6 research outputs found

    纳米结构氧化物中空球在二次电池中的应用

    No full text
    随着纳米技术在过去二十年的发展,研究人员能可控制备纳米尺度的无机固体材料,并设计具有理想电子、离子传导和机械性能的无机功能材料。通过设计无机固体材料结构,我们可以实现用于高效电化学储能的中空纳米结构无机材料的制备。在这次报告中,我将简要讨论几个关于我们如何设计理想中空纳米结构无机材料并用于电化学储能的例子,包括1)中空结构材料的形成机理; 2)构建若干中空纳米结构无机材料; 3)用于电化学能量储存的中空结构无机材料的性能评价。</p

    用于刚性机械手结构拓扑优化的叠加方法

    No full text
    针对考虑动态载荷条件的刚性机器手连杆的拓扑优化问题,提出了一种类似于等效静载荷技术的综合拓扑叠加方法。该方法是将对应于不同角度位置的单个最佳拓扑叠加,以便在所有角度位置都有较好的综合效果;然后,进行归一化和再惩罚,以获得所需的体积分数。此外,利用图像处理技术进行后处理,可以降低应力值和几何复杂度。通过理论仿真,对该方法所得综合拓扑的性能进行了评估,并以3自由度工业机械手刚性连杆为例进行了验证。结果表明,体积分数降低30%的情况下可将关节转矩降低24.9%,同时,具有更好的挠度和应力值。与任何一种单个优化拓扑相比,综合拓扑的挠度和应力值降低了10%~25%

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore