

same fashion, we can use the linear-OPT-gate to obtain the PPAD-
membership of congestion games with malicious players, a setting
studied by Babaio� et al. [3], for which computational complexity
results had not been previously proven.

1.2.4 PPAD-Membership for Competitive Markets. We now move
on to the application of our technique to the domain of competitive
markets. The standard market model in the literature is that of the
Arrow-Debreu market [1], where a set of consumers compete for
goods endowed by them and other consumers and goods produced
by a set of �rms. A competitive equilibrium of the market is a set of
allocations of goods to the consumers, a set of production quantities
and a set of prices, such that at those prices, (a) all consumers maxi-
mize their individual utilities, (b) all �rms produce optimal amounts,
and (c) the market clears, i.e., supply equals demand. The existence
of an equilibrium for the general market model was established
by Arrow and Debreu [1] via the employment of Debreu’s social
equilibrium theorem [24], under some standard assumptions on the
utilities of the consumers and the production sets of the �rms.

PreviousResults and Proofs. It has beenwell-known since the
early works in the area [26] that in general Arrow-Debreu markets,
competitive equilibria may be irrational. A signi�cant literature,
starting with the work of Eaves [26] aimed at identifying special
cases of the Arrow-Debreu market for which exact rational solu-
tions are always possible. When computer science took over in this
quest, the related question of establishing the PPAD-membership
of �nding those exact solutions was also brought forward. Most
of the PPAD-membership proofs that were developed through the
years followed the “LCP approach”, see Section 1.2.1. We present
them here in succession:

- Eaves [26] considered the simplest case of exchange markets (no
production) with linear utilities for the consumers and devised
an LCP that can be solved by Lemke’s algorithm. To establish
the latter fact, he argued against ray termination, a characterstic
of this approach that we emphasized in Section 1.2.1. A PPAD-
membership proof is implicit in his result.2

- Garg et al. [33] considered exchange markets with separable

piecewise-linear concave (SPLC) utilities, a generalization of linear
utilities in which every agent has a piecewise linear concave
utility for the amount of a good 9 that she receives, and her
total utility for her bundle is additive over goods. The authors
proved the PPAD-membership of �nding competitive equilibria
in those markets via devising an LCP that was “quite complex”
[33], and naturally had to argue against ray termination, to es-
tablish that Lemke’s algorithm will terminate on this LCP with a
valid solution.

- Garg and Vazirani [35] considered Arrow-Debreu markets with
SPLC utilities as well as SPLC production functions. This is in
fact the work from which the quote of Section 1.2.1 is taken. The
quote highlights the increasing challenge of developing these
LCPs and establishing their successful termination. Indeed, for
this LCP, Garg and Vazirani [35] devise a set of linear programs,
and then use the complementary slackness and their feasibility

2Note that for exchange markets with linear utilities and no production the problem
is in fact known to be polynomial-time solvable [41].
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conditions to develop the LCP needed for production. The non-
homogeneity of the resulting LCP for the equilibrium problem is
dealt with in a manner which is di�erent from previous works
[26, 33] and, naturally, since the developed LCP is di�erent, Garg
and Vazirani again need to argue against ray termination.

- The most general class of utility/production functions for which a
PPAD-membership of exact competitive equilibria was proven is
that of Leontief-free functions [34], which generalize SPLC func-
tions. For this, the authors devise yet another LCP formulation,
which turns out to be even more complex than those of previous
works. This is because it has to di�erentiate between “normal”
and “abnormal” variables, the latter preventing the employment
of Lemke’s algorithm. To circumvent this, they exploit some ad-
ditional structure of their nonstandard LCP, and then they also
modify Lemke’s algorithm, to account for the possibility of ab-
normal variables becoming zero. Finally, as they devise a new
LCP, they also have to argue once again against ray termination.

Besides those works, the �rst work in computer science to prove
PPAD-membership for markets with SPLC utilities/productions
was [72]. The approach in that paper is not the “LCP approach”
but the “approximation and rounding approach” (again, see Sec-
tion 1.2.1). An issue with this method is that very small changes in
the prices may result in drastic changes in the optimal bundles of
the consumers, which makes the proof quite challenging. To deal
with this, Vazirani and Yannakakis [72] devise a set of technical
lemmas that allow them to “force” certain allocations over others.

Our Results. Our results in this section are twofold.

- Simpli�ed Proofs. First, we employ the linear-OPT-gate to re-
cover all of the aforementioned PPAD-membership results via
proofs which are conceptually and technically quite simpler. In
particular, we formulate the optimal consumption and the op-
timal production as linear programs similar to program C of
Figure 1, which can be e�ectively substituted by linear-OPT-
gates in a PL arithmetic circuit. We also apply a standard variable
change which was �rst used by Eaves [26], and which we refer
to as Gale’s substitution, see the full version of our paper for
more details. For the prices, we develop a feasibility program,
similar to program Q of Figure 1. In a �xed point of the circuit,
the optimality of consumption and production follows almost im-
mediately by design. The main technical challenge of the proofs
lies in arguing the market clearing of the outputted prices, which
however still requires a relatively short proof.
To introduce the reader gently to our proof technique, in the
full version of our paper we �rst apply it to the simple setting
of exchange markets with linear utilities, then to the setting
of Arrow-Debreu markets with linear utilities and productions,
and �nally to the general case of Arrow-Debreu markets with
Leontief-free utilities and productions.

- PPAD-Membership for Succinct SPLC (SSPLC) Utilities. In
the full version of our paper we introduce a new class of util-
ity functions, which we coin succinct separable piecewise-linear

(SSPLC) utilities. These are SPLC utilities in which the di�erent
segments of the utility function need not be given explicitly in
the input (as in the case of (explicit) SPLC utilities), but can be ac-
cessed implicitly via a boolean circuit. E�ectively, this allows us
to succinctly represent SPLC functions with exponentially many

pieces, where the input size is the size of the given circuits. We re-
mark that the “LCP-approach” developed in the aforementioned
papers is inherently limited in providing PPAD-membership re-
sults for this class. Indeed, one could formulate the problem as a
large LCP in exponentially-many variables, and that would estab-
lish the existence of rational solutions. However, this formulation
would no longer be a polynomial time reduction (since now we
do not have explicit input parameters D8

9:
for the utility of each

piece) and hence it would not imply the PPAD-membership of the
problem. In contrast, using our machinery we can make sure that
our linear-OPT-gate can be used to obtain PPAD-membership
for markets with SSPLC utilities as well. In our result we also
add (explicit) SPLC production, which our technique clearly can
handle. We provide a discussion on the challenges of extending
our results to also capture SSPLC production functions at the
end of the corresponding section in the full paper. Note that the
SSPLC functions and the Leontief-free functions are of incom-
parable generality (and hence they appear on the same line of
Table 1). Whether we can prove PPAD-membership for a class of
“succinct Leontief-free functions”, which would generalize both
settings, is an interesting technical question.

1.2.5 PPAD-Membership for Auto-bidding Auctions. Our next ap-
plication is on the domain of auto-bidding auctions, which has
received a lot of attention recently, due to its applicability in real-
world scenarios [4–7, 9, 15, 17, 18, 50]. In particular, in the corre-
sponding section of the full paper we consider the settings studied
by Conitzer et al. [17, 18], Chen et al. [14] and Li and Tang [50], in
which buyers participate in several parallel single-item auctions,
via scaling their valuations by a chosen parameter U , called the
pacing multiplier. The buyers do that while facing constraints on
their feasible expenditure, typically provided by budgets or return-
on-investment (ROI) thresholds. The objective is to �nd a pacing
equilibrium, i.e., pacing multipliers and allocations for the buyers
that are consistent with the format of the auction run (e.g, �rst-
price or second-price) and satisfy the expenditure constraints of all
the buyers simultaneously. Pacing equilibria have a similar �avor
to the competitive equilibria discussed earlier, but are su�ciently
di�erent, and thus require separate handling.

Our Proof vs the Previous Approach. We prove that comput-
ing pacing equilibria in parallel second-price auctions with budgets
is in PPAD. The problem was already known to be in PPAD (in fact,
PPAD-complete) by the recent results of Chen et al. [15], building
on the original existence result of Conitzer et al. [18]. Chen et al.’s
proof rather heavily applies the “approximation and rounding” par-
adigm highlighted in Section 1.2.1. In particular, Chen et al. de�ne a
(X,W)-approximate variant of the pacing equilibrium, where X,W > 0

are two approximation parameters. Intuitively, this equilibrium
corresponds to an “almost equilibrium” (i.e., the expenditure con-
straints are “almost” satis�ed) of an “almost second-price auction”
(i.e., an auction in which the set of winners is those with “almost”
the highest bid). The authors prove that �nding these approximate
equilibria is in PPAD, via a reduction to a computational version of
Sperner’s lemma [67], and then devise an intrictate rounding proce-
dure to convert (X,W)-equilibria into W-equilibria. The �nal step in
their proof applies the aforementioned technique of Etessami and
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Yannakakis [27] (see Section 1.2.1) to further round these equilibria
to pacing equilibria (i.e., where W = 0).

