31 research outputs found

    Modeling a cooperation environment for flexibility enhancement in smart multi-energy industrial systems

    Get PDF
    Environmental aspects have been highlighted in architecting future energy systems where sustainable development plays a key role. Sustainable development in the energy sector has been defined as a potential solution for enhancing the energy system to meet the future energy requirements without interfering with the environment and energy provision. In this regard, studying the cross-impact of various energy vectors and releasing their inherent operational flexibility is main topic. Thecoordinationofvariousenergyvectorsundertheconceptofmulti-energysystem (MES)hasintroducednewsourcesofoperationalflexibilitytothesystemmanagers. MES considers both interactions among the energy carriers and the decision makers in an interdependent environment to increase the total efficiency of the system and reveal the hidden synergy among energy carriers. This thesis addresses a framework for modeling multi-energy players (MEP) that are coupled based on price signal in multi-energy system (MES) in a competitive environment. MEP is defined as an energy player who can consume or deliver more than one type of energy carriers. At first, the course of evolution for the energy system from today independent energy systems to a fully integrated MES is presented and the fractal structure is described for of MES architecture. Moreover, the operational behavior of plug-in electric vehicles’ parking lots and multi-energy demands’ external dependency are modeled in MES framework to enhance the operational flexibility of local energy systems (LES). In the fractal environment, there exist conflicts among MEPs’ decision making in a same layer and other layers. Realizing the inherent flexibility of MES is the main key for modeling the conflicts in this multi-layer structure. The conflict between two layers of players is modeled based on a bi-level approach. In this problem, the first level is the MEP level where the player maximizes its profit while satisfying LES energy exchange. The LES’s exchange energy price is the output of this level. In the lower level, the LESs schedule their energy balance, based on the upper level input price signal. The problem is transformed into a mathematical program with equilibrium constraint (MPEC) through duality theory. In the next step, high penetration of multi-energy players in the electricity market is modeled and their impacts on electricity market equilibrium are investigated. In such a model, MEP participates in the local energy and wholesale electricity markets simultaneously. MEP and the other players’ objectives in these two markets conflict with each other. Each of these conflicts is modeled based on bi-level programming. The bi-level problems are transformed into a single level mixed-integer linear problem by applying duality theory

    Correlation between vertical hard and soft tissue variables of the face.

    Get PDF
    Abstract: Background & Aim: Facial vertical variables are important components of soft tissue analysis which are used in clinical esthetic evaluation. The purpose of this study was to evaluate the correlation between vertical skeletal and dental variables of hard and soft tissues of human face. Materials & Methods: A total of 46 patients (23 boys and girls) were included in this cross-sectional study. Selected angles and facial dimensions were measured during the clinical appointments. For facial proportions, from frontal view, ..

    Effect of cyclic loading on bond strength of fiber posts to root canal dentin.

    No full text
    The aim of this study was to evaluate the effect of cyclic loading on the bond strength of quartz fiber posts to root canal dentin after different surface treatments of different regions of root canal dentin.Forty-eight single-rooted human teeth were selected. Post spaces were prepared and then the teeth were divided into four groups: G1: no treatment (control); G2: irrigation with a chemical solvent; G3: etching with 37% phosphoric acid; G4: treatment with ultrasonic file. The fiber posts were cemented using dual-cured resin cement. Half of the specimens were load-cycled (10000 cycles, 3 cycles/s) and the others did not undergo any load cycling. From each root, two slides measuring 1 mm in thickness were obtained from the apical and cervical regions. The push-out bond strength test was performed for each slice. Data were analyzed by using 3-way ANOVA and Tukey HSD tests. The fracture modes were evaluated under a stereomicroscope at ×20.The effect of load cycling and surface treatment as the main factors and the interaction of main factors were not significant (P=0.734, P=0.180, and P=0.539, respectively). The most frequent failure mode under the stereomicroscope was adhesive.It appears that load cycling and surface treatment methods had no effect on the bond strength of fiber posts to root canal dentin, but it depended on the region of the root canal dentin

    Effects of PEV Traffic Flows on the Operation of Parking Lots and Charging Stations

    No full text
    The introduction of plug-in electric vehicles (PEVs) in the electrical system is bringing various challenges. The main issue is incorporating the PEV owner’s preferences in the models. One of the main attributes representing the preference of the owners is their travel purposes, impacting on the traffic flow pattern. The PEVs’ traffic pattern defines the required charging schedule of the PEVs and consequently characterizes the operation of the charging facilities such as PEV parking lots (PLs). The deployment of resources such as PEV PL requires a detailed modeling of the factors affecting their operation. In this regard, this paper aims to model the power flow of the PEVs based on their traffic flow. Different travel types and purposes are considered for the PEVs traffic modeling. Two types of charging infrastructure (i.e., PLs and individual charging stations) are considered. The study is performed on a distribution network categorized based on the consumption patterns of the zones

    Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs

    No full text
    The operation problem of a micro-grid (MG) in grid-connected mode is an optimization one in which the main objective of the MG operator (MGO) is to minimize the operation cost with optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use incentive-based demand response programs (DRPs) to pay an incentive to the consumers to change their demands in the peak hours. Moreover, the MGO forecasts the output power of renewable energy resources (RERs) and models their uncertainties in its problem. In this paper, the operation problem of an MGO is modeled as a risk-based two-stage stochastic optimization problem. To model the uncertainties of RERs, two-stage stochastic programming is considered and conditional value at risk (CVaR) index is used to manage the MGO’s risk-level. Moreover, the non-linear economic models of incentive-based DRPs are used by the MGO to change the peak load. The numerical studies are done to investigate the effect of incentive-based DRPs on the operation problem of the MGO. Moreover, to show the effect of the risk-averse parameter on MGO decisions, a sensitivity analysis is carried out

    Assessing the effectiveness of decision making frameworks in local energy systems

    No full text
    This paper investigates the effectiveness of using different decision-making frameworks in local energy systems (LES) through the assessment of the long-term equilibrium of energy players. For this purpose, the energy system is modelled through two levels of multi-energy player (MEP) and LES, coupled by energy price signals. The conflict between the decision-making of these two levels of players is modelled through a bi-level approach. A mathematical problem with equilibrium constraint is formulated by applying the duality theory, resorting to a linear representation of the constraints. The solution is found by using the CPLEX12 solver. The numerical results show the characteristics of the MEP behaviour in different energy aggregation modes for the LES, with centralised management or uniform pricing. The MEP may find benefits from possible synergies among the LES due to availability of energy carriers with complementary characteristics

    Location of parking lots for plug-in electric vehicles considering traffic model and market participation

    No full text
    This paper addresses the location of parking lots (PLs) to be used for plug-in electric vehicles (PEVs) by using a probabilistic traffic model and taking into account the PL participation in electricity markets. The PLs are used both for grid-to-vehicle and vehicle-to-grid. The system includes private or public charging stations only used for PEV charging. The traffic model considers the partitioning of the territory into areas. The case study is based on traffic and market data referring to Italy
    corecore