339 research outputs found

    Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

    Full text link
    We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that the proportion of negatively-charged NV−^{-} defects, with respect to its neutral counterpart NV0^{0}, decreases with the size of the ND. We then propose a simple model based on a layer of electron traps located at the ND surface which is in good agreement with the recorded statistics. By using thermal oxidation to remove the shell of amorphous carbon around the NDs, we demonstrate a significant increase of the proportion of NV−^{-} defects in 10-nm NDs. These results are invaluable for further understanding, control and use of the unique properties of negatively-charged NV defects in diamondComment: 6 pages, 4 figure

    Feature integration in natural language concepts

    Get PDF
    Two experiments measured the joint influence of three key sets of semantic features on the frequency with which artifacts (Experiment 1) or plants and creatures (Experiment 2) were categorized in familiar categories. For artifacts, current function outweighed both originally intended function and current appearance. For biological kinds, appearance and behavior, an inner biological function, and appearance and behavior of offspring all had similarly strong effects on categorization. The data were analyzed to determine whether an independent cue model or an interactive model best accounted for how the effects of the three feature sets combined. Feature integration was found to be additive for artifacts but interactive for biological kinds. In keeping with this, membership in contrasting artifact categories tended to be superadditive, indicating overlapping categories, whereas for biological kinds, it was subadditive, indicating conceptual gaps between categories. It is argued that the results underline a key domain difference between artifact and biological concepts

    Survey data of public awareness on climate change and the value of marine and coastal ecosystems

    Get PDF
    The long-term provision of ocean ecosystem services depends on healthy ecosystems and effective sustainable management. Understanding public opinion about marine and coastal ecosystems is important to guide decision-making and inform specific actions. However, available data on public perceptions on the interlinked effects of climate change, human impacts and the value and management of marine and coastal ecosystems are rare. This dataset presents raw data from an online, self-administered, public awareness survey conducted between November 2021 and February 2022 which yielded 709 responses from 42 countries. The survey was released in four languages (English, French, Spanish and Italian) and consisted of four main parts: (1) perceptions about climate change; (2) perceptions about the value of, and threats to, coasts, oceans and their wildlife, (3) perceptions about climate change response; and (4) socio-demographic information. Participation in the survey was voluntary and all respondents provided informed consent after reading a participant information form at the beginning of the survey. Responses were anonymous unless respondents chose to provide contact information. All identifying information has been removed from the dataset. The dataset can be used to conduct quantitative analyses, especially in the area of public perceptions of the interlinkages between climate change, human impacts and options for sustainable management in the context of marine and coastal ecosystems. The dataset is provided with this article, including a copy of the survey and participant information forms in all four languages, data and the corresponding codebook.This study received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement MaCoBioS (No 869710). The funders had no role in any part of the research process.info:eu-repo/semantics/publishedVersio

    Hydrostatic strain enhancement in laterally confined SiGe nanostripes

    Full text link
    Strain-engineering in SiGe nanostructures is fundamental for the design of optoelectronic devices at the nanoscale. Here we explore a new strategy, where SiGe structures are laterally confined by the Si substrate, to obtain high tensile strain avoiding the use of external stressors, and thus improving the scalability. Spectro-microscopy techniques, finite element method simulations and ab initio calculations are used to investigate the strain state of laterally confined Ge-rich SiGe nano-stripes. Strain information is obtained by tip enhanced Raman spectroscopy with an unprecedented lateral resolution of ~ 30 nm. The nano-stripes exhibit a large tensile hydrostatic strain component, which is maximum at the center of the top free surface, and becomes very small at the edges. The maximum lattice deformation is larger than the typical values of thermally relaxed Ge/Si(001) layers. This strain enhancement originates from a frustrated relaxation in the out-of-plane direction, resulting from the combination of the lateral confinement induced by the substrate side walls and the plastic relaxation of the misfit strain in the (001) plane at the SiGe/Si interface. The effect of this tensile lattice deformation at the stripe surface is probed by work function mapping, performed with a spatial resolution better than 100 nm using X-ray photoelectron emission microscopy. The nano-stripes exhibit a positive work function shift with respect to a bulk SiGe alloy, quantitatively confirmed by electronic structure calculations of tensile strained configurations. The present results have a potential impact on the design of optoelectronic devices at a nanometer length scale.Comment: 40 pages, 11 figures, submitted to Physical Review