Our proof employs the linear-OPT-gate and is conceptually and
technically much simpler, without needing to use approximations.
Instead, we again apply the standard variable change in Gale’s sub-
stitution which we also used for the case of competitive markets,
to work with the expenditures rather than the allocations directly.
From there, we can formulate the task of �nding the optimal ex-
penditures as a set of linear programs (one for each buyer), and the
pacing multipliers will be obtained as a �xed point solution of a sin-
gle simple equation. These linear programs can be solved by linear-
OPT-gates which essentially establishes the PPAD-membership of
the problem.

ROI-Constrained Buyers. We observe that the existence proof
underlying our PPAD-membership proof in this section can in fact
almost straightforwardly be modi�ed to yield the existence of pac-
ing equilibria for a di�erent setting in auto-bidding auctions, that
of second-price auctions with average return-on-investment (ROI)
constraints, studied by Li and Tang [50]. Li and Tang established
the existence of pacing equilibria via a rather indirect proof, which
�rst reduces the problem to a somewhat convoluted concave game
and applies the Debreu-Fan-Glicksberg theorem [24] to obtain Nash
equilibrium existence, and then recovers a pacing equilibrium as a
limit point of such a Nash equilibrium. This proof in fact closely
follows the original proof of Conitzer et al. [18] for the budgeted
setting, and clearly does not have any implications on the compu-
tational complexity of the problem.

Our proof, besides its advantages in terms of simplicity, also
allows us for the �rst time to obtain computational membership
results for pacing equilibria in the ROI-constrained buyer case. It
turns out that for this setting, all pacing equilibria may be irrational
(see the example we provide in the full version of our paper), and
hence membership in PPAD is not possible. Instead, we employ the
OPT-gate for FIXP developed by Filos-Ratsikas et al. [29] to easily
transform our existence proof into a FIXP-membership proof.

1.2.6 PPAD-Membership for Fair Division. The last applications of
our linear-OPT-gate are related to the task of fairly partitioning a
resource among a set of agents with di�erent preferences over its
parts. In particular, we show the PPAD-membership of computing
exact envy-free solutions in two fundamental problems, namely
envy-free cake cutting [30] and rental harmony [70], when the pref-
erences of the agents ensure the existence of rational partitions.

Envy-Free Cake Cutting. The envy-free division of a contin-
uous resource (metaphorically, a “cake”) is one of the most funda-
mental and well-studied mathematical problems of the last century.
The origins of the theory of the problem can be traced back to the
pioneering work of [68], with di�erent variants being studied over
the years in a large body of literature in mathematics, economics,
and computer science; see [10, 60, 61] for some excellent textbooks
on the topic. The existence of an envy-free division was established
in 1980 independently by Stromquist [69], by Woodall [73], and by
Simmons (credited in [70]), even when the division is required to
be contiguous, i.e., when each agent receives a single, connected
piece of the resource. These proofs proceed by �rst establishing the

existence of divisions that are approximately envy-free and then
obtaining exact solutions as limit points of these approximations.

It is known that in general, envy-free divisions might be irra-
tional (e.g., see [8], or the full version of our paper for a simpler
example), and hence the problem of computing them cannot be in
PPAD. Filos-Ratsikas et al. [29] showed that envy-free cake cutting
is in the class FIXP, which, recall, is appropriate for capturing the
complexity of such problems. Still, there are interesting cases for
which rational divisions always exist. This is the case for example
when the agents’ preferences are captured by piecewise constant
density functions [38], a class of functions which is general enough
to capture many problems of interest. A FIXP-membership result
for these variants is unsatisfactory, and we would like to obtain a
PPAD-membership result instead.

Without the convenience of using our linear-OPT-gate, one can
establish such a membership result via the “approximation and
rounding” technique, see Section 1.2.1. Deng et al. [25] showed that
approximately envy-free cake cutting is in PPAD, by transforming
Simmons’ proof into a computational reduction. Goldberg et al. [38]
showed how to “round” the approximate solution to obtain an exact
envy-free division for preferences captured by piecewise-constant
densities, as long as Y is su�ciently small.

