251 research outputs found
The problems and measures of sharing of science an technology resources in our country
人类经济社会发展正在经历着重大转型,科技创新的主导作用日益显著,科技资源的拥有、配置和利用方式的优劣,特别是共享程度的高低,日益成为决定国家科技强弱甚至国家兴衰的关键因素之一。因此,关于科技资源共享的研究就受到越来越多的国内外专家的关注。 第一章在理清资源、科技资源概念的基础上,界定了科技资源的内涵。指出,科技资源是进行科技活动所需要的诸投入要素,主要包括科技人力资源、科技财力资源、科技物力资源和科技信息资源四个方面。 第二章在考察共享及其相关理论的基础上,对科技资源共享作了属性判断分析,并指出科技资源共享的意义,即在于公开并整合现有的科技资源,实现科技资源的科学、高效使用和管理,使之创造...Science and technology innovation has increasingly shown its leading function with a big turn in the economic and social development of mankind society. To significantly own、better configure and equitably use,especially fully share science and technology resources is becoming increasingly key factors to influence development of national science and technology or even national overall power, so sha...学位:哲学硕士院系专业:人文学院哲学系_科学技术哲学学号:1032005130017
Quark masses and mixings in the RS1 model with a condensing 4th generation
We study the hierarchy of quark masses and mixings in a model based on a
5-dimensional spacetime with constant curvature of Randall-Sundrum type with
two branes, where the Electroweak Symmetry Breaking is caused dynamically by
the condensation of a 4th generation of quarks, due to underlying physics from
the 5D bulk and the first KK gluons. We first study the hierarchy of quark
masses and mixings that can be obtained from purely adjusting the profile
localizations, finding that realistic masses are not reproduced unless non
trivial hierarchies of underlying 4-fermion interactions from the bulk are
included. Then we study global U(1) symmetries that can be imposed in order to
obtain non-symmetric modified Fritzsch-like textures in the mass matrices that
reproduce reasonably well quark masses and CKM mixings.Comment: Minor changes. Version accepted for publication in JHE
On the effect of resonances in composite Higgs phenomenology
We consider a generic composite Higgs model based on the coset SO(5)/SO(4)
and study its phenomenology beyond the leading low-energy effective lagrangian
approximation. Our basic goal is to introduce in a controllable and simple way
the lowest-lying, possibly narrow, resonances that may exist is such models. We
do so by proposing a criterion that we call partial UV completion. We
characterize the simplest cases, corresponding respectively to a scalar in
either singlet or tensor representation of SO(4) and to vectors in the adjoint
of SO(4). We study the impact of these resonances on the signals associated to
high-energy vector boson scattering, pointing out for each resonance the
characteristic patterns of depletion and enhancement with respect to the
leading-order chiral lagrangian. En route we derive the O(p^4) general chiral
lagrangian and discuss its peculiar accidental and approximate symmetries.Comment: v3: a few typos corrected. Conclusions unchange
Composite Higgs Sketch
The coupling of a composite Higgs to the standard model fields can deviate
substantially from the standard model values. In this case perturbative
unitarity might break down before the scale of compositeness is reached, which
would suggest that additional composites should lie well below this scale. In
this paper we account for the presence of an additional spin 1 custodial
triplet of rhos. We examine the implications of requiring perturbative
unitarity up to the compositeness scale and find that one has to be close to
saturating certain unitarity sum rules involving the Higgs and the rho
couplings. Given these restrictions on the parameter space we investigate the
main phenomenological consequences of the spin 1 triplet. We find that they can
substantially enhance the Higgs di-photon rate at the LHC even with a reduced
Higgs coupling to gauge bosons. The main existing LHC bounds arise from
di-boson searches, especially in the experimentally clean channel where the
charged rhos decay to a W-boson and a Z, which then decay leptonically. We find
that a large range of interesting parameter space with 700 GeV < m(rho) < 2 TeV
is currently experimentally viable.Comment: 37 pages, 12 figures; v4: sum rule corrected, conclusions unchange
Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment
Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters θ23 and δCP. We present the expected improved sensitivity on these parameters for different assumptions
Pharmacologic Inhibition of the TGF-β Type I Receptor Kinase Has Anabolic and Anti-Catabolic Effects on Bone
During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-β has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-β signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-β signaling on bone remain unclear. To examine the role of TGF-β in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-β type I receptor (TβRI) kinase on bone mass, architecture and material properties. Inhibition of TβRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TβRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TβRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TβRI inhibitors may be effective in treating conditions of skeletal fragility
Systematic study of flow vector fluctuations in √SNN=5.02 TeV Pb-Pb collisions
Measurements of the pT-dependent flow vector fluctuations in Pb-Pb collisions at sNN=5.02TeV using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, Phys. Rev. C 107, L051901 (2023)2469-998510.1103/PhysRevC.107.L051901] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pT-dependent flow vector fluctuations at sNN=5.02TeV with two-particle correlations. Significant pT-dependent fluctuations of the V - 2 flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to ∼15% being present in the 5% most central collisions. In parallel, no evidence of significant pT-dependent fluctuations of V - 3 or V - 4 is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pT, which might be biased by pT-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark-gluon plasma properties, and the dynamic evolution of the created system
Pseudorapidity dependence of anisotropic flow and its decorrelations using long-range multiparticle correlations in Pb-Pb and Xe-Xe collisions
The pseudorapidity dependence of elliptic (v2), triangular (v3), and quadrangular (v4) flow coefficients of charged particles measured in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of sNN=5.02TeV and in Xe–Xe collisions at sNN=5.44TeV with ALICE at the LHC are presented. The measurements are performed in the pseudorapidity range −3.5<η<5 for various centrality intervals using two- and multi-particle cumulants with the subevent method. The flow probability density function (p.d.f.) is studied with the ratio of flow coefficient v2 calculated with four- and two-particle cumulant, and suggests that the variance of flow p.d.f. is independent of pseudorapidity. The decorrelation of the flow vector in the longitudinal direction is probed using two-particle correlations. The results measured with respect to different reference regions in pseudorapidity exhibit differences, argued to be a result of saturating decorrelation effect above a certain pseudorapidity separation, in contrast to previous publications which assign this observation to non-flow effects. The results are compared to 3+1 dimensional hydrodynamic and the AMPT transport model calculations. Neither of the models is able to simultaneously describe the pseudorapidity dependence of measurements of anisotropic flow and its fluctuations. The results presented in this work highlight shortcomings in our current understanding of initial conditions and subsequent system expansion in the longitudinal direction. Therefore, they provide input for its improvement
Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies
The first measurements of skewness and kurtosis of mean transverse momentum (〈pT〉) fluctuations are reported in Pb–Pb collisions at sNN = 5.02 TeV, Xe–Xe collisions at sNN = 5.44 TeV and pp collisions at s=5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size 〈dNch/dη〉|η|<0.51/3, using charged particles with transverse momentum (pT) and pseudorapidity (η), in the range 0.2<3.0 GeV/c and |η|<0.8, respectively. In Pb–Pb and Xe–Xe collisions, positive skewness is observed in the fluctuations of 〈pT〉 for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of 〈pT〉 fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb–Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb–Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions
K *(892)± resonance production in Pb-Pb collisions at √sNN=5.02 TeV
The production of K∗(892)± meson resonance is measured at midrapidity (|y|<0.5) in Pb-Pb collisions at sNN=5.02 TeV using the ALICE detector at the CERN Large Hadron Collider. The resonance is reconstructed via its hadronic decay channel K∗(892)±→KS0π±. The transverse momentum distributions are obtained for various centrality intervals in the pT range of 0.4-16 GeV/c. Measurements of integrated yields, mean transverse momenta, and particle yield ratios are reported and found to be consistent with previous ALICE measurements for K∗(892)0 within uncertainties. The pT-integrated yield ratio 2K∗(892)±/(K++K-) in central Pb-Pb collisions shows a significant suppression at a level of 9.3σ relative to pp collisions. Thermal model calculations result in an overprediction of the particle yield ratio. Although both hadron resonance gas in partial chemical equilibrium (HRG-PCE) and music + smash simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas music + smash simulations tend to overpredict the particle yield ratio. These observations, along with the kinetic freeze-out temperatures extracted from the yields measured for light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which decreases with increasing collision centrality percentile. The pT-differential yield ratios 2K∗(892)±/(K++K-) and 2K∗(892)±/(π++π-) are presented and compared with measurements in pp collisions at s=5.02 TeV. Both particle ratios are found to be suppressed by up to a factor of five at pT<2.0 GeV/c in central Pb-Pb collisions and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor (RAA) shows a smooth evolution with centrality and is found to be below unity at pT>8 GeV/c, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium
- …