    Hemodynamic Responses Evoked by Neuronal Stimulation via Channelrhodopsin-2 Can Be Independent of Intracortical Glutamatergic Synaptic Transmission

    Get PDF
    Maintenance of neuronal function depends on the delivery of oxygen and glucose through changes in blood flow that are linked to the level of ongoing neuronal and glial activity, yet the underlying mechanisms remain unclear. Using transgenic mice expressing the light-activated cation channel channelrhodopsin-2 in deep layer pyramidal neurons, we report that changes in intrinsic optical signals and blood flow can be evoked by activation of a subset of channelrhodopsin-2-expressing neurons in the sensorimotor cortex. We have combined imaging and pharmacology to examine the importance of glutamatergic synaptic transmission in this form of neurovascular coupling. Blockade of ionotropic glutamate receptors with the antagonists CNQX and MK801 significantly reduced forepaw-evoked hemodynamic responses, yet resulted in no significant reduction of channelrhodopsin-evoked hemodynamic responses, suggesting that stimulus-dependent coupling of neuronal activity to blood flow can be independent of local excitatory synaptic transmission. Together, these results indicate that channelrhodopsin-2 activation of sensorimotor excitatory neurons produces changes in intrinsic optical signals and blood flow that can occur under conditions where synaptic activation of neurons or other cells through ionotropic glutamate receptors would be blocked

    Practical diagnosis of cirrhosis in non-alcoholic fatty liver disease using currently available non-invasive fibrosis tests

    Get PDF
    Unlike for advanced liver fibrosis, the practical rules for the early non-invasive diagnosis of cirrhosis in NAFLD remain not well defined. Here, we report the derivation and validation of a stepwise diagnostic algorithm in 1568 patients with NAFLD and liver biopsy coming from four independent cohorts. The study algorithm, using first the elastography-based tests Agile3+ and Agile4 and then the specialized blood tests FibroMeterV3G and CirrhoMeterV3G, provides stratification in four groups, the last of which is enriched in cirrhosis (71% prevalence in the validation set). A risk prediction chart is also derived to allow estimation of the individual probability of cirrhosis. The predicted risk shows excellent calibration in the validation set, and mean difference with perfect prediction is only −2.9%. These tools improve the personalized non-invasive diagnosis of cirrhosis in NAFLD

    FibroMeters: a family of blood tests for liver fibrosis

    Get PDF
    SummaryFibroMeters are blood tests for liver fibrosis with several specificities: two main diagnostic targets (fibrosis stage and area of fibrosis); adaptation to specific causes; and results confirmed by an expert system. Thus, FibroMeters comprise six different tests: one for staging and one for quantitation of liver fibrosis in each of the three main causes of chronic liver disease—chronic viral hepatitis, alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). FibroMeters display a high overall diagnostic accuracy and are the only tests to correctly classify 100% of HCV patients without fibrosis or with cirrhosis. They have 90% predictive values in a higher proportion of patients than with other usual blood tests. A 90% correct classification is available in 100% of HCV patients with the following reliable diagnostic intervals: F0/1, F1/2, F2±1, F3±1. In real-life conditions, the reproducibility of FibroMeters is higher than that of liver biopsy or ultrasonographic elastometry. FibroMeters are robust tests with the most stable diagnostic performance across different centers. Optional tests are also available, such as a specific one for cirrhosis, which has a diagnostic accuracy of 93.0% (AUROC: 0.92) and a 100% positive predictive value for diagnosis of HCV cirrhosis. Determination by FibroMeters of the area of fibrosis – the only direct, non-invasive, quantitative measurement of liver fibrosis – are especially useful for following-up cirrhosis as it correlates well with clinical events. FibroMeters are also very accurate in HVB or HIV-HCV co-infected patients. The tests specific for ALD and NAFLD also have a high diagnostic accuracy (AUROCs: 0.96 and 0.94, respectively, for significant fibrosis)
    • …
    corecore