Luckily, the linear-OPT-gate allows us to avoid having to do that,
and instead directly obtain a PPAD-membership result without
any need for approximations. In particular, we revisit the FIXP-
membership proof of Filos-Ratsikas et al. [29]; similarly to our
approach in this paper, they essentially �rst construct an existence
proof for the problem, one which involves a pair of optimization
programs, and then substitute those programs with their OPT-gates
for FIXP. One might wonder if, by simply following the steps of
the proof and substituting those programs with linear-OPT-gates
instead, we can recover the PPAD-membership of the problem, for
those classes of preferences for which it is possible. This is almost
true, apart from the fact that there is a step in their proof that
cannot be done in a PL arithmetic circuit.

Still, we manage to substitute that part by a third optimization
program, which is in fact a rather simple linear program, and can
e�ectively be substituted by a linear-OPT-gate. This allows us to
obtain the PPAD-membership of the problem for the general class
of valuation functions (i.e., functions expressing the preferences via
numerical values) that can be computed by a PL arithmetic circuit,
capturing the aforementioned case of valuations with piecewise-
constant densities.

Rental Harmony. The rental harmony problem, notably stud-
ied by Su [70], is concerned with the partition of rent among a set
of tenants which have di�erent preferences over combinations of
rooms and rent partitions. In the generality studied by Su [70], this
problem is in fact equivalent to that of �nding an envy-free division
of a chore among a set of agents. Su’s existence proof is inspired
by Simmons’ proof for envy-free cake cutting, but employs a “dual
Sperner labelling” [67]. Similarly to the proofs for cake-cutting, the
proof also appeals to limits of approximate solutions. In contrast
to cake-cutting however, computational complexity results about
this general version of the problem were not known, not even for
approximate partitions.
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In the corresponding section of the full paper, we prove that the
problem of �nding a solution to rental harmony is in PPAD, as long
as the valuations of the tenants for the rent partition are given by PL
arithmetic circuits. Interestingly, this is established via very much
the same approach as the proof for envy-free cake cutting, thus
providing for the �rst time a uni�ed proof of existence for those
two problems. If one goes beyond the aforementioned valuation
functions, all rental harmony solutions may be irrational, as we
show in the full version of our paper. For those cases, we explain
how the existence proof can be coupled with the OPT-gate for FIXP
of Filos-Ratsikas et al. [29] to establish the FIXP-membership of the
problem.

Computing Envy-Free and Pareto-Optimal Allocations.

We remark that very recently Caragiannis et al. [12] used our linear-
OPT-gates to establish that computing probabilistic envy-free and
Pareto-optimal allocations of multiple divisible goods is in PPAD.

1.3 The linear-OPT-gate vs the OPT-gate for
FIXP

As we mentioned in the introduction, Filos-Ratsikas et al. [29] were
the �rst to develop an OPT-gate for the computational class FIXP
[27]. FIXP is the class that captures the complexity of computing
a �xed point of an arithmetic circuit, i.e., a circuit over the basis
{+,−,max,min,÷, ∗} with rational constants. FIXP is a larger class
than Linear-FIXP, due to the fact that we can multiply and divide
inside the circuit.

The tools that our linear-OPT-gate provides are conceptually
very similar to those of the OPT-gate for FIXP of Filos-Ratsikas
et al. [29], in that they can substitute convex optimization programs
within existence proofs, when constructing a circuit whose �xed
points are the solutions that we are looking for. However, the design
of the gate itself is much more challenging.

The reason for this is the absence of the general multiplication
gate ∗. While we can multiply any two circuit variables in a general
arithmetic circuit, we can only multiply variables by constants in a
PL arithmetic circuit. The construction of the OPT-gate for FIXP by
Filos-Ratsikas et al. [29] makes extensive usage of the multiplication
gate ∗ and can thus not directly be used for creating the linear-OPT-
gate. In our case, the constraint matrix � is �xed (i.e., not an input
to the linear-OPT-gate) and this does help to eliminate some of the
general multiplication gates, but not all of them. At a high level,
the construction of Filos-Ratsikas et al. [29] ensures that the output
G of the gate satis�es

`0 · m5 (G) +�T` = 0

where ` satis�es some standard KKT conditions. If G is feasible and
if `0 > 0, then it follows that G is an optimal solution by standard
arguments (using the convexity of 5 ). The term `0 is carefully
constructed as a function of ` and G in order to ensure that G must
be feasible and that `0 > 0 when G is feasible. However, since both
`0 and m5 (G) depend on G , in our case we cannot construct the term
`0 · m5 (G), because that would entail multiplying two variables in
the circuit. As a result, our construction instead ensures that the
output G of the gate satis�es

Y · m5 (G) +�T` = 0

where ` again satis�es some standard KKT conditions, and where
Y > 0 is some su�ciently small constant that is picked when con-
structing the gate. By standard arguments it still holds that if G is
feasible, then it is an optimal solution. The challenge however is to
ensure that G is indeed feasible. While the argument is relatively
straightforward in the work of Filos-Ratsikas et al. [29], because `0
can depend on G , here `0 has been replaced by a constant Y. Our
main technical contribution in the construction of the linear-OPT-
gate is to show that there exists a su�ciently small Y > 0 that forces
G to be feasible, and that such Y can be constructed e�ciently given
the parameters of the gate (but, importantly, not its inputs!). As a
bonus, our modi�ed construction and analysis allows us to obtain a
linear-OPT-gate that does not require any constraint quali�cation,
whereas the construction of Filos-Ratsikas et al. [29] required an
explicit Slater condition (which of course, as they show, is necessary
in the case where the matrix � is not �xed).

From the standpoint of applications, the linear-OPT-gate can be
used in almost the same direct manner as the OPT-gate for FIXP of
Filos-Ratsikas et al. [29]. In some cases, precisely because we cannot
multiply within a PL arithmetic circuit, we may have to apply some
standard variable changes, to “linearize” certain constraints. Still,
the linear-OPT-gate can e�ectively substitute appropriate optimiza-
tion programs in the same way that the OPT-gate for FIXP can. In
a nutshell, one can view the linear-OPT-gate as a more powerful
tool for those applications for which rational exact solutions exist.

We would like to emphasize that while the full version of our paper
is very long, this is almost exclusively due to the fact that it covers
so many applications, rather than due to the proofs that we develop
for those applications, which in reality range from being very short
to relatively short. For each of all of the domains that we consider,
(a) we provide the appropriate de�nition and place the setting in
context within the rest of the paper, (b) we discuss the related work
and possibly the previous PPAD-membership results (if any), (c)
we provide detailed comparisons with those previous proofs to
demonstrate the e�ectiveness of our linear-OPT-gate as a general-
purpose proof technique, and �nally (d) we develop the proofs
themselves. In some cases in fact, we �rst apply the technique to
simpler settings for a gentle introduction, and then move on to
study those settings in their full generality. We believe that all of
our application sections are largely self-contained, and can be read
almost in isolation, even after only reading the introduction of the
paper, and by referring only to certain clearly referenced parts in
other sections.

2 CONCLUSION AND FUTUREWORK

In this work, we developed the linear-OPT-gate, a powerful general-
purpose tool for showing the PPAD-membership of problems that
have exact rational solutions. We demonstrated its strength by ap-
plying it to a plethora of domains related to game theory, compet-
itive markets, auto-bidding auctions and fair division. For those
applications, we obtain new results and generalizations of the state-
of-the-art complexity results, as well as signi�cant simpli�cations
in terms of the proof techniques.

There are some interesting open directions related to our work,
mainly in the domain of competitive markets. First, it will be very
interesting to see whether one could extend our implicit function
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machinery to also capture markets with SSPLC production sets;
we discuss the challenges of this task in the full version of our
paper. Similarly, it would be interesting to try to design a class
of succinct utility and production functions that subsumes all the
known classes for which rational solutions are known to exist,
i.e., one that would generalize the Leontief-free class of functions.
Finally, one application that we did not study in our work is that of
competitive markets for mixed manna, where there are goods but
also bads to be allocated to the consumers. Chaudhury et al. [13]
studied these markets for SPLC utility functions and developed a
complementary pivot algorithm, based on Lemke’s algorithm, for
computing an equilibrium. There does not seem to be any technical
obstacle to applying our technique on those markets as well (and
also possibly incorporating production functions aswell); the details
are still to be worked out.

Looking at the big picture, our linear-OPT-gate complements
and re�nes the OPT-gate for FIXP of Filos-Ratsikas et al. [29] as
a tool to proving computational membership of exact problems
in the appropriate complexity classes. One interesting question is
whether one could hope to develop a similar gate for approximate

problems, i.e., an optimization gate that could be used in a very simi-
lar manner to those other two gates to establish PPAD-membership
of more general problems (with irrational solutions), for their ap-
proximate versions. This certainly introduces new challenges and
intriguing questions. One would have to work with approximate
rather than exact �xed points. How should the gate be constructed
to be useful in this regard? Should the gate work approximately as
well? Applications domains like competitive markets, where the
approximation in the competitive equilibrium notion comes from
relaxing the clearing condition rather than the bundle optimality
of the consumers, seem to suggest otherwise.
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